Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

α-Synuclein disrupts the anti-inflammatory role of Drd2 via interfering β-arrestin2-TAB1 interaction in astrocytes

Authors: Ren-Hong Du, Yan Zhou, Mei-Ling Xia, Ming Lu, Jian-Hua Ding, Gang Hu

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

α-Synuclein (α-Syn)-induced neuroinflammation plays a crucial role in the pathogenesis of Parkinson’s disease (PD). Dopamine D2 receptor (Drd2) has been regarded as a potential anti-inflammatory target in the therapy of neurodegenerative diseases. However, the effect of astrocytic Drd2 in α-Syn-induced neuroinflammation remains unclear.

Methods

The effect of Drd2 on neuroinflammation was examined in mouse primary astrocyte in vitro and A53T transgenic mice in vivo. The inflammatory responses of astrocyte were detected using immunofluorescence, ELISA, and qRT-PCR. The details of molecular mechanism were assessed using Western blotting and protein-protein interaction assays.

Results

We showed that the selective Drd2 agonist quinpirole suppressed inflammation in the midbrain of wild-type mice, but not in α-Syn-overexpressed mice. We also found that Drd2 agonists significantly alleviated LPS-induced inflammatory response in astrocytes, but failed to suppress α-Syn-induced inflammatory response. The anti-inflammation effect of Drd2 was dependent on β-arrestin2-mediated signaling, but not classical G protein pathway. α-Syn reduced the expression of β-arrestin2 in astrocytes. Increased the β-arrestin2 expression restored in the anti-inflammation of Drd2 in α-Syn-induced inflammation. Furthermore, we demonstrated that α-Syn disrupted the anti-inflammation of Drd2 via inhibiting the association of β-arrestin2 with transforming growth factor-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1) and promoting TAK1-TAB1 interaction in astrocytes.

