Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

Open Access 01-12-2022 | Review

Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries

Authors: George D. Bittner, Jared S. Bushman, Cameron L. Ghergherehchi, Kelly C. S. Roballo, Jaimie T. Shores, Tyler A. Smith

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.
Literature
2.
go back to reference Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119:1951–65.PubMedCrossRef Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119:1951–65.PubMedCrossRef
3.
go back to reference Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CK, Schallert T, Thayer WP. The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res. 2016;94:207–30.PubMedCrossRef Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CK, Schallert T, Thayer WP. The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res. 2016;94:207–30.PubMedCrossRef
4.
go back to reference Mikesh M, Ghergherehchi CL, Rahesh S, Jagannath K, Ali A, Sengelaub DR, Trevino RC, Jackson DM, Tucker HO, Bittner GD. Polyethylene glycol treated allografts not tissue matched nor immunosuppressed rapidly repair sciatic nerve gaps, maintain neuromuscular functions, and restore voluntary behaviors in female rats. J Neurosci Res. 2018;96:1243–64.PubMedPubMedCentralCrossRef Mikesh M, Ghergherehchi CL, Rahesh S, Jagannath K, Ali A, Sengelaub DR, Trevino RC, Jackson DM, Tucker HO, Bittner GD. Polyethylene glycol treated allografts not tissue matched nor immunosuppressed rapidly repair sciatic nerve gaps, maintain neuromuscular functions, and restore voluntary behaviors in female rats. J Neurosci Res. 2018;96:1243–64.PubMedPubMedCentralCrossRef
5.
go back to reference Lad SP, Nathan JK, Schubert RD, Boakye M. Trends in median, ulnar, radial, and brachioplexus nerve injuries in the United States. Neurosurgery. 2010;66:953–60.PubMedCrossRef Lad SP, Nathan JK, Schubert RD, Boakye M. Trends in median, ulnar, radial, and brachioplexus nerve injuries in the United States. Neurosurgery. 2010;66:953–60.PubMedCrossRef
6.
go back to reference Roballo KCS, Gigley JP, Smith TA, Bittner GD, Bushman JS. Morphological, functional, and immunological peculiarities of peripheral nerve allografts. Nerve Regen Res. 2021;17(4):721. Roballo KCS, Gigley JP, Smith TA, Bittner GD, Bushman JS. Morphological, functional, and immunological peculiarities of peripheral nerve allografts. Nerve Regen Res. 2021;17(4):721.
7.
go back to reference Mikesh M, Ghergherehchi CL, Hastings RL, Ali A, Rahesh S, Jagannath K, Sengelaub DR, Trevino RC, Jackson DM, Bittner GD. Polyethylene glycol solutions rapidly restore and maintain axonal continuity, neuromuscular structures, and behaviors lost after sciatic nerve transections in female rats. J Neurosci Res. 2018;96:1223–42.PubMedPubMedCentralCrossRef Mikesh M, Ghergherehchi CL, Hastings RL, Ali A, Rahesh S, Jagannath K, Sengelaub DR, Trevino RC, Jackson DM, Bittner GD. Polyethylene glycol solutions rapidly restore and maintain axonal continuity, neuromuscular structures, and behaviors lost after sciatic nerve transections in female rats. J Neurosci Res. 2018;96:1223–42.PubMedPubMedCentralCrossRef
9.
go back to reference Ijkema-Paassen J, Meek MF, Gramsbergen A. Reinnervation of muscles after transection of the sciatic nerve in adult rats. Muscle Nerve. 2002;25:891–7.PubMedCrossRef Ijkema-Paassen J, Meek MF, Gramsbergen A. Reinnervation of muscles after transection of the sciatic nerve in adult rats. Muscle Nerve. 2002;25:891–7.PubMedCrossRef
10.
11.
go back to reference Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, Kingham PJ. Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS ONE. 2013;8:e56484.PubMedPubMedCentralCrossRef Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, Kingham PJ. Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS ONE. 2013;8:e56484.PubMedPubMedCentralCrossRef
12.
go back to reference Murphy K, Weaver C. Janeway’s immunobiology. 9th ed. New York: Garland Science/Taylor & Francis Group LLC; 2017. Murphy K, Weaver C. Janeway’s immunobiology. 9th ed. New York: Garland Science/Taylor & Francis Group LLC; 2017.
13.
go back to reference Issa F, Schiopu A, Wood KJ. Role of T cells in graft rejection and transplantation tolerance. Expert Rev Clin Immunol. 2010;6:155–69.PubMedCrossRef Issa F, Schiopu A, Wood KJ. Role of T cells in graft rejection and transplantation tolerance. Expert Rev Clin Immunol. 2010;6:155–69.PubMedCrossRef
14.
go back to reference Smith TA, Ghergherehchi CL, Tucker HO, Bittner GD. Coding transcriptome analyses reveal altered functions underlying immunotolerance of PEG-fused rat sciatic nerve allografts. J Neuroinflammation. 2020;17:287.PubMedPubMedCentralCrossRef Smith TA, Ghergherehchi CL, Tucker HO, Bittner GD. Coding transcriptome analyses reveal altered functions underlying immunotolerance of PEG-fused rat sciatic nerve allografts. J Neuroinflammation. 2020;17:287.PubMedPubMedCentralCrossRef
15.
go back to reference Smith TA, Ghergherehchi CL, Mikesh M, Shores JT, Tucker HO, Bittner GD. Polyethylene glycol-fusion repair of sciatic allografts in female rats achieves immunotolerance via attenuated innate and adaptive responses. J Neurosci Res. 2020;98:2468–95.PubMedCrossRef Smith TA, Ghergherehchi CL, Mikesh M, Shores JT, Tucker HO, Bittner GD. Polyethylene glycol-fusion repair of sciatic allografts in female rats achieves immunotolerance via attenuated innate and adaptive responses. J Neurosci Res. 2020;98:2468–95.PubMedCrossRef
16.
go back to reference Converse JM, Smahel J, Ballantyne DL, Harper AD. Inosculation of vessels of skin graft and host bed: a fortuitous encounter. Br J Plast Surg. 1975;28:274–82.PubMedCrossRef Converse JM, Smahel J, Ballantyne DL, Harper AD. Inosculation of vessels of skin graft and host bed: a fortuitous encounter. Br J Plast Surg. 1975;28:274–82.PubMedCrossRef
17.
go back to reference Laschke MW, Vollmar B, Menger MD. Inosculation: connecting the life-sustaining pipelines. Tissue Eng Part B Rev. 2009;15:455–65.PubMedCrossRef Laschke MW, Vollmar B, Menger MD. Inosculation: connecting the life-sustaining pipelines. Tissue Eng Part B Rev. 2009;15:455–65.PubMedCrossRef
18.
go back to reference Converse JM, Uhlschmid GK, Ballantyne DL. “Plasmatic circulation” in skin grafts. The phase of serum imbibition. Plast Reconstr Surg. 1969;43:495–9.PubMedCrossRef Converse JM, Uhlschmid GK, Ballantyne DL. “Plasmatic circulation” in skin grafts. The phase of serum imbibition. Plast Reconstr Surg. 1969;43:495–9.PubMedCrossRef
19.
go back to reference Marshall DC, Freidman EA, Goldstein DP, Henry L, Merrill JP. Clinical criteria for evaluating first set, accelerated, and white graft rejection in human skin homografts. Surg Forum. 1961;12:469–70.PubMed Marshall DC, Freidman EA, Goldstein DP, Henry L, Merrill JP. Clinical criteria for evaluating first set, accelerated, and white graft rejection in human skin homografts. Surg Forum. 1961;12:469–70.PubMed
20.
go back to reference Antibody production and skin graft rejection. Nature 238:16 (1972) Antibody production and skin graft rejection. Nature 238:16 (1972)
22.
go back to reference Acevedo DC, Shore B, Mirzayan R. Orthopedic applications of acellular human dermal allograft for shoulder and elbow surgery. Orthop Clin N Am. 2015;46(377–388):x. Acevedo DC, Shore B, Mirzayan R. Orthopedic applications of acellular human dermal allograft for shoulder and elbow surgery. Orthop Clin N Am. 2015;46(377–388):x.
