Skip to main content
Log in

MicroRNA-7 Enhances Subventricular Zone Neurogenesis by Inhibiting NLRP3/Caspase-1 Axis in Adult Neural Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

α-Synuclein (α-syn) has been recognized to induce neuroinflammation and to disturb nerve repair process in Parkinson’s disease. However, the potential mechanisms underlying α-syn-induced impairment of adult neurogenesis remain unclear. In the present study, A53T mutant α-­synuclein transgenic (A53Ttg/tg) mice, caspase-1 knockout mice, and A53Ttg/tg;caspase-1−/− double transgenic mice were used to prepare adult neural stem cells (ANSCs) and to investigate inflammasome-related mechanism for α-syn-impaired neurogenesis in mouse subventricular zone (SVZ). We showed that α-syn inhibited neurogenesis in the SVZ of A53Ttg/tg mice and impaired proliferation and differentiation in ANSCs cultured in vitro, accompanied by reduced microRNA-7 (miR-7) expression levels. We further found that ANSC expressed NLRP3-containing inflammasome and α-syn activated both TLR4/NF-κB and NLRP3/caspase-1 signals in ANSCs. Either Nlrp3 knockdown or Caspase-1 knockout could attenuate the inhibition of proliferation in ANSCs induced by α-syn. Furthermore, we demonstrated that miR-7 post-transcriptionally controlled Nlrp3 expression besides targeting α-syn. Most notably, stereotactic injection of miR-7 mimics into lateral ventricles significantly inhibited NLRP3 inflammasome activation and improved adult neurogenesis in mouse SVZ. Our study provides a direct link between NLRP3 inflammasome activation and α-syn-impaired neurogenesis in the pathogenesis of α-synucleinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34(4):521–533

    Article  CAS  PubMed  Google Scholar 

  2. Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert reviews in molecular medicine 11, e22

    Article  PubMed  Google Scholar 

  3. Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B, Hengerer B, Hirsch E et al (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5(10):845–854

    Article  CAS  PubMed  Google Scholar 

  4. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  CAS  PubMed  Google Scholar 

  5. Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H, Imai H, Kitami T, Sato K et al (2006) Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59(2):298–309

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41(5):683–686

    Article  CAS  PubMed  Google Scholar 

  7. Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8(6):481–488

    Article  CAS  PubMed  Google Scholar 

  8. O’Sullivan SS, Johnson M, Williams DR, Revesz T, Holton JL, Lees AJ, Perry EK (2011) The effect of drug treatment on neurogenesis in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 26(1):45–50

    Article  Google Scholar 

  9. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210–S212

    Article  PubMed  Google Scholar 

  10. Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation 5:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15(2):84–97

    Article  CAS  PubMed  Google Scholar 

  12. Dinarello CA (2007) A signal for the caspase-1 inflammasome free of TLR. Immunity 26(4):383–385

    Article  CAS  PubMed  Google Scholar 

  13. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963):296–300

    Article  CAS  PubMed  Google Scholar 

  14. Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13(4):325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19(9):455–464

    Article  CAS  PubMed  Google Scholar 

  16. Jin C, Flavell RA (2010) Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30(5):628–631

    Article  CAS  PubMed  Google Scholar 

  17. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    Article  CAS  PubMed  Google Scholar 

  18. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawahara H, Imai T, Okano H (2012) MicroRNAs in Neural Stem Cells and Neurogenesis. Front Neurosci 6:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106(31):13052–13057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong H, Sha LL, Fan Y, Xiao M, Ding JH, Wu J, Hu G (2009) Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 34(5):1263–1276

    Article  CAS  Google Scholar 

  22. Kong H, Fan Y, Xie J, Ding J, Sha L, Shi X, Sun X, Hu G (2008) AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci 121(Pt 24):4029–4036

    Article  CAS  PubMed  Google Scholar 

  23. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329(5998):1537–1541

    Article  CAS  PubMed  Google Scholar 

  24. Shen X, Fang J, Lv X, Pei Z, Wang Y, Jiang S, Ding K (2011) Heparin impairs angiogenesis through inhibition of microRNA-10b. J Biol Chem 286(30):26616–26627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11), e363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Westerlund U, Svensson M, Moe MC, Varghese M, Gustavsson B, Wallstedt L, Berg-Johnsen J, Langmoen IA (2005) Endoscopically harvested stem cells: a putative method in future autotransplantation. Neurosurgery 57(4):779–784, discussion 779–784

    Article  PubMed  Google Scholar 

  27. Cave JW, Baker H (2009) Dopamine systems in the forebrain. Adv Exp Med Biol 651:15–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J et al (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28(16):4250–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tani M, Hayakawa H, Yasuda T, Nihira T, Hattori N, Mizuno Y, Mochizuki H (2010) Ectopic expression of alpha-synuclein affects the migration of neural stem cells in mouse subventricular zone. J Neurochem 115(4):854–863

    Article  CAS  PubMed  Google Scholar 

  30. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin Y, Yan Y, Jiang X, Mai J, Chen NC, Wang H, Yang XF (2009) Inflammasomes are differentially expressed in cardiovascular and other tissues. Int J Immunopathol Pharmacol 22(2):311–322

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E, Kim HS (2010) Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185(1):615–623

    Article  CAS  PubMed  Google Scholar 

  33. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088

    Article  CAS  PubMed  Google Scholar 

  34. Kalinowski FC, Brown RA, Ganda C, Giles KM, Epis MR, Horsham J, Leedman PJ (2014) microRNA-7: a tumor suppressor miRNA with therapeutic potential. Int J Biochem Cell Biol 54:312–317

    Article  CAS  PubMed  Google Scholar 

  35. de Chevigny A, Core N, Follert P, Gaudin M, Barbry P, Beclin C, Cremer H (2012) miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci 15(8):1120–1126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work reported herein was supported by the grants from the National Natural Science Foundation of China (No. 81473196, No. 81573403, No. 81202514, and No. 81202512), the National Science & Technology Major Project (No. 2012ZX09304-001), the Natural Science Foundation of Jiangsu Province (BK20130039), and the key project of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 15KJA310002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Zheng Fan and Ming Lu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Phenotypic identification of cultured adult neural stem cells (ANSCs). (A) α-syn immunostaining in ANSCs. (B) Nestin immunostaining in ANSCs. Scale bar: 100 μm. (PDF 110 kb)

ESM 2

Phenotypic identification of ANSCs isolated from caspase-1+/+ and caspase-1−/− mice. (A) The morphological photo of neurospheres isolated from SVZ of caspase-1+/+ and caspase-1−/− mice. Scale bar: 100 μm. (B & C) Statistical analysis the number and diameter of neurospheres in both genotypic ANSCs. Data are expressed as mean ± S.E.M. from four independent experiments. (PDF 109 kb)

ESM 3

Luciferase report data show that miR-7 failed to inhibit Tlr4 gene expression. Data are expressed as mean ± S.E.M. from four independent experiments. (PDF 97 kb)

ESM 4

The protocol illustration of stereotactic injection and representative photo of injected miR-7 mimics in SVZ and striatum. Scale bar: 200 μm. (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Lu, M., Qiao, C. et al. MicroRNA-7 Enhances Subventricular Zone Neurogenesis by Inhibiting NLRP3/Caspase-1 Axis in Adult Neural Stem Cells. Mol Neurobiol 53, 7057–7069 (2016). https://doi.org/10.1007/s12035-015-9620-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9620-5

Keywords

Navigation