Conclusions

Our study illustrates that astrocytic Drd2 inhibits neuroinflammation through a β-arrestin2-dependent mechanism and provides a new strategy for treatment of PD. Our findings also reveal that α-Syn disrupts the function of β-arrestin2 and inflammatory pathways in the pathogenesis of PD.
Literature
1.
go back to reference De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, Conte M, Rosato C, Ciniglio AM, de Vincentiis M. Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun Rev. 2016;15:1005–11.CrossRefPubMed De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, Conte M, Rosato C, Ciniglio AM, de Vincentiis M. Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun Rev. 2016;15:1005–11.CrossRefPubMed
2.
3.
go back to reference Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137:47–59.CrossRefPubMedPubMedCentral Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137:47–59.CrossRefPubMedPubMedCentral
4.
go back to reference Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK. An ADIOL-ERbeta-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell. 2011;145:584–95.CrossRefPubMedPubMedCentral Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK. An ADIOL-ERbeta-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell. 2011;145:584–95.CrossRefPubMedPubMedCentral
5.
go back to reference Komine O, Yamashita H, Fujimori-Tonou N, Koike M, Jin S, Moriwaki Y, Endo F, Watanabe S, Uematsu S, Akira S, et al. Innate immune adaptor TRIF deficiency accelerates disease progression of ALS mice with accumulation of aberrantly activated astrocytes. Cell Death Differ. 2018; https://doi.org/10.1038/s41418-018-0098-3. Komine O, Yamashita H, Fujimori-Tonou N, Koike M, Jin S, Moriwaki Y, Endo F, Watanabe S, Uematsu S, Akira S, et al. Innate immune adaptor TRIF deficiency accelerates disease progression of ALS mice with accumulation of aberrantly activated astrocytes. Cell Death Differ. 2018; https://​doi.​org/​10.​1038/​s41418-018-0098-3.
6.
go back to reference Yu WW, Cao SN, Zang CX, Wang L, Yang HY, Bao XQ, Zhang D. Heat shock protein 70 suppresses neuroinflammation induced by alpha-synuclein in astrocytes. Mol Cell Neurosci. 2018;86:58–64.CrossRefPubMed Yu WW, Cao SN, Zang CX, Wang L, Yang HY, Bao XQ, Zhang D. Heat shock protein 70 suppresses neuroinflammation induced by alpha-synuclein in astrocytes. Mol Cell Neurosci. 2018;86:58–64.CrossRefPubMed
7.
go back to reference Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer’s disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Adv Protein Chem Struct Biol. 2017;108:33–57.CrossRefPubMed Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer’s disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Adv Protein Chem Struct Biol. 2017;108:33–57.CrossRefPubMed
8.
go back to reference Valera E, Masliah E. Therapeutic approaches in Parkinson’s disease and related disorders. J Neurochem. 2016;139 Suppl 1:346–52.CrossRefPubMed Valera E, Masliah E. Therapeutic approaches in Parkinson’s disease and related disorders. J Neurochem. 2016;139 Suppl 1:346–52.CrossRefPubMed
9.
go back to reference Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.CrossRefPubMedPubMedCentral Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.CrossRefPubMedPubMedCentral
12.
go back to reference Mor DE, Ischiropoulos H. The convergence of dopamine and alpha-synuclein: implications for Parkinson’s disease. J Exp Neurosci. 2018;12:1179069518761360.CrossRefPubMedPubMedCentral Mor DE, Ischiropoulos H. The convergence of dopamine and alpha-synuclein: implications for Parkinson’s disease. J Exp Neurosci. 2018;12:1179069518761360.CrossRefPubMedPubMedCentral
13.
go back to reference Chistiakov DA, Chistiakov AA. Alpha-synuclein-carrying extracellular vesicles in Parkinson’s disease: deadly transmitters. Acta Neurol Belg. 2017;117:43–51.CrossRefPubMed Chistiakov DA, Chistiakov AA. Alpha-synuclein-carrying extracellular vesicles in Parkinson’s disease: deadly transmitters. Acta Neurol Belg. 2017;117:43–51.CrossRefPubMed
14.