23.
go back to reference Chiarello E, Cadossi M, Tedesco G, Capra P, Calamelli C, Shehu A, Giannini S. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013;25(Suppl 1):S101-103.PubMedCrossRef Chiarello E, Cadossi M, Tedesco G, Capra P, Calamelli C, Shehu A, Giannini S. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013;25(Suppl 1):S101-103.PubMedCrossRef
25.
go back to reference Hartzell TL, Benhaim P, Imbriglia JE, Shores JT, Goitz RJ, Balk M, Mitchell S, Rubinstein R, Gorantla VS, Schneeberger S, et al. Surgical and technical aspects of hand transplantation: is it just another replant? Hand Clin. 2011;27(521–530):x. Hartzell TL, Benhaim P, Imbriglia JE, Shores JT, Goitz RJ, Balk M, Mitchell S, Rubinstein R, Gorantla VS, Schneeberger S, et al. Surgical and technical aspects of hand transplantation: is it just another replant? Hand Clin. 2011;27(521–530):x.
26.
go back to reference Azari KK, Imbriglia JE, Goitz RJ, Shores JT, Balk ML, Brandacher G, Schneeberger S, Gorantla V, Lee WP. Technical aspects of the recipient operation in hand transplantation. J Reconstr Microsurg. 2012;28:27–34.PubMedCrossRef Azari KK, Imbriglia JE, Goitz RJ, Shores JT, Balk ML, Brandacher G, Schneeberger S, Gorantla V, Lee WP. Technical aspects of the recipient operation in hand transplantation. J Reconstr Microsurg. 2012;28:27–34.PubMedCrossRef
27.
go back to reference Elkwood AI, Holland NR, Arbes SM, Rose MI, Kaufman MR, Ashinoff RL, Parikh MA, Patel TR. Nerve allograft transplantation for functional restoration of the upper extremity: case series. J Spinal Cord Med. 2011;34:241–7.PubMedPubMedCentralCrossRef Elkwood AI, Holland NR, Arbes SM, Rose MI, Kaufman MR, Ashinoff RL, Parikh MA, Patel TR. Nerve allograft transplantation for functional restoration of the upper extremity: case series. J Spinal Cord Med. 2011;34:241–7.PubMedPubMedCentralCrossRef
28.
go back to reference Larsen M, Habermann TM, Bishop AT, Shin AY, Spinner RJ. Epstein-Barr virus infection as a complication of transplantation of a nerve allograft from a living related donor. Case report. J Neurosurg. 2007;106:924–8.PubMedCrossRef Larsen M, Habermann TM, Bishop AT, Shin AY, Spinner RJ. Epstein-Barr virus infection as a complication of transplantation of a nerve allograft from a living related donor. Case report. J Neurosurg. 2007;106:924–8.PubMedCrossRef
29.
go back to reference Bittner G, Schallert T, Peduzzi J. Degeneration, trophic interactions, and repair of severed axons: a reconsideration of some common assumptions. Neuroscientist. 2000;6:88–109.CrossRef Bittner G, Schallert T, Peduzzi J. Degeneration, trophic interactions, and repair of severed axons: a reconsideration of some common assumptions. Neuroscientist. 2000;6:88–109.CrossRef
30.
go back to reference Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CL, Schallert T, Thayer WP. The curious ability of polyethylene glycol fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res. 2016;94:207–30.PubMedCrossRef Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CL, Schallert T, Thayer WP. The curious ability of polyethylene glycol fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res. 2016;94:207–30.PubMedCrossRef
31.
go back to reference Mackinnon SE, Doolabh VB, Novak CB, Trulock EP. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001;107:1419–29.PubMedCrossRef Mackinnon SE, Doolabh VB, Novak CB, Trulock EP. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001;107:1419–29.PubMedCrossRef
32.
go back to reference Ghergherehchi CL, Hibbard EA, Mikesh M, Bittner GD, Sengelaub DR. Behavioral recovery and spinal motoneuron remodeling after polyethylene glycol fusion repair of singly cut and ablated sciatic nerves. PLoS ONE. 2019;14:e0223443.PubMedPubMedCentralCrossRef Ghergherehchi CL, Hibbard EA, Mikesh M, Bittner GD, Sengelaub DR. Behavioral recovery and spinal motoneuron remodeling after polyethylene glycol fusion repair of singly cut and ablated sciatic nerves. PLoS ONE. 2019;14:e0223443.PubMedPubMedCentralCrossRef
33.
go back to reference Ghergherehchi CL, Mikesh M, Sengelaub DR, Jackson DM, Smith T, Nguyen J, Shores JT, Bittner GD. Polyethylene glycol (PEG) and other bioactive solutions with neurorrhaphy for rapid and dramatic repair of peripheral nerve lesions by PEG-fusion. J Neurosci Methods. 2019;314:1–12.PubMedCrossRef Ghergherehchi CL, Mikesh M, Sengelaub DR, Jackson DM, Smith T, Nguyen J, Shores JT, Bittner GD. Polyethylene glycol (PEG) and other bioactive solutions with neurorrhaphy for rapid and dramatic repair of peripheral nerve lesions by PEG-fusion. J Neurosci Methods. 2019;314:1–12.PubMedCrossRef
34.
go back to reference Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol. 1994;43:187–233.PubMedCrossRef Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol. 1994;43:187–233.PubMedCrossRef
36.
go back to reference Kennedy AD, DeLeo FR. Neutrophil apoptosis and the resolution of infection. Immunol Res. 2009;43:25–61.PubMedCrossRef Kennedy AD, DeLeo FR. Neutrophil apoptosis and the resolution of infection. Immunol Res. 2009;43:25–61.PubMedCrossRef
37.
go back to reference Land WG. Emerging role of innate immunity in organ transplantation: part I: evolution of innate immunity and oxidative allograft injury. Transpl Rev (Orlando). 2012;26:60–72.CrossRef Land WG. Emerging role of innate immunity in organ transplantation: part I: evolution of innate immunity and oxidative allograft injury. Transpl Rev (Orlando). 2012;26:60–72.CrossRef
38.
39.
40.
go back to reference Obhrai JS, Oberbarnscheidt M, Zhang N, Mueller DL, Shlomchik WD, Lakkis FG, Shlomchik MJ, Kaplan DH. Langerhans cells are not required for efficient skin graft rejection. J Invest Dermatol. 2008;128:1950–5.PubMedPubMedCentralCrossRef Obhrai JS, Oberbarnscheidt M, Zhang N, Mueller DL, Shlomchik WD, Lakkis FG, Shlomchik MJ, Kaplan DH. Langerhans cells are not required for efficient skin graft rejection. J Invest Dermatol. 2008;128:1950–5.PubMedPubMedCentralCrossRef
41.
go back to reference Ito A, Shimura H, Nitahara A, Tomiyama K, Ito M, Kanekura T, Okumura K, Yagita H, Kawai K. NK cells contribute to the skin graft rejection promoted by CD4+ T cells activated through the indirect allorecognition pathway. Int Immunol. 2008;20:1343–9.PubMedCrossRef Ito A, Shimura H, Nitahara A, Tomiyama K, Ito M, Kanekura T, Okumura K, Yagita H, Kawai K. NK cells contribute to the skin graft rejection promoted by CD4+ T cells activated through the indirect allorecognition pathway. Int Immunol. 2008;20:1343–9.PubMedCrossRef
42.
