Skip to main content
Top
Published in: Immunity & Ageing 1/2016

Open Access 01-12-2016 | Research

Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis

Authors: A. Trovato, R. Siracusa, R. Di Paola, M. Scuto, M. L. Ontario, Ornella Bua, Paola Di Mauro, M. A. Toscano, C. C. T. Petralia, L. Maiolino, A. Serra, S. Cuzzocrea, Vittorio Calabrese

Published in: Immunity & Ageing | Issue 1/2016

Login to get access

Abstract

Background

There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses.

Results

Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase −1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous “braking signal” in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding.

Conclusions

Conceivably, activation of LXA4 signaling and modulation of stress responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
Literature
1.
go back to reference Di Bona D, Accardi G, Virruso C, Candore G, Caruso C. Association between genetic variations in the insulin/insulin-like growth factor (Igf-1) signaling pathway and longevity: a systematic review and meta-analysis. Curr Vasc Pharmacol. 2014;12(5):674–81.CrossRefPubMed Di Bona D, Accardi G, Virruso C, Candore G, Caruso C. Association between genetic variations in the insulin/insulin-like growth factor (Igf-1) signaling pathway and longevity: a systematic review and meta-analysis. Curr Vasc Pharmacol. 2014;12(5):674–81.CrossRefPubMed
2.
go back to reference Candore G, Balistreri CR, Listi F, Grimaldi MP, Vasto S, et al. Immunogenetics, gender, and longevity. Ann N Y Acad Sci. 2006;1089:516–37.CrossRefPubMed Candore G, Balistreri CR, Listi F, Grimaldi MP, Vasto S, et al. Immunogenetics, gender, and longevity. Ann N Y Acad Sci. 2006;1089:516–37.CrossRefPubMed
3.
4.
go back to reference Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology. 2015;16(6):693–707.CrossRefPubMed Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology. 2015;16(6):693–707.CrossRefPubMed
5.
go back to reference Elsayed EA, El Enshasy H, Wadaan MA, Aziz R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014;2014:805841.CrossRefPubMedPubMedCentral Elsayed EA, El Enshasy H, Wadaan MA, Aziz R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014;2014:805841.CrossRefPubMedPubMedCentral
6.
go back to reference El Enshasy H, Elsayed EA, Aziz R, Wadaan MA. Mushrooms and truffles: historical biofactories for complementary medicine in Africa and in the middle East. Evid Based Complement Alternat Med. 2013;2013:620451.CrossRefPubMedPubMedCentral El Enshasy H, Elsayed EA, Aziz R, Wadaan MA. Mushrooms and truffles: historical biofactories for complementary medicine in Africa and in the middle East. Evid Based Complement Alternat Med. 2013;2013:620451.CrossRefPubMedPubMedCentral
7.
go back to reference Paterson RR, Lima N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed J. 2014;37(6):357–68.CrossRefPubMed Paterson RR, Lima N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed J. 2014;37(6):357–68.CrossRefPubMed
8.
go back to reference Komura DL, Ruthes AC, Carbonero ER, Gorin PA, Iacomini M. Water-soluble polysaccharides from Pleurotus ostreatus var. florida mycelial biomass. Int J Biol Macromol. 2014;70:354–9.CrossRefPubMed Komura DL, Ruthes AC, Carbonero ER, Gorin PA, Iacomini M. Water-soluble polysaccharides from Pleurotus ostreatus var. florida mycelial biomass. Int J Biol Macromol. 2014;70:354–9.CrossRefPubMed
9.
go back to reference Wasser SP. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J. 2014;37(6):345–56.CrossRefPubMed Wasser SP. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J. 2014;37(6):345–56.CrossRefPubMed
11.
go back to reference da Silva AF, Sartori D, Macedo Jr FC, Ribeiro LR, Fungaro MH, et al. Effects of beta-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9, and CYP1A1 genes and metabolic profile in HepG2 cells. Hum Exp Toxicol. 2013;32(6):647–54.CrossRefPubMed da Silva AF, Sartori D, Macedo Jr FC, Ribeiro LR, Fungaro MH, et al. Effects of beta-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9, and CYP1A1 genes and metabolic profile in HepG2 cells. Hum Exp Toxicol. 2013;32(6):647–54.CrossRefPubMed
12.
13.
go back to reference Jeong SC, Koyyalamudi SR, Hughes J, Khoo C, Bailey T, et al. Antioxidant and immunomodulating activities of exo-and endopolysaccharide fractions from submerged mycelia cultures of culinary-medicinal mushrooms. Int J Med Mushrooms. 2013;15(3):251–66.CrossRefPubMed Jeong SC, Koyyalamudi SR, Hughes J, Khoo C, Bailey T, et al. Antioxidant and immunomodulating activities of exo-and endopolysaccharide fractions from submerged mycelia cultures of culinary-medicinal mushrooms. Int J Med Mushrooms. 2013;15(3):251–66.CrossRefPubMed
14.
go back to reference Wang J, Liu YM, Cao W, Yao KW, Liu ZQ, et al. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis. 2012;27(2):159–65.CrossRefPubMed Wang J, Liu YM, Cao W, Yao KW, Liu ZQ, et al. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis. 2012;27(2):159–65.CrossRefPubMed
15.
go back to reference Xu T, Beelman RB, Lambert JD. The cancer preventive effects of edible mushrooms. Anticancer Agents Med Chem. 2012;12(10):1255–63.CrossRefPubMed Xu T, Beelman RB, Lambert JD. The cancer preventive effects of edible mushrooms. Anticancer Agents Med Chem. 2012;12(10):1255–63.CrossRefPubMed
16.
go back to reference Walton EL. Buried treasure: unlocking the secrets of medicinal mushrooms. Biomed J. 2014;37(6):339–42.CrossRefPubMed Walton EL. Buried treasure: unlocking the secrets of medicinal mushrooms. Biomed J. 2014;37(6):339–42.CrossRefPubMed
17.
go back to reference Nagano M, Shimizu K, Kondo R, Hayashi C, Sato D, et al. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed Res. 2010;31(4):231–7.CrossRefPubMed Nagano M, Shimizu K, Kondo R, Hayashi C, Sato D, et al. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed Res. 2010;31(4):231–7.CrossRefPubMed
18.
go back to reference Cui J, Chisti Y. Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnol Adv. 2003;21(2):109–22.CrossRefPubMed Cui J, Chisti Y. Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnol Adv. 2003;21(2):109–22.CrossRefPubMed
19.
go back to reference Joshi YB, Pratico D. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype. Front Cell Neurosci. 2014;8:436.PubMed Joshi YB, Pratico D. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype. Front Cell Neurosci. 2014;8:436.PubMed
20.
go back to reference Wu J, Wang A, Min Z, Xiong Y, Yan Q, et al. Lipoxin A4 inhibits the production of proinflammatory cytokines induced by beta-amyloid in vitro and in vivo. Biochem Biophys Res Commun. 2011;408(3):382–7.CrossRefPubMed Wu J, Wang A, Min Z, Xiong Y, Yan Q, et al. Lipoxin A4 inhibits the production of proinflammatory cytokines induced by beta-amyloid in vitro and in vivo. Biochem Biophys Res Commun. 2011;408(3):382–7.CrossRefPubMed
21.
go back to reference McGeer PL, McGeer EG. Innate immunity, local inflammation, and degenerative disease. Sci Aging Knowledge Environ. 2002;2002(29):re3.CrossRefPubMed McGeer PL, McGeer EG. Innate immunity, local inflammation, and degenerative disease. Sci Aging Knowledge Environ. 2002;2002(29):re3.CrossRefPubMed
22.
go back to reference Hawkins KE, DeMars KM, Singh J, Yang C, Cho HS, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129(1):130–42.CrossRefPubMed Hawkins KE, DeMars KM, Singh J, Yang C, Cho HS, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129(1):130–42.CrossRefPubMed
23.
go back to reference Yang F, Xie J, Wang W, Xie Y, Sun H, et al. Regional arterial infusion with lipoxin A4 attenuates experimental severe acute pancreatitis. PLoS One. 2014;9(9):e108525.CrossRefPubMedPubMedCentral Yang F, Xie J, Wang W, Xie Y, Sun H, et al. Regional arterial infusion with lipoxin A4 attenuates experimental severe acute pancreatitis. PLoS One. 2014;9(9):e108525.CrossRefPubMedPubMedCentral
24.
go back to reference Trovato A, Siracusa R, Di Paola R, Scuto M, Fronte V, et al. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology, 2015. doi: 10.1016/j.neuro.2015.09.012 Trovato A, Siracusa R, Di Paola R, Scuto M, Fronte V, et al. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology, 2015. doi: 10.1016/j.neuro.2015.09.012
25.
go back to reference Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science. 2002;296(5575):1991–5.CrossRefPubMed Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science. 2002;296(5575):1991–5.CrossRefPubMed
26.
go back to reference Buratti L, Balestrini S, Altamura C, Viticchi G, Falsetti L, et al. Markers for the risk of progression from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2015;45(3):883–90.PubMed Buratti L, Balestrini S, Altamura C, Viticchi G, Falsetti L, et al. Markers for the risk of progression from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2015;45(3):883–90.PubMed
27.
go back to reference Cornelius C, Trovato Salinaro A, Scuto M, Fronte V, Cambria MT, et al. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun Ageing. 2013;10(1):41.CrossRefPubMedPubMedCentral Cornelius C, Trovato Salinaro A, Scuto M, Fronte V, Cambria MT, et al. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun Ageing. 2013;10(1):41.CrossRefPubMedPubMedCentral
28.
go back to reference Castello MA, Soriano S. On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev. 2014;13:10–2.CrossRefPubMed Castello MA, Soriano S. On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev. 2014;13:10–2.CrossRefPubMed
29.
go back to reference Sulistio YA and Heese K. The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer’s Disease. Mol Neurobiol. 2015. doi: 10.1007/s12035-014-9063-4 Sulistio YA and Heese K. The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer’s Disease. Mol Neurobiol. 2015. doi: 10.1007/s12035-014-9063-4
30.
go back to reference Dunn HC, Ager RR, Baglietto-Vargas D, Cheng D, Kitazawa M, et al. Restoration of lipoxin A4 signaling reduces Alzheimer’s disease-like pathology in the 3xTg-AD mouse model. J Alzheimers Dis. 2015;43(3):893–903.PubMedPubMedCentral Dunn HC, Ager RR, Baglietto-Vargas D, Cheng D, Kitazawa M, et al. Restoration of lipoxin A4 signaling reduces Alzheimer’s disease-like pathology in the 3xTg-AD mouse model. J Alzheimers Dis. 2015;43(3):893–903.PubMedPubMedCentral
31.
go back to reference Abdelmoaty S, Wigerblad G, Bas DB, Codeluppi S, Fernandez-Zafra T, et al. Spinal actions of lipoxin A4 and 17(R)-resolvin D1 attenuate inflammation-induced mechanical hypersensitivity and spinal TNF release. PLoS One. 2013;8(9):e75543.CrossRefPubMedPubMedCentral Abdelmoaty S, Wigerblad G, Bas DB, Codeluppi S, Fernandez-Zafra T, et al. Spinal actions of lipoxin A4 and 17(R)-resolvin D1 attenuate inflammation-induced mechanical hypersensitivity and spinal TNF release. PLoS One. 2013;8(9):e75543.CrossRefPubMedPubMedCentral
32.
go back to reference Jo Feeney M, Miller AM, Roupas P. Mushrooms-biologically distinct and nutritionally unique: exploring a “Third Food Kingdom”. Nutr Today. 2014;49(6):301–7.CrossRefPubMed Jo Feeney M, Miller AM, Roupas P. Mushrooms-biologically distinct and nutritionally unique: exploring a “Third Food Kingdom”. Nutr Today. 2014;49(6):301–7.CrossRefPubMed
33.
go back to reference Uhl GR. Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol. 1998;43(5):555–60.CrossRefPubMed Uhl GR. Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol. 1998;43(5):555–60.CrossRefPubMed
34.
go back to reference Junn E, Mouradian MM. Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem. 2001;78(2):374–83.CrossRefPubMed Junn E, Mouradian MM. Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem. 2001;78(2):374–83.CrossRefPubMed
35.
go back to reference Calabrese V, Fariello RG. Regional distribution of malonaldehyde in mouse brain. Biochem Pharmacol. 1988;37(11):2287–8.CrossRefPubMed Calabrese V, Fariello RG. Regional distribution of malonaldehyde in mouse brain. Biochem Pharmacol. 1988;37(11):2287–8.CrossRefPubMed
36.
go back to reference Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, et al. In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem. 2007;101(3):709–17.CrossRefPubMed Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, et al. In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem. 2007;101(3):709–17.CrossRefPubMed
38.
go back to reference Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on amyloid beta(25–35) peptide-induced learning and memory deficits in mice. Biomed Res. 2011;32(1):67–72.CrossRefPubMed Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on amyloid beta(25–35) peptide-induced learning and memory deficits in mice. Biomed Res. 2011;32(1):67–72.CrossRefPubMed
39.
go back to reference Mori K, Ouchi K, Hirasawa N. The Anti-Inflammatory Effects of Lion’s Mane Culinary-Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) in a Coculture System of 3 T3-L1 Adipocytes and RAW264 Macrophages. Int J Med Mushrooms. 2015;17(7):609–18.CrossRefPubMed Mori K, Ouchi K, Hirasawa N. The Anti-Inflammatory Effects of Lion’s Mane Culinary-Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) in a Coculture System of 3 T3-L1 Adipocytes and RAW264 Macrophages. Int J Med Mushrooms. 2015;17(7):609–18.CrossRefPubMed
40.
go back to reference Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009;23(3):367–72.CrossRefPubMed Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009;23(3):367–72.CrossRefPubMed
41.
go back to reference Lin PY, Simon SM, Koh WK, Folorunso O, Umbaugh CS, et al. Heat shock factor 1 over-expression protects against exposure of hydrophobic residues on mutant SOD1 and early mortality in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2013;8:43.CrossRefPubMedPubMedCentral Lin PY, Simon SM, Koh WK, Folorunso O, Umbaugh CS, et al. Heat shock factor 1 over-expression protects against exposure of hydrophobic residues on mutant SOD1 and early mortality in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2013;8:43.CrossRefPubMedPubMedCentral
42.
go back to reference Calabrese V, Dattilo S, Petralia A, Parenti R, Pennisi M, et al. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res. 2015;49(5):511–24.CrossRefPubMed Calabrese V, Dattilo S, Petralia A, Parenti R, Pennisi M, et al. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res. 2015;49(5):511–24.CrossRefPubMed
43.
go back to reference Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing. 2015;12:20.CrossRefPubMedPubMedCentral Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing. 2015;12:20.CrossRefPubMedPubMedCentral
44.
go back to reference Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010;13(11):1763–811.CrossRefPubMedPubMedCentral Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010;13(11):1763–811.CrossRefPubMedPubMedCentral
Metadata
Title
Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis
Authors
A. Trovato
R. Siracusa
R. Di Paola
M. Scuto
M. L. Ontario
Ornella Bua
Paola Di Mauro
M. A. Toscano
C. C. T. Petralia
L. Maiolino
A. Serra
S. Cuzzocrea
Vittorio Calabrese
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2016
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-016-0078-8

Other articles of this Issue 1/2016

Immunity & Ageing 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.