go back to reference Ambaw A, Zheng L, Tambe MA, Strathearn KE, Acosta G, Hubers SA, Liu F, Herr SA, Tang J, Truong A, et al. Acrolein-mediated neuronal cell death and alpha-synuclein aggregation: implications for Parkinson’s disease. Mol Cell Neurosci. 2018;88:70–82.CrossRefPubMed Ambaw A, Zheng L, Tambe MA, Strathearn KE, Acosta G, Hubers SA, Liu F, Herr SA, Tang J, Truong A, et al. Acrolein-mediated neuronal cell death and alpha-synuclein aggregation: implications for Parkinson’s disease. Mol Cell Neurosci. 2018;88:70–82.CrossRefPubMed
15.
go back to reference Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H. Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain. 2010;3:12.CrossRefPubMedPubMedCentral Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H. Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain. 2010;3:12.CrossRefPubMedPubMedCentral
16.
go back to reference Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rabano A, Kirik D, Cuadrado A. Alpha-synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet. 2012;21:3173–92.CrossRefPubMed Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rabano A, Kirik D, Cuadrado A. Alpha-synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet. 2012;21:3173–92.CrossRefPubMed
17.
go back to reference Froyset AK, Edson AJ, Gharbi N, Khan EA, Dondorp D, Bai Q, Tiraboschi E, Suster ML, Connolly JB, Burton EA, et al. Astroglial DJ-1 over-expression up-regulates proteins involved in redox regulation and is neuroprotective in vivo. Redox Biol. 2018;16:237–47.CrossRefPubMedPubMedCentral Froyset AK, Edson AJ, Gharbi N, Khan EA, Dondorp D, Bai Q, Tiraboschi E, Suster ML, Connolly JB, Burton EA, et al. Astroglial DJ-1 over-expression up-regulates proteins involved in redox regulation and is neuroprotective in vivo. Redox Biol. 2018;16:237–47.CrossRefPubMedPubMedCentral
18.
go back to reference Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta. 1864;2018:432–43. Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta. 1864;2018:432–43.
19.
go back to reference Sadeghi H, Parishani M, Akbartabar TM, Ghavamzadeh M, Jafari BM, Zarezade V, Delaviz H, Sadeghi H. Pramipexole reduces inflammation in the experimental animal models of inflammation. Immunopharmacol Immunotoxicol. 2017;39:80–6.CrossRefPubMed Sadeghi H, Parishani M, Akbartabar TM, Ghavamzadeh M, Jafari BM, Zarezade V, Delaviz H, Sadeghi H. Pramipexole reduces inflammation in the experimental animal models of inflammation. Immunopharmacol Immunotoxicol. 2017;39:80–6.CrossRefPubMed
20.
go back to reference Lieberknecht V, Cunha MP, Junqueira SC, Coelho ID, de Souza LF, Dos SA, Rodrigues AL, Dutra RC, Dafre AL. Antidepressant-like effect of pramipexole in an inflammatory model of depression. Behav Brain Res. 2017;320:365–73.CrossRefPubMed Lieberknecht V, Cunha MP, Junqueira SC, Coelho ID, de Souza LF, Dos SA, Rodrigues AL, Dutra RC, Dafre AL. Antidepressant-like effect of pramipexole in an inflammatory model of depression. Behav Brain Res. 2017;320:365–73.CrossRefPubMed
21.
go back to reference Lieberknecht V, Junqueira SC, Cunha MP, Barbosa TA, de Souza LF, Coelho IS, Santos AR, Rodrigues AL, Dafre AL, Dutra RC. Pramipexole, a dopamine D2/D3 receptor-preferring agonist, prevents experimental autoimmune encephalomyelitis development in mice. Mol Neurobiol. 2017;54:1033–45.CrossRefPubMed Lieberknecht V, Junqueira SC, Cunha MP, Barbosa TA, de Souza LF, Coelho IS, Santos AR, Rodrigues AL, Dafre AL, Dutra RC. Pramipexole, a dopamine D2/D3 receptor-preferring agonist, prevents experimental autoimmune encephalomyelitis development in mice. Mol Neurobiol. 2017;54:1033–45.CrossRefPubMed
23.
go back to reference Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY, Liu YJ, Wawrousek E, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature. 2013;494:90–4.CrossRefPubMed Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY, Liu YJ, Wawrousek E, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature. 2013;494:90–4.CrossRefPubMed
24.
go back to reference Tolstanova G, Deng X, Ahluwalia A, Paunovic B, Prysiazhniuk A, Ostapchenko L, Tarnawski A, Sandor Z, Szabo S. Role of dopamine and D2 dopamine receptor in the pathogenesis of inflammatory bowel disease. Dig Dis Sci. 2015;60:2963–75.CrossRefPubMed Tolstanova G, Deng X, Ahluwalia A, Paunovic B, Prysiazhniuk A, Ostapchenko L, Tarnawski A, Sandor Z, Szabo S. Role of dopamine and D2 dopamine receptor in the pathogenesis of inflammatory bowel disease. Dig Dis Sci. 2015;60:2963–75.CrossRefPubMed
25.
go back to reference Kang DS, Tian X, Benovic JL. Beta-arrestins and G protein-coupled receptor trafficking. Methods Enzymol. 2013;521:91–108.CrossRefPubMed Kang DS, Tian X, Benovic JL. Beta-arrestins and G protein-coupled receptor trafficking. Methods Enzymol. 2013;521:91–108.CrossRefPubMed
26.
go back to reference Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G. Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell. 2004;14:303–17.CrossRefPubMed Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G. Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell. 2004;14:303–17.CrossRefPubMed
27.
go back to reference Qian L, Wu HM, Chen SH, Zhang D, Ali SF, Peterson L, Wilson B, Lu RB, Hong JS, Flood PM. Beta2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J Immunol. 2011;186:4443–54.CrossRefPubMedPubMedCentral Qian L, Wu HM, Chen SH, Zhang D, Ali SF, Peterson L, Wilson B, Lu RB, Hong JS, Flood PM. Beta2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J Immunol. 2011;186:4443–54.CrossRefPubMedPubMedCentral
28.
go back to reference Feng X, Wu CY, Burton FH, Loh HH, Wei LN. Beta-arrestin protects neurons by mediating endogenous opioid arrest of inflammatory microglia. Cell Death Differ. 2014;21:397–406.CrossRefPubMed Feng X, Wu CY, Burton FH, Loh HH, Wei LN. Beta-arrestin protects neurons by mediating endogenous opioid arrest of inflammatory microglia. Cell Death Differ. 2014;21:397–406.CrossRefPubMed
29.
go back to reference Fan Z, Lu M, Qiao C, Zhou Y, Ding JH, Hu G. MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/caspase-1 axis in adult neural stem cells. Mol Neurobiol. 2016;53:7057–69.CrossRefPubMed Fan Z, Lu M, Qiao C, Zhou Y, Ding JH, Hu G. MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/caspase-1 axis in adult neural stem cells. Mol Neurobiol. 2016;53:7057–69.CrossRefPubMed
30.
go back to reference Zhou Y, Lu M, Du RH, Qiao C, Jiang CY, Zhang KZ, Ding JH, Hu G. MicroRNA-7 targets nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener. 2016;11:28.CrossRefPubMedPubMedCentral Zhou Y, Lu M, Du RH, Qiao C, Jiang CY, Zhang KZ, Ding JH, Hu G. MicroRNA-7 targets nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener. 2016;11:28.CrossRefPubMedPubMedCentral
31.
go back to reference Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci. 2007;34:34–9.CrossRefPubMed Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci. 2007;34:34–9.CrossRefPubMed
32.
go back to reference Xie J, Duan L, Qian X, Huang X, Ding J, Hu G. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res. 2010;88:428–37.CrossRefPubMed Xie J, Duan L, Qian X, Huang X, Ding J, Hu G. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res. 2010;88:428–37.CrossRefPubMed
33.
go back to reference Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian Z, Tschopp J, Zhou R. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38:1154–63.CrossRefPubMed Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian Z, Tschopp J, Zhou R. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38:1154–63.CrossRefPubMed
34.
go back to reference Xiang NL, Liu J, Liao YJ, Huang YW, Wu Z, Bai ZQ, Lin X, Zhang JH. Abrogating ClC-3 inhibits LPS-induced inflammation via blocking the TLR4/NF-kappaB pathway. Sci Rep. 2016;6:27583.CrossRefPubMedPubMedCentral Xiang NL, Liu J, Liao YJ, Huang YW, Wu Z, Bai ZQ, Lin X, Zhang JH. Abrogating ClC-3 inhibits LPS-induced inflammation via blocking the TLR4/NF-kappaB pathway. Sci Rep. 2016;6:27583.CrossRefPubMedPubMedCentral
35.
go back to reference Peterson SM, Pack TF, Caron MG. Receptor, ligand and transducer contributions to dopamine D2 receptor functional selectivity. PLoS One. 2015;10:e0141637.CrossRefPubMedPubMedCentral Peterson SM, Pack TF, Caron MG. Receptor, ligand and transducer contributions to dopamine D2 receptor functional selectivity. PLoS One. 2015;10:e0141637.CrossRefPubMedPubMedCentral
36.
go back to reference Urs NM, Peterson SM, Caron MG. New concepts in dopamine D2 receptor biased signaling and implications for schizophrenia therapy. Biol Psychiatry. 2016;81:78–85.CrossRefPubMedPubMedCentral Urs NM, Peterson SM, Caron MG. New concepts in dopamine D2 receptor biased signaling and implications for schizophrenia therapy. Biol Psychiatry. 2016;81:78–85.CrossRefPubMedPubMedCentral