go back to reference Auchincloss H, Mayer T, Ghobrial R, Winn HJ. T-cell subsets, bm mutants, and the mechanisms of allogenic skin graft rejection. Immunol Res. 1989;8:149–64.PubMedCrossRef Auchincloss H, Mayer T, Ghobrial R, Winn HJ. T-cell subsets, bm mutants, and the mechanisms of allogenic skin graft rejection. Immunol Res. 1989;8:149–64.PubMedCrossRef
44.
go back to reference Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.PubMedPubMedCentralCrossRef Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.PubMedPubMedCentralCrossRef
45.
go back to reference Evans PJ, Mackinnon SE, Levi AD, Wade JA, Hunter DA, Nakao Y, Midha R. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21:1507–22.PubMedCrossRef Evans PJ, Mackinnon SE, Levi AD, Wade JA, Hunter DA, Nakao Y, Midha R. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve. 1998;21:1507–22.PubMedCrossRef
46.
go back to reference Roballo KCS, Bushman J. Evaluation of the host immune response and functional recovery in peripheral nerve autografts and allografts. Transpl Immunol. 2019;53:61–71.PubMedCrossRef Roballo KCS, Bushman J. Evaluation of the host immune response and functional recovery in peripheral nerve autografts and allografts. Transpl Immunol. 2019;53:61–71.PubMedCrossRef
47.
go back to reference Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman SR, Mackinnon SE. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol. 2004;190:347–55.PubMedCrossRef Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman SR, Mackinnon SE. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol. 2004;190:347–55.PubMedCrossRef
48.
go back to reference Moradzadeh A, Borschel GH, Luciano JP, Whitlock EL, Hayashi A, Hunter DA, Mackinnon SE. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol. 2008;212:370–6.PubMedPubMedCentralCrossRef Moradzadeh A, Borschel GH, Luciano JP, Whitlock EL, Hayashi A, Hunter DA, Mackinnon SE. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol. 2008;212:370–6.PubMedPubMedCentralCrossRef
49.
go back to reference Brenner MJ, Hess JR, Myckatyn TM, Hayashi A, Hunter DA, Mackinnon SE. Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats. Laryngoscope. 2006;116:1685–92.PubMedCrossRef Brenner MJ, Hess JR, Myckatyn TM, Hayashi A, Hunter DA, Mackinnon SE. Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats. Laryngoscope. 2006;116:1685–92.PubMedCrossRef
50.
51.
go back to reference Webber C, Zochodne D. The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol. 2010;223:51–9.PubMedCrossRef Webber C, Zochodne D. The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol. 2010;223:51–9.PubMedCrossRef
52.
go back to reference Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Mater Sci Eng C Mater Biol Appl. 2016;65:425–32.PubMedCrossRef Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Mater Sci Eng C Mater Biol Appl. 2016;65:425–32.PubMedCrossRef
53.
go back to reference Jones S, Eisenberg HM, Jia X. Advances and future applications of augmented peripheral nerve regeneration. Int J Mol Sci. 2016;17:1494.PubMedCentralCrossRef Jones S, Eisenberg HM, Jia X. Advances and future applications of augmented peripheral nerve regeneration. Int J Mol Sci. 2016;17:1494.PubMedCentralCrossRef
54.
go back to reference Willand MP, Nguyen MA, Borschel GH, Gordon T. Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural Repair. 2016;30:490–6.PubMedCrossRef Willand MP, Nguyen MA, Borschel GH, Gordon T. Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural Repair. 2016;30:490–6.PubMedCrossRef
55.
go back to reference Kataria H, Lutz D, Chaudhary H, Schachner M, Loers G. Small molecule agonists of cell adhesion molecule L1 mimic L1 functions in vivo. Mol Neurobiol. 2016;53:4461–83.PubMedCrossRef Kataria H, Lutz D, Chaudhary H, Schachner M, Loers G. Small molecule agonists of cell adhesion molecule L1 mimic L1 functions in vivo. Mol Neurobiol. 2016;53:4461–83.PubMedCrossRef
56.
go back to reference Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells. 2015;7:11–26.PubMedPubMedCentralCrossRef Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells. 2015;7:11–26.PubMedPubMedCentralCrossRef
57.
go back to reference Ghergherehchi CL, Shores JT, Alderete J, Weitzel EK, Bittner GD. Methylene blue enhances polyethylene glycol-fusion repair of completely severed rat sciatic nerves. Neural Regen Res. 2021;16:2056–63.PubMedPubMedCentralCrossRef Ghergherehchi CL, Shores JT, Alderete J, Weitzel EK, Bittner GD. Methylene blue enhances polyethylene glycol-fusion repair of completely severed rat sciatic nerves. Neural Regen Res. 2021;16:2056–63.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K, Chang F, Wang Y. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res. 2019;14:1335–42.PubMedPubMedCentralCrossRef Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K, Chang F, Wang Y. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res. 2019;14:1335–42.PubMedPubMedCentralCrossRef
60.
go back to reference Tomlinson JE, Žygelytė E, Grenier JK, Edwards MG, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15:185.PubMedPubMedCentralCrossRef Tomlinson JE, Žygelytė E, Grenier JK, Edwards MG, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15:185.PubMedPubMedCentralCrossRef
61.
go back to reference Richard L, Védrenne N, Vallat JM, Funalot B. Characterization of endoneurial fibroblast-like cells from human and rat peripheral nerves. J Histochem Cytochem. 2014;62:424–35.PubMedPubMedCentralCrossRef Richard L, Védrenne N, Vallat JM, Funalot B. Characterization of endoneurial fibroblast-like cells from human and rat peripheral nerves. J Histochem Cytochem. 2014;62:424–35.PubMedPubMedCentralCrossRef
62.
go back to reference Fornasari BE, El Soury M, Nato G, Fucini A, Carta G, Ronchi G, Crosio A, Perroteau I, Geuna S, Raimondo S, Gambarotta G. Fibroblasts colonizing nerve conduits express high levels of soluble neuregulin1, a factor promoting schwann cell dedifferentiation. Cells. 2020;9:1366.PubMedCentralCrossRef Fornasari BE, El Soury M, Nato G, Fucini A, Carta G, Ronchi G, Crosio A, Perroteau I, Geuna S, Raimondo S, Gambarotta G. Fibroblasts colonizing nerve conduits express high levels of soluble neuregulin1, a factor promoting schwann cell dedifferentiation. Cells. 2020;9:1366.PubMedCentralCrossRef
63.
go back to reference Dreesmann L, Mittnacht U, Lietz M, Schlosshauer B. Nerve fibroblast impact on Schwann cell behavior. Eur J Cell Biol. 2009;88:285–300.PubMedCrossRef Dreesmann L, Mittnacht U, Lietz M, Schlosshauer B. Nerve fibroblast impact on Schwann cell behavior. Eur J Cell Biol. 2009;88:285–300.PubMedCrossRef
64.
go back to reference Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;14:698256. Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;14:698256.
65.
go back to reference Sawyer JT, Akeson RA. Clonal myoblasts and myotubes show differences in lectin-binding patterns. Exp Cell Res. 1983;145:1–13.PubMedCrossRef Sawyer JT, Akeson RA. Clonal myoblasts and myotubes show differences in lectin-binding patterns. Exp Cell Res. 1983;145:1–13.PubMedCrossRef
66.
go back to reference Riley DC, Bittner GD, Mikesh M, Cardwell NL, Pollins AC, Ghergherehchi CL, Bhupanapadu Sunkesula SR, Ha TN, Hall BT, Poon AD, et al. Polyethylene glycol-fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments. J Neurosci Res. 2015;93:572–83.PubMedCrossRef Riley DC, Bittner GD, Mikesh M, Cardwell NL, Pollins AC, Ghergherehchi CL, Bhupanapadu Sunkesula SR, Ha TN, Hall BT, Poon AD, et al. Polyethylene glycol-fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments. J Neurosci Res. 2015;93:572–83.PubMedCrossRef
67.
go back to reference Beilhack A, Schulz S, Baker J, Beilhack GF, Wieland CB, Herman EI, Baker EM, Cao YA, Contag CH, Negrin RS. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005;106:1113–22.PubMedPubMedCentralCrossRef Beilhack A, Schulz S, Baker J, Beilhack GF, Wieland CB, Herman EI, Baker EM, Cao YA, Contag CH, Negrin RS. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005;106:1113–22.PubMedPubMedCentralCrossRef
68.
go back to reference Karanth S, Yang G, Yeh J, Richardson PM. Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Exp Neurol. 2006;202:161–6.PubMedCrossRef Karanth S, Yang G, Yeh J, Richardson PM. Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Exp Neurol. 2006;202:161–6.PubMedCrossRef
69.
go back to reference DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2015;302:174–203.PubMedCrossRef DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2015;302:174–203.PubMedCrossRef
70.
go back to reference Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth A, Mack S. Principals of neuroscience. 6th ed. New York: McGraw; 2018. Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth A, Mack S. Principals of neuroscience. 6th ed. New York: McGraw; 2018.
71.
go back to reference Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.PubMedPubMedCentralCrossRef Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.PubMedPubMedCentralCrossRef
72.
go back to reference Lisak RP, Bealmear B, Benjamins JA. Schwann cell differentiation inhibits interferon-gamma induction of expression of major histocompatibility complex class II and intercellular adhesion molecule-1. J Neuroimmunol. 2016;295–296:93–9.PubMedCrossRef Lisak RP, Bealmear B, Benjamins JA. Schwann cell differentiation inhibits interferon-gamma induction of expression of major histocompatibility complex class II and intercellular adhesion molecule-1. J Neuroimmunol. 2016;295–296:93–9.PubMedCrossRef
73.
go back to reference Tomlinson JE, Zygelyte E, Grenier JK, Edwards MG, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15:185.PubMedPubMedCentralCrossRef Tomlinson JE, Zygelyte E, Grenier JK, Edwards MG, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation. 2018;15:185.PubMedPubMedCentralCrossRef
74.
go back to reference Richard L, Vedrenne N, Vallat JM, Funalot B. Characterization of endoneurial fibroblast-like cells from human and rat peripheral nerves. J Histochem Cytochem. 2014;62:424–35.PubMedPubMedCentralCrossRef Richard L, Vedrenne N, Vallat JM, Funalot B. Characterization of endoneurial fibroblast-like cells from human and rat peripheral nerves. J Histochem Cytochem. 2014;62:424–35.PubMedPubMedCentralCrossRef
75.
go back to reference Kim MJ, Kim HS, Kim SC, Kwak YS. Complete Genome Sequence of Lanthionine-Producing Lactobacillus brevis Strain 100D8, Generated by PacBio Sequencing. Microbiol Resour Announc. 2018;7(14):e01220-e1318.PubMedPubMedCentralCrossRef Kim MJ, Kim HS, Kim SC, Kwak YS. Complete Genome Sequence of Lanthionine-Producing Lactobacillus brevis Strain 100D8, Generated by PacBio Sequencing. Microbiol Resour Announc. 2018;7(14):e01220-e1318.PubMedPubMedCentralCrossRef
76.
go back to reference Lindahl KF, Wilson DB. Histocompatibility antigen-activated cytotoxic T lymphocytes. I. Estimates of the absolute frequency of killer cells generated in vitro. J Exp Med. 1977;145:500–7.PubMedCrossRef Lindahl KF, Wilson DB. Histocompatibility antigen-activated cytotoxic T lymphocytes. I. Estimates of the absolute frequency of killer cells generated in vitro. J Exp Med. 1977;145:500–7.PubMedCrossRef
77.
go back to reference Colf LA, Bankovich AJ, Hanick NA, Bowerman NA, Jones LL, Kranz DM, Garcia KC. How a single T cell receptor recognizes both self and foreign MHC. Cell. 2007;129:135–46.PubMedCrossRef Colf LA, Bankovich AJ, Hanick NA, Bowerman NA, Jones LL, Kranz DM, Garcia KC. How a single T cell receptor recognizes both self and foreign MHC. Cell. 2007;129:135–46.PubMedCrossRef
78.
go back to reference Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE, Clements CS, Bharadwaj M, Kjer-Nielsen L, Saunders PM, Wilce MC, et al. T cell allorecognition via molecular mimicry. Immunity. 2009;31:897–908.PubMedCrossRef Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE, Clements CS, Bharadwaj M, Kjer-Nielsen L, Saunders PM, Wilce MC, et al. T cell allorecognition via molecular mimicry. Immunity. 2009;31:897–908.PubMedCrossRef
79.
go back to reference Sprent J, Schaefer M. Properties of purified T cell subsets. I. In vitro responses to class I vs. class II H-2 alloantigens. J Exp Med. 1985;162:2068–88.PubMedCrossRef Sprent J, Schaefer M. Properties of purified T cell subsets. I. In vitro responses to class I vs. class II H-2 alloantigens. J Exp Med. 1985;162:2068–88.PubMedCrossRef
80.
go back to reference Wang W, Meadows LR, den Haan JM, Sherman NE, Chen Y, Blokland E, Shabanowitz J, Agulnik AI, Hendrickson RC, Bishop CE. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science. 1995;269:1588–90.PubMedCrossRef Wang W, Meadows LR, den Haan JM, Sherman NE, Chen Y, Blokland E, Shabanowitz J, Agulnik AI, Hendrickson RC, Bishop CE. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science. 1995;269:1588–90.PubMedCrossRef
81.
83.
go back to reference Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Macrì R, Scicchitano M, Bosco F, Scarano F, Ruga S, et al. The role of endothelial dysfunction in peripheral blood nerve barrier: molecular mechanisms and pathophysiological implications. Int J Mol Sci. 2019;20:3022.PubMedCentralCrossRef Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Macrì R, Scicchitano M, Bosco F, Scarano F, Ruga S, et al. The role of endothelial dysfunction in peripheral blood nerve barrier: molecular mechanisms and pathophysiological implications. Int J Mol Sci. 2019;20:3022.PubMedCentralCrossRef
84.
86.
go back to reference Trumble TE, Gunlikson R, Parvin D. Systemic immune response to peripheral nerve transplants across major histocompatibility class-I and class-II barriers. J Orthop Res. 1994;12:844–52.PubMedCrossRef Trumble TE, Gunlikson R, Parvin D. Systemic immune response to peripheral nerve transplants across major histocompatibility class-I and class-II barriers. J Orthop Res. 1994;12:844–52.PubMedCrossRef
87.
go back to reference Bijen HM, Hassan C, Kester MGD, Janssen GMC, Hombrink P, de Ru AH, Drijfhout JW, Meiring HD, de Jong AP, Falkenburg JHF, et al. Specific T cell responses against minor histocompatibility antigens cannot generally be explained by absence of their allelic counterparts on the cell surface. Proteomics. 2018;18:e1700250.PubMedCrossRef Bijen HM, Hassan C, Kester MGD, Janssen GMC, Hombrink P, de Ru AH, Drijfhout JW, Meiring HD, de Jong AP, Falkenburg JHF, et al. Specific T cell responses against minor histocompatibility antigens cannot generally be explained by absence of their allelic counterparts on the cell surface. Proteomics. 2018;18:e1700250.PubMedCrossRef
88.
go back to reference Liu W, Ren Y, Bossert A, Wang X, Dayawansa S, Tong J, He X, Smith DH, Gelbard HA, Huang JH. Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity. PLoS ONE. 2012;7:e31675.PubMedPubMedCentralCrossRef Liu W, Ren Y, Bossert A, Wang X, Dayawansa S, Tong J, He X, Smith DH, Gelbard HA, Huang JH. Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity. PLoS ONE. 2012;7:e31675.PubMedPubMedCentralCrossRef
89.
go back to reference Roberts MB, Fishman JA. Immunosuppressive agents and infectious risk in transplantation: managing the “net state of immunosuppression.” Clin Infect Dis. 2020;73:e1302–17.PubMedCentralCrossRef Roberts MB, Fishman JA. Immunosuppressive agents and infectious risk in transplantation: managing the “net state of immunosuppression.” Clin Infect Dis. 2020;73:e1302–17.PubMedCentralCrossRef
90.
91.
go back to reference Matsuda S, Shibasaki F, Takehana K, Mori H, Nishida E, Koyasu S. Two distinct action mechanisms of immunophilin-ligand complexes for the blockade of T-cell activation. EMBO Rep. 2000;1:428–34.PubMedPubMedCentralCrossRef Matsuda S, Shibasaki F, Takehana K, Mori H, Nishida E, Koyasu S. Two distinct action mechanisms of immunophilin-ligand complexes for the blockade of T-cell activation. EMBO Rep. 2000;1:428–34.PubMedPubMedCentralCrossRef
92.
go back to reference Midha R, Evans PJ, Mackinnon SE, Wade JA. Temporary immunosuppression for peripheral nerve allografts. Transpl Proc. 1993;25:532–6. Midha R, Evans PJ, Mackinnon SE, Wade JA. Temporary immunosuppression for peripheral nerve allografts. Transpl Proc. 1993;25:532–6.
93.
go back to reference Santos Roballo KC, Dhungana S, Jiang Z, Oakey J, Bushman JS. Localized delivery of immunosuppressive regulatory T cells to peripheral nerve allografts promotes regeneration of branched segmental defects. Biomaterials. 2019;209:1–9.PubMedCrossRef Santos Roballo KC, Dhungana S, Jiang Z, Oakey J, Bushman JS. Localized delivery of immunosuppressive regulatory T cells to peripheral nerve allografts promotes regeneration of branched segmental defects. Biomaterials. 2019;209:1–9.PubMedCrossRef
94.
go back to reference Matsuyama T, Midha R, Mackinnon SE, Munro CA, Wong PY, Ang LC. Long nerve allografts in sheep with cyclosporin A immunosuppression. J Reconstr Microsurg. 2000;16:219–25.PubMedCrossRef Matsuyama T, Midha R, Mackinnon SE, Munro CA, Wong PY, Ang LC. Long nerve allografts in sheep with cyclosporin A immunosuppression. J Reconstr Microsurg. 2000;16:219–25.PubMedCrossRef
95.
go back to reference Fishman JA. Infection in organ transplantation. Am J Transpl. 2017;17:856–79.CrossRef Fishman JA. Infection in organ transplantation. Am J Transpl. 2017;17:856–79.CrossRef
96.
go back to reference Engels EA, Pfeiffer RM, Fraumeni JF, Kasiske BL, Israni AK, Snyder JJ, Wolfe RA, Goodrich NP, Bayakly AR, Clarke CA, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306:1891–901.PubMedPubMedCentralCrossRef Engels EA, Pfeiffer RM, Fraumeni JF, Kasiske BL, Israni AK, Snyder JJ, Wolfe RA, Goodrich NP, Bayakly AR, Clarke CA, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306:1891–901.PubMedPubMedCentralCrossRef
97.
go back to reference Burdmann EA, Andoh TF, Yu L, Bennett WM. Cyclosporine nephrotoxicity. Semin Nephrol. 2003;23:465–76.PubMedCrossRef Burdmann EA, Andoh TF, Yu L, Bennett WM. Cyclosporine nephrotoxicity. Semin Nephrol. 2003;23:465–76.PubMedCrossRef
101.
go back to reference Atchabahian A, Doolabh VB, Mackinnon SE, Yu S, Hunter DA, Flye MW. Indefinite survival of peripheral nerve allografts after temporary cyclosporine A immunosuppression. Restor Neurol Neurosci. 1998;13:129–39.PubMed Atchabahian A, Doolabh VB, Mackinnon SE, Yu S, Hunter DA, Flye MW. Indefinite survival of peripheral nerve allografts after temporary cyclosporine A immunosuppression. Restor Neurol Neurosci. 1998;13:129–39.PubMed
102.
go back to reference Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol. 2015;6:438.PubMedPubMedCentralCrossRef Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol. 2015;6:438.PubMedPubMedCentralCrossRef
103.
go back to reference Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMed Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMed
104.
go back to reference Mathew JM, LeFever A, Konieczna I, Stratton C, He J, Huang X, Gallon L, Skaro A, Ansari MJ, Leventhal JR. A phase I clinical trial with ex vivo expanded recipient regulatory t cells in living donor kidney transplants. Sci Rep. 2018;8:7428.PubMedPubMedCentralCrossRef Mathew JM, LeFever A, Konieczna I, Stratton C, He J, Huang X, Gallon L, Skaro A, Ansari MJ, Leventhal JR. A phase I clinical trial with ex vivo expanded recipient regulatory t cells in living donor kidney transplants. Sci Rep. 2018;8:7428.PubMedPubMedCentralCrossRef
105.
go back to reference van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int. 2016;29:3–11.PubMedCrossRef van der Net JB, Bushell A, Wood KJ, Harden PN. Regulatory T cells: first steps of clinical application in solid organ transplantation. Transpl Int. 2016;29:3–11.PubMedCrossRef
109.
110.
go back to reference Zhang X, Xin N, Tong L, Tong XJ. Electrical stimulation enhances peripheral nerve regeneration after crush injury in rats. Mol Med Rep. 2013;7:1523–7.PubMedCrossRef Zhang X, Xin N, Tong L, Tong XJ. Electrical stimulation enhances peripheral nerve regeneration after crush injury in rats. Mol Med Rep. 2013;7:1523–7.PubMedCrossRef
111.
112.
go back to reference Lore AB, Hubbell JA, Bobb DS, Ballinger ML, Loftin KL, Smith JW, Smyers ME, Garcia HD, Bittner GD. Rapid induction of functional and morphological continuity between severed ends of mammalian or earthworm myelinated axons. J Neurosci. 1999;19:2442–54.PubMedPubMedCentralCrossRef Lore AB, Hubbell JA, Bobb DS, Ballinger ML, Loftin KL, Smith JW, Smyers ME, Garcia HD, Bittner GD. Rapid induction of functional and morphological continuity between severed ends of mammalian or earthworm myelinated axons. J Neurosci. 1999;19:2442–54.PubMedPubMedCentralCrossRef
113.
go back to reference Marzullo TC, Britt JM, Stavisky RC, Bittner GD. Cooling enhances in vitro survival and fusion-repair of severed axons taken from the peripheral and central nervous systems of rats. Neurosci Lett. 2002;327:9–12.PubMedCrossRef Marzullo TC, Britt JM, Stavisky RC, Bittner GD. Cooling enhances in vitro survival and fusion-repair of severed axons taken from the peripheral and central nervous systems of rats. Neurosci Lett. 2002;327:9–12.PubMedCrossRef
114.
go back to reference Britt JM, Kane JR, Spaeth CS, Zuzek A, Robinson GL, Gbanaglo MY, Estler CJ, Boydston EA, Schallert T, Bittner GD. Polyethylene glycol rapidly restores axonal integrity and improves the rate of motor behavior recovery after sciatic nerve crush injury. J Neurophysiol. 2010;104:695–703.PubMedCrossRef Britt JM, Kane JR, Spaeth CS, Zuzek A, Robinson GL, Gbanaglo MY, Estler CJ, Boydston EA, Schallert T, Bittner GD. Polyethylene glycol rapidly restores axonal integrity and improves the rate of motor behavior recovery after sciatic nerve crush injury. J Neurophysiol. 2010;104:695–703.PubMedCrossRef
115.
go back to reference Bamba R, Waitayawinyu T, Nookala R, Riley DC, Boyer RB, Sexton KW, Boonyasirikool C, Niempoog S, Kelm ND, Does MD, et al. A novel therapy to promote axonal fusion in human digital nerves. J Trauma Acute Care Surg. 2016;81:S177–83.PubMedPubMedCentralCrossRef Bamba R, Waitayawinyu T, Nookala R, Riley DC, Boyer RB, Sexton KW, Boonyasirikool C, Niempoog S, Kelm ND, Does MD, et al. A novel therapy to promote axonal fusion in human digital nerves. J Trauma Acute Care Surg. 2016;81:S177–83.PubMedPubMedCentralCrossRef
116.
go back to reference Bittner GD, Keating CP, Kane JR, Britt JM, Spaeth CS, Fan JD, Zuzek A, Wilcott RW, Thayer WP, Winograd JM, et al. Rapid, effective, and long-lasting behavioral recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves. J Neurosci Res. 2012;90:967–80.PubMedCrossRef Bittner GD, Keating CP, Kane JR, Britt JM, Spaeth CS, Fan JD, Zuzek A, Wilcott RW, Thayer WP, Winograd JM, et al. Rapid, effective, and long-lasting behavioral recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves. J Neurosci Res. 2012;90:967–80.PubMedCrossRef
117.
go back to reference Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D. Neuroscience needs behavior: correcting a reductionist bias. Neuron. 2017;93:480–90.PubMedCrossRef Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D. Neuroscience needs behavior: correcting a reductionist bias. Neuron. 2017;93:480–90.PubMedCrossRef
118.
go back to reference Baker RE, Matesz K, Corner MA, Székely G. Peripheral reinnervation patterns and dorsal root ganglion topography in skin-grafted frogs: a behavioral and histological examination. Dev Neurosci. 1981;4:134–41.PubMedCrossRef Baker RE, Matesz K, Corner MA, Székely G. Peripheral reinnervation patterns and dorsal root ganglion topography in skin-grafted frogs: a behavioral and histological examination. Dev Neurosci. 1981;4:134–41.PubMedCrossRef
119.
go back to reference Ghergherehchi CL, Bittner GD, Hastings RL, Mikesh M, Riley DC, Trevino RC, Schallert T, Thayer WP, Bhupanapadu Sunkesula SR, Ha TA, et al. Effects of extracellular calcium and surgical techniques on restoration of axonal continuity by polyethylene glycol fusion following complete cut or crush severance of rat sciatic nerves. J Neurosci Res. 2016;94:231–45.PubMedPubMedCentralCrossRef Ghergherehchi CL, Bittner GD, Hastings RL, Mikesh M, Riley DC, Trevino RC, Schallert T, Thayer WP, Bhupanapadu Sunkesula SR, Ha TA, et al. Effects of extracellular calcium and surgical techniques on restoration of axonal continuity by polyethylene glycol fusion following complete cut or crush severance of rat sciatic nerves. J Neurosci Res. 2016;94:231–45.PubMedPubMedCentralCrossRef
120.
go back to reference Mitsuhashi N, Wu GD, Zhu H, Kearns-Jonker M, Cramer DV, Starnes VA, Barr ML. Rat chemokine CXCL11: structure, tissue distribution, function and expression in cardiac transplantation models. Mol Cell Biochem. 2007;296:1–9.PubMedCrossRef Mitsuhashi N, Wu GD, Zhu H, Kearns-Jonker M, Cramer DV, Starnes VA, Barr ML. Rat chemokine CXCL11: structure, tissue distribution, function and expression in cardiac transplantation models. Mol Cell Biochem. 2007;296:1–9.PubMedCrossRef
121.
go back to reference Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89.PubMedCrossRef Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89.PubMedCrossRef
122.
go back to reference Wojno T. Commentary on: “Dynamic canthopexy” drill hole canthal repositioning. Aesthet Surg J. 2019;39:1295–6.PubMedCrossRef Wojno T. Commentary on: “Dynamic canthopexy” drill hole canthal repositioning. Aesthet Surg J. 2019;39:1295–6.PubMedCrossRef
125.
go back to reference Tait Wojno ED, Hunter CA, Stumhofer JS. the immunobiology of the interleukin-12 family: room for discovery. Immunity. 2019;50:851–70.PubMedCrossRef Tait Wojno ED, Hunter CA, Stumhofer JS. the immunobiology of the interleukin-12 family: room for discovery. Immunity. 2019;50:851–70.PubMedCrossRef
127.
go back to reference Allison TL. Immunosuppressive therapy in transplantation. Nurs Clin N Am. 2016;51:107–20.CrossRef Allison TL. Immunosuppressive therapy in transplantation. Nurs Clin N Am. 2016;51:107–20.CrossRef
128.
go back to reference Di Maira T, Little EC, Berenguer M. Immunosuppression in liver transplant. Best Pract Res Clin Gastroenterol. 2020;46:101681.PubMedCrossRef Di Maira T, Little EC, Berenguer M. Immunosuppression in liver transplant. Best Pract Res Clin Gastroenterol. 2020;46:101681.PubMedCrossRef
129.
go back to reference Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP, Keane RW, Lacroix S. Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci. 2011;31:12533–42.PubMedPubMedCentralCrossRef Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP, Keane RW, Lacroix S. Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci. 2011;31:12533–42.PubMedPubMedCentralCrossRef
130.
go back to reference Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084.PubMedPubMedCentralCrossRef Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084.PubMedPubMedCentralCrossRef
131.
go back to reference Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.PubMedCrossRef Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.PubMedCrossRef
133.
go back to reference Choy JC. Granzymes and perforin in solid organ transplant rejection. Cell Death Differ. 2010;17:567–76.PubMedCrossRef Choy JC. Granzymes and perforin in solid organ transplant rejection. Cell Death Differ. 2010;17:567–76.PubMedCrossRef
134.
go back to reference Goping IS, Barry M, Liston P, Sawchuk T, Constantinescu G, Michalak KM, Shostak I, Roberts DL, Hunter AM, Korneluk R, Bleackley RC. Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition. Immunity. 2003;18:355–65.PubMedCrossRef Goping IS, Barry M, Liston P, Sawchuk T, Constantinescu G, Michalak KM, Shostak I, Roberts DL, Hunter AM, Korneluk R, Bleackley RC. Granzyme B-induced apoptosis requires both direct caspase activation and relief of caspase inhibition. Immunity. 2003;18:355–65.PubMedCrossRef
135.
go back to reference Zheng TS, Schlosser SF, Dao T, Hingorani R, Crispe IN, Boyer JL, Flavell RA. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci USA. 1998;95:13618–23.PubMedPubMedCentralCrossRef Zheng TS, Schlosser SF, Dao T, Hingorani R, Crispe IN, Boyer JL, Flavell RA. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci USA. 1998;95:13618–23.PubMedPubMedCentralCrossRef
136.
go back to reference Pieper GM, Nilakantan V, Nguyen TK, Hilton G, Roza AM, Johnson CP. Reactive oxygen and reactive nitrogen as signaling molecules for caspase 3 activation in acute cardiac transplant rejection. Antioxid Redox Signal. 2008;10:1031–40.PubMedPubMedCentralCrossRef Pieper GM, Nilakantan V, Nguyen TK, Hilton G, Roza AM, Johnson CP. Reactive oxygen and reactive nitrogen as signaling molecules for caspase 3 activation in acute cardiac transplant rejection. Antioxid Redox Signal. 2008;10:1031–40.PubMedPubMedCentralCrossRef
137.
go back to reference Androlewicz MJ, Ortmann B, van Endert PM, Spies T, Cresswell P. Characteristics of peptide and major histocompatibility complex class I/beta 2-microglobulin binding to the transporters associated with antigen processing (TAP1 and TAP2). Proc Natl Acad Sci USA. 1994;91:12716–20.PubMedPubMedCentralCrossRef Androlewicz MJ, Ortmann B, van Endert PM, Spies T, Cresswell P. Characteristics of peptide and major histocompatibility complex class I/beta 2-microglobulin binding to the transporters associated with antigen processing (TAP1 and TAP2). Proc Natl Acad Sci USA. 1994;91:12716–20.PubMedPubMedCentralCrossRef
138.
go back to reference Ludigs K, Seguín-Estévez Q, Lemeille S, Ferrero I, Rota G, Chelbi S, Mattmann C, MacDonald HR, Reith W, Guarda G. NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module. PLoS Genet. 2015;11:e1005088.PubMedPubMedCentralCrossRef Ludigs K, Seguín-Estévez Q, Lemeille S, Ferrero I, Rota G, Chelbi S, Mattmann C, MacDonald HR, Reith W, Guarda G. NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module. PLoS Genet. 2015;11:e1005088.PubMedPubMedCentralCrossRef
139.
go back to reference Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev. 2000;14:1156–66.PubMedPubMedCentralCrossRef Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev. 2000;14:1156–66.PubMedPubMedCentralCrossRef
140.
go back to reference Thuillier R, Giraud S, Favreau F, Goujon JM, Desurmont T, Eugene M, Barrou B, Hauet T. Improving long-term outcome in allograft transplantation: role of ionic composition and polyethylene glycol. Transplantation. 2011;91:605–14.PubMedCrossRef Thuillier R, Giraud S, Favreau F, Goujon JM, Desurmont T, Eugene M, Barrou B, Hauet T. Improving long-term outcome in allograft transplantation: role of ionic composition and polyethylene glycol. Transplantation. 2011;91:605–14.PubMedCrossRef
141.
go back to reference Kuczek DE, Larsen AMH, Thorseth ML, Carretta M, Kalvisa A, Siersbæk MS, Simões AMC, Roslind A, Engelholm LH, Noessner E, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer. 2019;7:68.PubMedPubMedCentralCrossRef Kuczek DE, Larsen AMH, Thorseth ML, Carretta M, Kalvisa A, Siersbæk MS, Simões AMC, Roslind A, Engelholm LH, Noessner E, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer. 2019;7:68.PubMedPubMedCentralCrossRef
142.
go back to reference McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci. 2015;72:1303–16.PubMedCrossRef McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci. 2015;72:1303–16.PubMedCrossRef
143.
go back to reference Oltean M, Joshi M, Björkman E, Oltean S, Casselbrant A, Herlenius G, Olausson M. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat. Am J Transpl. 2012;12:2044–51.CrossRef Oltean M, Joshi M, Björkman E, Oltean S, Casselbrant A, Herlenius G, Olausson M. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat. Am J Transpl. 2012;12:2044–51.CrossRef
144.
go back to reference Schaefer A, Hordijk PL. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration. J Cell Sci. 2015;128:2221–30.PubMedCrossRef Schaefer A, Hordijk PL. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration. J Cell Sci. 2015;128:2221–30.PubMedCrossRef
146.
go back to reference Brenner MJ, Tung TH, Jensen JN, Mackinnon SE. The spectrum of complications of immunosuppression: is the time right for hand transplantation? J Bone Jt Surg Am. 2002;84:1861–70.CrossRef Brenner MJ, Tung TH, Jensen JN, Mackinnon SE. The spectrum of complications of immunosuppression: is the time right for hand transplantation? J Bone Jt Surg Am. 2002;84:1861–70.CrossRef
147.
go back to reference Kim JP, Hundepool CA, Friedrich PF, Moran SL, Bishop AT, Shin AY. The effect of full dose composite tissue allotransplantation immunosuppression on allograft motor nerve regeneration in a rat sciatic nerve model. Microsurgery. 2018;38:66–75.PubMedCrossRef Kim JP, Hundepool CA, Friedrich PF, Moran SL, Bishop AT, Shin AY. The effect of full dose composite tissue allotransplantation immunosuppression on allograft motor nerve regeneration in a rat sciatic nerve model. Microsurgery. 2018;38:66–75.PubMedCrossRef
148.
go back to reference Büttemeyer R, Rao U, Jones NF. Peripheral nerve allograft transplantation with FK506: functional, histological, and immunological results before and after discontinuation of immunosuppression. Ann Plast Surg. 1995;35:396–401.PubMedCrossRef Büttemeyer R, Rao U, Jones NF. Peripheral nerve allograft transplantation with FK506: functional, histological, and immunological results before and after discontinuation of immunosuppression. Ann Plast Surg. 1995;35:396–401.PubMedCrossRef
149.
go back to reference Stefănescu O, Jecan R, Bădoiu S, Enescu DM, Lascăr I. Peripheral nerve allograft, a reconstructive solution: outcomes and benefits. Chirurgia (Bucur). 2012;107:438–41. Stefănescu O, Jecan R, Bădoiu S, Enescu DM, Lascăr I. Peripheral nerve allograft, a reconstructive solution: outcomes and benefits. Chirurgia (Bucur). 2012;107:438–41.
150.
go back to reference Ives GC, Kung TA, Nghiem BT, Ursu DC, Brown DL, Cederna PS, Kemp SWP. Current state of the surgical treatment of terminal neuromas. Neurosurgery. 2018;83:354–64.PubMedCrossRef Ives GC, Kung TA, Nghiem BT, Ursu DC, Brown DL, Cederna PS, Kemp SWP. Current state of the surgical treatment of terminal neuromas. Neurosurgery. 2018;83:354–64.PubMedCrossRef
151.
go back to reference Economides JM, DeFazio MV, Attinger CE, Barbour JR. Prevention of painful neuroma and phantom limb pain after transfemoral amputations through concomitant nerve coaptation and collagen nerve wrapping. Neurosurgery. 2016;79:508–13.PubMedCrossRef Economides JM, DeFazio MV, Attinger CE, Barbour JR. Prevention of painful neuroma and phantom limb pain after transfemoral amputations through concomitant nerve coaptation and collagen nerve wrapping. Neurosurgery. 2016;79:508–13.PubMedCrossRef
152.
go back to reference Watson J, Gonzalez M, Romero A, Kerns J. Neuromas of the hand and upper extremity. J Hand Surg Am. 2010;35:499–510.PubMedCrossRef Watson J, Gonzalez M, Romero A, Kerns J. Neuromas of the hand and upper extremity. J Hand Surg Am. 2010;35:499–510.PubMedCrossRef
153.
go back to reference Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron. 2003;39:217–25.PubMedCrossRef Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron. 2003;39:217–25.PubMedCrossRef
154.
go back to reference Sunio A, Bittner GD. Cyclosporin A retards the wallerian degeneration of peripheral mammalian axons. Exp Neurol. 1997;146:46–56.PubMedCrossRef Sunio A, Bittner GD. Cyclosporin A retards the wallerian degeneration of peripheral mammalian axons. Exp Neurol. 1997;146:46–56.PubMedCrossRef
155.
go back to reference Sea T, Ballinger ML, Bittner GD. Cooling of peripheral myelinated axons retards Wallerian degeneration. Exp Neurol. 1995;133:85–95.PubMedCrossRef Sea T, Ballinger ML, Bittner GD. Cooling of peripheral myelinated axons retards Wallerian degeneration. Exp Neurol. 1995;133:85–95.PubMedCrossRef
156.
go back to reference Wakatsuki S, Furuno A, Ohshima M, Araki T. Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration. J Cell Biol. 2015;211:881–96.PubMedPubMedCentralCrossRef Wakatsuki S, Furuno A, Ohshima M, Araki T. Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration. J Cell Biol. 2015;211:881–96.PubMedPubMedCentralCrossRef
157.
go back to reference Calliari A, Bobba N, Escande C, Chini EN. Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner. Exp Neurol. 2014;251:91–100.PubMedCrossRef Calliari A, Bobba N, Escande C, Chini EN. Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner. Exp Neurol. 2014;251:91–100.PubMedCrossRef
158.
go back to reference De S, Trigueros MA, Kalyvas A, David S. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol Cell Neurosci. 2003;24:753–65.PubMedCrossRef De S, Trigueros MA, Kalyvas A, David S. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol Cell Neurosci. 2003;24:753–65.PubMedCrossRef
159.
go back to reference Ma M, Ferguson TA, Schoch KM, Li J, Qian Y, Shofer FS, Saatman KE, Neumar RW. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol Dis. 2013;56:34–46.PubMedPubMedCentralCrossRef Ma M, Ferguson TA, Schoch KM, Li J, Qian Y, Shofer FS, Saatman KE, Neumar RW. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol Dis. 2013;56:34–46.PubMedPubMedCentralCrossRef
160.
go back to reference Ikeguchi R, Kakinoki R, Matsumoto T, Yamakawa T, Nakayama K, Morimoto Y, Nakamura T. Successful storage of peripheral nerves using University of Wisconsin solution with polyphenol. J Neurosci Methods. 2007;159:57–65.PubMedCrossRef Ikeguchi R, Kakinoki R, Matsumoto T, Yamakawa T, Nakayama K, Morimoto Y, Nakamura T. Successful storage of peripheral nerves using University of Wisconsin solution with polyphenol. J Neurosci Methods. 2007;159:57–65.PubMedCrossRef
161.
162.
go back to reference Rivera JC, Glebus GP, Cho MS. Disability following combat-sustained nerve injury of the upper limb. Bone Jt J. 2014;96:254–8.CrossRef Rivera JC, Glebus GP, Cho MS. Disability following combat-sustained nerve injury of the upper limb. Bone Jt J. 2014;96:254–8.CrossRef
163.
go back to reference Novak CB, Anastakis DJ, Beaton DE, Mackinnon SE, Katz J. Relationships among pain disability, pain intensity, illness intrusiveness, and upper extremity disability in patients with traumatic peripheral nerve injury. J Hand Surg Am. 2010;35:1633–9.PubMedCrossRef Novak CB, Anastakis DJ, Beaton DE, Mackinnon SE, Katz J. Relationships among pain disability, pain intensity, illness intrusiveness, and upper extremity disability in patients with traumatic peripheral nerve injury. J Hand Surg Am. 2010;35:1633–9.PubMedCrossRef
164.
go back to reference Novak CB, Anastakis DJ, Beaton DE, Mackinnon SE, Katz J. Biomedical and psychosocial factors associated with disability after peripheral nerve injury. J Bone Jt Surg Am. 2011;93:929–36.CrossRef Novak CB, Anastakis DJ, Beaton DE, Mackinnon SE, Katz J. Biomedical and psychosocial factors associated with disability after peripheral nerve injury. J Bone Jt Surg Am. 2011;93:929–36.CrossRef
165.
go back to reference Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45:116–22.PubMedCrossRef Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45:116–22.PubMedCrossRef
166.
go back to reference Novak CB, Anastakis DJ, Beaton DE, Katz J. Patient-reported outcome after peripheral nerve injury. J Hand Surg Am. 2009;34:281–7.PubMedCrossRef Novak CB, Anastakis DJ, Beaton DE, Katz J. Patient-reported outcome after peripheral nerve injury. J Hand Surg Am. 2009;34:281–7.PubMedCrossRef
167.
168.
go back to reference Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, et al. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res. 2021;383:617–44.PubMedCrossRef Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, et al. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res. 2021;383:617–44.PubMedCrossRef
169.
go back to reference Raza C, Riaz HA, Anjum R, Shakeel NUA. Repair strategies for injured peripheral nerve: review. Life Sci. 2020;243:117308.PubMedCrossRef Raza C, Riaz HA, Anjum R, Shakeel NUA. Repair strategies for injured peripheral nerve: review. Life Sci. 2020;243:117308.PubMedCrossRef
170.
go back to reference Carvalho CR, Oliveira JM, Reis RL. Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol. 2019;7:337.PubMedPubMedCentralCrossRef Carvalho CR, Oliveira JM, Reis RL. Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol. 2019;7:337.PubMedPubMedCentralCrossRef
171.
go back to reference Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605–18.PubMedCrossRef Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605–18.PubMedCrossRef
172.
go back to reference Freeman MR. Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol. 2014;27:224–31.PubMedCrossRef Freeman MR. Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol. 2014;27:224–31.PubMedCrossRef
173.
go back to reference Ducic I, Yoon J, Buncke G. Chronic postoperative complications and donor site morbidity after sural nerve autograft harvest or biopsy. Microsurgery. 2020;40:710–6.PubMedPubMedCentralCrossRef Ducic I, Yoon J, Buncke G. Chronic postoperative complications and donor site morbidity after sural nerve autograft harvest or biopsy. Microsurgery. 2020;40:710–6.PubMedPubMedCentralCrossRef
174.
175.
go back to reference Abdullah M, O’Daly A, Vyas A, Rohde C, Brushart TM. Adult motor axons preferentially reinnervate predegenerated muscle nerve. Exp Neurol. 2013;249:1–7.PubMedCrossRef Abdullah M, O’Daly A, Vyas A, Rohde C, Brushart TM. Adult motor axons preferentially reinnervate predegenerated muscle nerve. Exp Neurol. 2013;249:1–7.PubMedCrossRef
176.
go back to reference Barbour JR, Yee A, Moore AM, Trulock EP, Buchowski JM, Mackinnon SE. Cadaveric nerve allotransplantation in the treatment of persistent thoracid neuralgia. Ann Thoracic Surg. 2015;99:1414–7.CrossRef Barbour JR, Yee A, Moore AM, Trulock EP, Buchowski JM, Mackinnon SE. Cadaveric nerve allotransplantation in the treatment of persistent thoracid neuralgia. Ann Thoracic Surg. 2015;99:1414–7.CrossRef
177.
go back to reference Larsen M, Habermann TM, Bishop AT, Shin AY, Spinner RJ. Epstein-Barr virus infection as a complication of transplantation of a nerve allograft from a living related donor. Case Report. J Neurosurg. 2007;5:924–8.CrossRef Larsen M, Habermann TM, Bishop AT, Shin AY, Spinner RJ. Epstein-Barr virus infection as a complication of transplantation of a nerve allograft from a living related donor. Case Report. J Neurosurg. 2007;5:924–8.CrossRef
Metadata
Title
Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries
Authors
George D. Bittner
Jared S. Bushman
Cameron L. Ghergherehchi
Kelly C. S. Roballo
Jaimie T. Shores
Tyler A. Smith
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02395-0

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue