Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2021

Open Access 01-12-2021 | Escherichia Coli | Research

miR-155 and miR-146a collectively regulate meningitic Escherichia coli infection-mediated neuroinflammatory responses

Authors: Bo Yang, Ruicheng Yang, Bojie Xu, Jiyang Fu, Xinyi Qu, Liang Li, Menghong Dai, Chen Tan, Huanchun Chen, Xiangru Wang

Published in: Journal of Neuroinflammation | Issue 1/2021

Login to get access

Abstract

Background

Escherichia coli is the most common Gram-negative bacterium causing meningitis, and E. coli meningitis is associated with high mortality and morbidity throughout the world. Our previous study showed that E. coli can colonize the brain and cause neuroinflammation. Increasing evidence supports the involvement of miRNAs as key regulators of neuroinflammation. However, it is not clear whether these molecules participate in the regulation of meningitic E. coli-mediated neuroinflammation.

Methods

The levels of miR-155 and miR-146a, as well as their precursors, in E. coli-infected astrocytes were measured using quantitative real-time PCR (qPCR). Overexpression and knockdown studies of miR-155 and miR-146a were performed to observe the effects on bacterial loads, cytokines, chemokines, and NF-κB signaling pathways. Bioinformatics methods were utilized to predict the target genes, and these target genes were validated using qPCR, Western blotting, and luciferase reporter system. In vivo knockdown of miR-155 and miR-146a was carried out to observe the effects on bacterial loads, inflammatory genes, astrocyte activation, microglia activation, and survival in a mouse model.

Results

The levels of miR-155, miR-146a, and their precursors were significantly increased in astrocytes during E. coli infection. miR-155 and miR-146a were induced by the NF-κB-p65 signaling pathway upon infection. Overexpressing and inhibiting miR-155 and miR-146a in astrocytes did not affect the bacterial loads. Further, the in vitro overexpression of miR-155 and miR-146a suppressed the E. coli-induced inflammatory response, whereas the inhibition of miR-155 and miR-146a enhanced it. Mechanistically, miR-155 inhibited TAB2, and miR-146a targeted IRAK1 and TRAF6; therefore, they functioned collaboratively to modulate TLR-mediated NF-κB signaling. In addition, both miR-155 and miR-146a could regulate the EGFR–NF-κB signaling pathway. Finally, the in vivo suppression of E. coli-induced miR-155 and miR-146a further promoted the production of inflammatory cytokines, aggravated astrocyte and microglia activation, and decreased mouse survival time, without affecting the bacterial loads in the blood and brain.

Conclusions

E. coli infection induced miR-155 and miR-146a, which collectively regulated bacteria-triggered neuroinflammatory responses through negative feedback regulation involving the TLR-mediated NF-κB and EGFR–NF-κB signaling pathways, thus protecting the central nervous system from further neuroinflammatory damage.
Literature
21.
go back to reference Amjad N, Yang R, Li L, Fu J, Yang B, Xu B, et al. Decrease of miR-19b-3p in brain microvascular endothelial cells attenuates meningitic Escherichia coli-induced neuroinflammation via TNFAIP3-mediated NF-kappaB inhibition. Pathogens. 2019;8(4). https://doi.org/10.3390/pathogens8040268. Amjad N, Yang R, Li L, Fu J, Yang B, Xu B, et al. Decrease of miR-19b-3p in brain microvascular endothelial cells attenuates meningitic Escherichia coli-induced neuroinflammation via TNFAIP3-mediated NF-kappaB inhibition. Pathogens. 2019;8(4). https://​doi.​org/​10.​3390/​pathogens8040268​.
Metadata
Title
miR-155 and miR-146a collectively regulate meningitic Escherichia coli infection-mediated neuroinflammatory responses
Authors
Bo Yang
Ruicheng Yang
Bojie Xu
Jiyang Fu
Xinyi Qu
Liang Li
Menghong Dai
Chen Tan
Huanchun Chen
Xiangru Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2021
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-021-02165-4

Other articles of this Issue 1/2021

Journal of Neuroinflammation 1/2021 Go to the issue