37.
go back to reference Watts VJ, Wiens BL, Cumbay MG, Vu MN, Neve RL, Neve KA. Selective activation of Galphao by D2L dopamine receptors in NS20Y neuroblastoma cells. J Neurosci. 1998;18:8692–9.CrossRefPubMed Watts VJ, Wiens BL, Cumbay MG, Vu MN, Neve RL, Neve KA. Selective activation of Galphao by D2L dopamine receptors in NS20Y neuroblastoma cells. J Neurosci. 1998;18:8692–9.CrossRefPubMed
39.
go back to reference Zhang W, He H, Song H, Zhao J, Li T, Wu L, Zhang X, Chen J. Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Parkinsons Dis. 2016;2016:9450137.PubMedPubMedCentral Zhang W, He H, Song H, Zhao J, Li T, Wu L, Zhang X, Chen J. Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Parkinsons Dis. 2016;2016:9450137.PubMedPubMedCentral
40.
go back to reference Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S. Heterogeneity in dopamine neuron synaptic actions across the striatum and its relevance for schizophrenia. Biol Psychiatry. 2016;8:43–51. Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S. Heterogeneity in dopamine neuron synaptic actions across the striatum and its relevance for schizophrenia. Biol Psychiatry. 2016;8:43–51.
42.
go back to reference Politis M, Sauerbier A, Loane C, Pavese N, Martin A, Corcoran B, Brooks DJ, Ray-Chaudhuri K, Piccini P. Sustained striatal dopamine levels following intestinal levodopa infusions in Parkinson’s disease patients. Mov Disord. 2017;32:235–40.CrossRefPubMed Politis M, Sauerbier A, Loane C, Pavese N, Martin A, Corcoran B, Brooks DJ, Ray-Chaudhuri K, Piccini P. Sustained striatal dopamine levels following intestinal levodopa infusions in Parkinson’s disease patients. Mov Disord. 2017;32:235–40.CrossRefPubMed
43.
go back to reference Han X, Li B, Ye X, Mulatibieke T, Wu J, Dai J, Wu D, Ni J, Zhang R, Xue J, et al. Dopamine D2 receptor signalling controls inflammation in acute pancreatitis via a PP2Adependent Akt/NF-κB signalling pathway. Br J Pharmacol. 2017;174:4751–70. Han X, Li B, Ye X, Mulatibieke T, Wu J, Dai J, Wu D, Ni J, Zhang R, Xue J, et al. Dopamine D2 receptor signalling controls inflammation in acute pancreatitis via a PP2Adependent Akt/NF-κB signalling pathway. Br J Pharmacol. 2017;174:4751–70.
44.
go back to reference Arreola R, Alvarez-Herrera S, Perez-Sanchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garces-Alvarez ME, de la Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, et al. Immunomodulatory effects mediated by dopamine. J Immunol Res. 2016;2016:3160486.CrossRefPubMedPubMedCentral Arreola R, Alvarez-Herrera S, Perez-Sanchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garces-Alvarez ME, de la Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, et al. Immunomodulatory effects mediated by dopamine. J Immunol Res. 2016;2016:3160486.CrossRefPubMedPubMedCentral
46.
go back to reference Loniewski K, Shi Y, Pestka J, Parameswaran N. Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol Immunol. 2008;45:2312–22.CrossRefPubMed Loniewski K, Shi Y, Pestka J, Parameswaran N. Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol Immunol. 2008;45:2312–22.CrossRefPubMed
47.
go back to reference Wang W, Xu M, Zhang YY, He B. Fenoterol, a beta(2)-adrenoceptor agonist, inhibits LPS-induced membrane-bound CD14, TLR4/CD14 complex, and inflammatory cytokines production through beta-arrestin-2 in THP-1 cell line. Acta Pharmacol Sin. 2009;30:1522–8.CrossRefPubMedPubMedCentral Wang W, Xu M, Zhang YY, He B. Fenoterol, a beta(2)-adrenoceptor agonist, inhibits LPS-induced membrane-bound CD14, TLR4/CD14 complex, and inflammatory cytokines production through beta-arrestin-2 in THP-1 cell line. Acta Pharmacol Sin. 2009;30:1522–8.CrossRefPubMedPubMedCentral
Metadata
Title
α-Synuclein disrupts the anti-inflammatory role of Drd2 via interfering β-arrestin2-TAB1 interaction in astrocytes
Authors
Ren-Hong Du
Yan Zhou
Mei-Ling Xia
Ming Lu
Jian-Hua Ding
Gang Hu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1302-6

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue