Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2021

Open Access 01-12-2021 | Review

Effect of sodium bicarbonate contribution on energy metabolism during exercise: a systematic review and meta-analysis

Authors: Jorge Lorenzo Calvo, Huanteng Xu, Daniel Mon-López, Helios Pareja-Galeano, Sergio Lorenzo Jiménez

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2021

Login to get access

Abstract

Background

The effects of sodium bicarbonate (NaHCO3) on anaerobic and aerobic capacity are commonly acknowledged as unclear due to the contrasting evidence thus, the present study analyzes the contribution of NaHCO3 to energy metabolism during exercise.

Methods

Following a search through five databases, 17 studies were found to meet the inclusion criteria. Meta-analyses of standardized mean differences (SMDs) were performed using a random-effects model to determine the effects of NaHCO3 supplementation on energy metabolism. Subgroup meta-analyses were conducted for the anaerobic-based exercise (assessed by changes in pH, bicarbonate ion [HCO3], base excess [BE] and blood lactate [BLa]) vs. aerobic-based exercise (assessed by changes in oxygen uptake [VO2], carbon dioxide production [VCO2], partial pressure of oxygen [PO2] and partial pressure of carbon dioxide [PCO2]).

Results

The meta-analysis indicated that NaHCO3 ingestion improves pH (SMD = 1.38, 95% CI: 0.97 to 1.79, P < 0.001; I2 = 69%), HCO3 (SMD = 1.63, 95% CI: 1.10 to 2.17, P < 0.001; I2 = 80%), BE (SMD = 1.67, 95% CI: 1.16 to 2.19, P < 0.001, I2 = 77%), BLa (SMD = 0.72, 95% CI: 0.34 to 1.11, P < 0.001, I2 = 68%) and PCO2 (SMD = 0.51, 95% CI: 0.13 to 0.90, P = 0.009, I2 = 0%) but there were no differences between VO2, VCO2 and PO2 compared with the placebo condition.

Conclusions

This meta-analysis has found that the anaerobic metabolism system (AnMS), especially the glycolytic but not the oxidative system during exercise is affected by ingestion of NaHCO3. The ideal way is to ingest it is in a gelatin capsule in the acute mode and to use a dose of 0.3 g•kg− 1 body mass of NaHCO3 90 min before the exercise in which energy is supplied by the glycolytic system.
Literature
1.
go back to reference Kenney WL, Wilmore JH, and Costill DL: Physiology of sport and exercise: Human kinetics; 2015(Series Editor). Kenney WL, Wilmore JH, and Costill DL: Physiology of sport and exercise: Human kinetics; 2015(Series Editor).
2.
go back to reference MacLaren D and Morton J: Biochemistry for sport and exercise metabolism: John Wiley & Sons; 2011(Series Editor). MacLaren D and Morton J: Biochemistry for sport and exercise metabolism: John Wiley & Sons; 2011(Series Editor).
3.
go back to reference Sahlin K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med. 2014;44:167–73.PubMedCentralCrossRef Sahlin K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med. 2014;44:167–73.PubMedCentralCrossRef
4.
go back to reference Zinner C, Wahl P, Achtzehn S, et al. Effects of bicarbonate ingestion and high intensity exercise on lactate and h +−ion distribution in different blood compartments. Eur J Appl Physiol. 2011;111:1641–8.PubMedCrossRef Zinner C, Wahl P, Achtzehn S, et al. Effects of bicarbonate ingestion and high intensity exercise on lactate and h +−ion distribution in different blood compartments. Eur J Appl Physiol. 2011;111:1641–8.PubMedCrossRef
5.
go back to reference Juel C. Current aspects of lactate exchange: lactate/h+ transport in human skeletal muscle. Eur J Appl Physiol. 2001;86:12–6.PubMedCrossRef Juel C. Current aspects of lactate exchange: lactate/h+ transport in human skeletal muscle. Eur J Appl Physiol. 2001;86:12–6.PubMedCrossRef
6.
go back to reference Burke LM: Practical considerations for bicarbonate loading and sports performance. In Nutritional coaching strategy to modulate training efficiency. Volume 75. Edited by Tipton KD and VanLoon LJC; 2013:15–26. Burke LM: Practical considerations for bicarbonate loading and sports performance. In Nutritional coaching strategy to modulate training efficiency. Volume 75. Edited by Tipton KD and VanLoon LJC; 2013:15–26.
7.
go back to reference Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011;41:801–14.PubMedCrossRef Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011;41:801–14.PubMedCrossRef
8.
go back to reference Cameron SL, McLay-Cooke RT, Brown RC, et al. Increased blood ph but not performance with sodium bicarbonate supplementation in elite rugby union players. Int J Sport Nutr Exerc Metab. 2010;20:307–21.PubMedCrossRef Cameron SL, McLay-Cooke RT, Brown RC, et al. Increased blood ph but not performance with sodium bicarbonate supplementation in elite rugby union players. Int J Sport Nutr Exerc Metab. 2010;20:307–21.PubMedCrossRef
9.
go back to reference Carr AJ, Slater GJ, Gore CJ, et al. Effect of sodium bicarbonate on [hco3 -], ph, and gastrointestinal symptoms. International Journal of Sport Nutrition & Exercise Metabolism. 2011;21:189–94.CrossRef Carr AJ, Slater GJ, Gore CJ, et al. Effect of sodium bicarbonate on [hco3 -], ph, and gastrointestinal symptoms. International Journal of Sport Nutrition & Exercise Metabolism. 2011;21:189–94.CrossRef
10.
go back to reference Limmer M, Sonntag J, de Marées M, et al. Effects of an alkalizing or acidizing diet on high-intensity exercise performance under normoxic and hypoxic conditions in physically active adults: a randomized, crossover trial. Nutrients. 2020;12. Limmer M, Sonntag J, de Marées M, et al. Effects of an alkalizing or acidizing diet on high-intensity exercise performance under normoxic and hypoxic conditions in physically active adults: a randomized, crossover trial. Nutrients. 2020;12.
11.
go back to reference Lopes-Silva JP, Da Silva Santos JF, Artioli GG, et al. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur J Sport Sci. 2018;18:431–40.PubMedCrossRef Lopes-Silva JP, Da Silva Santos JF, Artioli GG, et al. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur J Sport Sci. 2018;18:431–40.PubMedCrossRef
12.
go back to reference Stephens TJ, McKenna MJ, Canny BJ, et al. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc. 2002;34:614–21.PubMed Stephens TJ, McKenna MJ, Canny BJ, et al. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc. 2002;34:614–21.PubMed
13.
go back to reference Edge J, Eynon N, McKenna MJ, et al. Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations. Exp Physiol. 2013;98:481–90.PubMedCrossRef Edge J, Eynon N, McKenna MJ, et al. Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations. Exp Physiol. 2013;98:481–90.PubMedCrossRef
14.
go back to reference Maliqueo SAG, Ojeda ÁCH, Barrilao RG, et al. Time to fatigue on lactate threshold and supplementation with sodium bicarbonate in middle-distance college athletes. Archivos de Medicina del Deporte. 2018;35:16–22. Maliqueo SAG, Ojeda ÁCH, Barrilao RG, et al. Time to fatigue on lactate threshold and supplementation with sodium bicarbonate in middle-distance college athletes. Archivos de Medicina del Deporte. 2018;35:16–22.
15.
go back to reference Northgraves MJ, Peart DJ, Jordan CA, et al. Effect of lactate supplementation and sodium bicarbonate on 40-km cycling time trial performance. J Strength Cond Res. 2014;28:273–80.PubMedCrossRef Northgraves MJ, Peart DJ, Jordan CA, et al. Effect of lactate supplementation and sodium bicarbonate on 40-km cycling time trial performance. J Strength Cond Res. 2014;28:273–80.PubMedCrossRef
16.
go back to reference Krustrup P, Ermidis G, Mohr M. Sodium bicarbonate intake improves high-intensity intermittent exercise performance in trained young men. J Int Soc Sport Nutr. 2015;12. Krustrup P, Ermidis G, Mohr M. Sodium bicarbonate intake improves high-intensity intermittent exercise performance in trained young men. J Int Soc Sport Nutr. 2015;12.
17.
go back to reference da Silva RP, de Oliveira LF, Saunders B, et al. Effects of β-alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise. Amino Acids. 2019;51:83–96.PubMedCrossRef da Silva RP, de Oliveira LF, Saunders B, et al. Effects of β-alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise. Amino Acids. 2019;51:83–96.PubMedCrossRef
18.
go back to reference McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol. 2016;121:1290–305.PubMedCrossRef McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol. 2016;121:1290–305.PubMedCrossRef
19.
go back to reference Miller P, Robinson AL, Sparks SA, et al. The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. J Strength Cond Res. 2016;30:561–8.PubMedCrossRef Miller P, Robinson AL, Sparks SA, et al. The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. J Strength Cond Res. 2016;30:561–8.PubMedCrossRef
20.
go back to reference Hadzic M, Eckstein ML, Schugardt M. The impact of sodium bicarbonate on performance in response to exercise duration in athletes: a systematic review. J Sports Sci Med. 2019;18:271–81.PubMedPubMedCentral Hadzic M, Eckstein ML, Schugardt M. The impact of sodium bicarbonate on performance in response to exercise duration in athletes: a systematic review. J Sports Sci Med. 2019;18:271–81.PubMedPubMedCentral
21.
go back to reference Price M, Moss P, Rance S. Effects of sodium bicarbonate ingestion on prolonged intermittent exercise. Med Sci Sports Exerc. 2003;35:1303–8.PubMedCrossRef Price M, Moss P, Rance S. Effects of sodium bicarbonate ingestion on prolonged intermittent exercise. Med Sci Sports Exerc. 2003;35:1303–8.PubMedCrossRef
22.
go back to reference Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Phys. 1989;257:E567–72. Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Phys. 1989;257:E567–72.
23.
go back to reference Heikkilä M, Valve R, Lehtovirta M, et al. Nutrition knowledge among young Finnish endurance athletes and their coaches. Int J Sport Nutr Exerc Metab. 2018;28:522–7.PubMedCrossRef Heikkilä M, Valve R, Lehtovirta M, et al. Nutrition knowledge among young Finnish endurance athletes and their coaches. Int J Sport Nutr Exerc Metab. 2018;28:522–7.PubMedCrossRef
24.
go back to reference Jovanov P, Đorđić V, Obradović B, et al. Prevalence, knowledge and attitudes towards using sports supplements among young athletes. J Int Soc Sports Nutr. 2019;16:27.PubMedPubMedCentralCrossRef Jovanov P, Đorđić V, Obradović B, et al. Prevalence, knowledge and attitudes towards using sports supplements among young athletes. J Int Soc Sports Nutr. 2019;16:27.PubMedPubMedCentralCrossRef
25.
go back to reference Wang X, Chen Y, Liu Y, et al. Reporting items for systematic reviews and meta-analyses of acupuncture: the prisma for acupuncture checklist. BMC Complement Altern Med. 2019;19:208.PubMedPubMedCentralCrossRef Wang X, Chen Y, Liu Y, et al. Reporting items for systematic reviews and meta-analyses of acupuncture: the prisma for acupuncture checklist. BMC Complement Altern Med. 2019;19:208.PubMedPubMedCentralCrossRef
26.
go back to reference Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, et al. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review. Nutrients. 2020;12. Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, et al. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review. Nutrients. 2020;12.
27.
go back to reference Law MS, D. Pollock, N. Letts, L. Bosch, J. Westmorland, M.: Guidelines for critical review form—quantitative studies 1998. Hamilton, ON, Canada: McMaster University; 2008(Series Editor). Law MS, D. Pollock, N. Letts, L. Bosch, J. Westmorland, M.: Guidelines for critical review form—quantitative studies 1998. Hamilton, ON, Canada: McMaster University; 2008(Series Editor).
28.
go back to reference Mero AA, Hirvonen P, Saarela J, et al. Effect of sodium bicarbonate and beta-alanine supplementation on maximal sprint swimming. J Int Soc Sports Nutr. 2013;10:52.PubMedPubMedCentralCrossRef Mero AA, Hirvonen P, Saarela J, et al. Effect of sodium bicarbonate and beta-alanine supplementation on maximal sprint swimming. J Int Soc Sports Nutr. 2013;10:52.PubMedPubMedCentralCrossRef
29.
go back to reference Oliveira LF, de Salles PV, Nemezio K, et al. Chronic lactate supplementation does not improve blood buffering capacity and repeated high-intensity exercise. Scand J Med Sci Sports. 2017;27:1231–9.PubMedCrossRef Oliveira LF, de Salles PV, Nemezio K, et al. Chronic lactate supplementation does not improve blood buffering capacity and repeated high-intensity exercise. Scand J Med Sci Sports. 2017;27:1231–9.PubMedCrossRef
30.
go back to reference Correia-Oliveira CR, Lopes-Silva JP, Bertuzzi R, et al. Acidosis, but not alkalosis, affects anaerobic metabolism and performance in a 4-km time trial. Med Sci Sports Exerc. 2017;49:1899–910.PubMedCrossRef Correia-Oliveira CR, Lopes-Silva JP, Bertuzzi R, et al. Acidosis, but not alkalosis, affects anaerobic metabolism and performance in a 4-km time trial. Med Sci Sports Exerc. 2017;49:1899–910.PubMedCrossRef
31.
go back to reference Thomas C, Delfour-Peyrethon R, Bishop DJ, et al. Effects of pre-exercise alkalosis on the decrease in vo2 at the end of all-out exercise. Eur J Appl Physiol. 2016;116:85–95.PubMedCrossRef Thomas C, Delfour-Peyrethon R, Bishop DJ, et al. Effects of pre-exercise alkalosis on the decrease in vo2 at the end of all-out exercise. Eur J Appl Physiol. 2016;116:85–95.PubMedCrossRef
32.
go back to reference Zabala M, Peinado AB, Calderón FJ, et al. Bicarbonate ingestion has no ergogenic effect on consecutive all out sprint tests in bmx elite cyclists. Eur J Appl Physiol. 2011;111:3127–34.PubMedCrossRef Zabala M, Peinado AB, Calderón FJ, et al. Bicarbonate ingestion has no ergogenic effect on consecutive all out sprint tests in bmx elite cyclists. Eur J Appl Physiol. 2011;111:3127–34.PubMedCrossRef
33.
go back to reference Peinado AB, Holgado D, Luque-Casado A, et al. Effect of induced alkalosis on performance during a field-simulated bmx cycling competition. J Sci Med Sport. 2019;22:335–41.PubMedCrossRef Peinado AB, Holgado D, Luque-Casado A, et al. Effect of induced alkalosis on performance during a field-simulated bmx cycling competition. J Sci Med Sport. 2019;22:335–41.PubMedCrossRef
34.
go back to reference Joyce S, Minahan C, Anderson M, et al. Acute and chronic loading of sodium bicarbonate in highly trained swimmers. Eur J Appl Physiol. 2012;112:461–9.PubMedCrossRef Joyce S, Minahan C, Anderson M, et al. Acute and chronic loading of sodium bicarbonate in highly trained swimmers. Eur J Appl Physiol. 2012;112:461–9.PubMedCrossRef
35.
go back to reference De Araujo Dias GF, Eira Silva VD, Painelli VDS, et al.: (in)consistencies in responses to sodium bicarbonate supplementation: A randomised, repeated measures, counterbalanced and double-blind study. PLoS One 2015, 10. De Araujo Dias GF, Eira Silva VD, Painelli VDS, et al.: (in)consistencies in responses to sodium bicarbonate supplementation: A randomised, repeated measures, counterbalanced and double-blind study. PLoS One 2015, 10.
36.
go back to reference Freis T, Hecksteden A, Such U, et al. Effect of sodium bicarbonate on prolonged running performance: a randomized, double-blind, cross-over study. PLoS One. 2017;12:e0182158.PubMedPubMedCentralCrossRef Freis T, Hecksteden A, Such U, et al. Effect of sodium bicarbonate on prolonged running performance: a randomized, double-blind, cross-over study. PLoS One. 2017;12:e0182158.PubMedPubMedCentralCrossRef
39.
go back to reference Mündel T: Sodium bicarbonate ingestion improves repeated high-intensity cycling performance in the heat. Temperature (Austin, Tex) 2018, 5:343–347. Mündel T: Sodium bicarbonate ingestion improves repeated high-intensity cycling performance in the heat. Temperature (Austin, Tex) 2018, 5:343–347.
40.
go back to reference Carr BM, Webster MJ, Boyd JC, et al. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appl Physiol. 2013;113:743–52.PubMedCrossRef Carr BM, Webster MJ, Boyd JC, et al. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance. Eur J Appl Physiol. 2013;113:743–52.PubMedCrossRef
41.
go back to reference Saunders B, Sale C, Harris RC, et al. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9:627–32.PubMedCrossRef Saunders B, Sale C, Harris RC, et al. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9:627–32.PubMedCrossRef
42.
go back to reference Hobson RM, Harris RC, Martin D, et al. Effect of sodium bicarbonate supplementation on 2000-m rowing performance. Int J Sports Physiol Perform. 2014;9:139–44.PubMedCrossRef Hobson RM, Harris RC, Martin D, et al. Effect of sodium bicarbonate supplementation on 2000-m rowing performance. Int J Sports Physiol Perform. 2014;9:139–44.PubMedCrossRef
43.
go back to reference Siegler JC, Gleadall-Siddall DO. Sodium bicarbonate ingestion and repeated swim sprint performance. J Strength Cond Res. 2010;24:3105–11.PubMedCrossRef Siegler JC, Gleadall-Siddall DO. Sodium bicarbonate ingestion and repeated swim sprint performance. J Strength Cond Res. 2010;24:3105–11.PubMedCrossRef
44.
go back to reference Deb SK, Gough LA, Sparks SA, et al. Determinants of curvature constant (w') of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. Eur J Appl Physiol. 2017;117:901–12.PubMedPubMedCentralCrossRef Deb SK, Gough LA, Sparks SA, et al. Determinants of curvature constant (w') of the power duration relationship under normoxia and hypoxia: the effect of pre-exercise alkalosis. Eur J Appl Physiol. 2017;117:901–12.PubMedPubMedCentralCrossRef
45.
go back to reference Smith GI, Jeukendrup AE, Ball D. The effect of sodium acetate ingestion on the metabolic response to prolonged moderate-intensity exercise in humans. Int J Sport Nutr Exerc Metab. 2013;23:357–68.PubMedCrossRef Smith GI, Jeukendrup AE, Ball D. The effect of sodium acetate ingestion on the metabolic response to prolonged moderate-intensity exercise in humans. Int J Sport Nutr Exerc Metab. 2013;23:357–68.PubMedCrossRef
46.
go back to reference Mueller SM, Gehrig SM, Frese S, et al. Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. J Int Soc Sport Nutr. 2013;10:16.CrossRef Mueller SM, Gehrig SM, Frese S, et al. Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. J Int Soc Sport Nutr. 2013;10:16.CrossRef
47.
go back to reference Egger F, Meyer T, Such U, et al. Effects of sodium bicarbonate on high-intensity endurance performance in cyclists: a double-blind, randomized cross-over trial. PLoS One. 2014;9. Egger F, Meyer T, Such U, et al. Effects of sodium bicarbonate on high-intensity endurance performance in cyclists: a double-blind, randomized cross-over trial. PLoS One. 2014;9.
48.
go back to reference Macutkiewicz D, Sunderland C. Sodium bicarbonate supplementation does not improve elite women's team sport running or field hockey skill performance. Physiol Rep. 2018;6:e13818.PubMedPubMedCentralCrossRef Macutkiewicz D, Sunderland C. Sodium bicarbonate supplementation does not improve elite women's team sport running or field hockey skill performance. Physiol Rep. 2018;6:e13818.PubMedPubMedCentralCrossRef
49.
go back to reference Wu CL, Shih MC, Yang CC, et al. Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match. J Int Soc Sport Nutr. 2010;7:33.CrossRef Wu CL, Shih MC, Yang CC, et al. Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match. J Int Soc Sport Nutr. 2010;7:33.CrossRef
50.
go back to reference McNaughton LR, Siegler J, Midgley A. Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep. 2008;7:230–6.PubMedCrossRef McNaughton LR, Siegler J, Midgley A. Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep. 2008;7:230–6.PubMedCrossRef
51.
go back to reference Peart DJ, Siegler JC, Vince RV. Practical recommendations for coaches and athletes: a meta-analysis of sodium bicarbonate use for athletic performance. J Strength Cond Res. 2012;26:1975–83.PubMedCrossRef Peart DJ, Siegler JC, Vince RV. Practical recommendations for coaches and athletes: a meta-analysis of sodium bicarbonate use for athletic performance. J Strength Cond Res. 2012;26:1975–83.PubMedCrossRef
52.
go back to reference Lopes-Silva JP, Reale R, Franchini E. Acute and chronic effect of sodium bicarbonate ingestion on Wingate test performance: a systematic review and meta-analysis. J Sports Sci. 2019;37:762–71.PubMedCrossRef Lopes-Silva JP, Reale R, Franchini E. Acute and chronic effect of sodium bicarbonate ingestion on Wingate test performance: a systematic review and meta-analysis. J Sports Sci. 2019;37:762–71.PubMedCrossRef
53.
go back to reference Lopes-Silva JP, Choo HC, Franchini E, et al. Isolated ingestion of caffeine and sodium bicarbonate on repeated sprint performance: a systematic review and meta-analysis. J Sci Med Sport. 2019;22:962–72.PubMedCrossRef Lopes-Silva JP, Choo HC, Franchini E, et al. Isolated ingestion of caffeine and sodium bicarbonate on repeated sprint performance: a systematic review and meta-analysis. J Sci Med Sport. 2019;22:962–72.PubMedCrossRef
54.
go back to reference Gough LA, Rimmer S, Sparks SA, et al. Post-exercise supplementation of sodium bicarbonate improves acid base balance recovery and subsequent high-intensity boxing specific performance. Front Nutr. 2019;6:155.PubMedPubMedCentralCrossRef Gough LA, Rimmer S, Sparks SA, et al. Post-exercise supplementation of sodium bicarbonate improves acid base balance recovery and subsequent high-intensity boxing specific performance. Front Nutr. 2019;6:155.PubMedPubMedCentralCrossRef
55.
go back to reference Durkalec-Michalski K, Nowaczyk PM, Adrian J, et al. The influence of progressive-chronic and acute sodium bicarbonate supplementation on anaerobic power and specific performance in team sports: a randomized, double-blind, placebo-controlled crossover study. Nutrition & Metabolism. 2020;17:1–15.CrossRef Durkalec-Michalski K, Nowaczyk PM, Adrian J, et al. The influence of progressive-chronic and acute sodium bicarbonate supplementation on anaerobic power and specific performance in team sports: a randomized, double-blind, placebo-controlled crossover study. Nutrition & Metabolism. 2020;17:1–15.CrossRef
56.
go back to reference Edge J, Bishop D, and Goodman C: Effects of chronic nahco3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol (1985) 2006, 101:918–25. Edge J, Bishop D, and Goodman C: Effects of chronic nahco3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol (1985) 2006, 101:918–25.
57.
go back to reference Kahle LE, Kelly PV, Eliot KA, et al. Acute sodium bicarbonate loading has negligible effects on resting and exercise blood pressure but causes gastrointestinal distress. Nutr Res. 2013;33:479–86.PubMedPubMedCentralCrossRef Kahle LE, Kelly PV, Eliot KA, et al. Acute sodium bicarbonate loading has negligible effects on resting and exercise blood pressure but causes gastrointestinal distress. Nutr Res. 2013;33:479–86.PubMedPubMedCentralCrossRef
58.
go back to reference Siegler JC, Marshall PW, Bray J, et al. Sodium bicarbonate supplementation and ingestion timing: does it matter? J Strength Cond Res. 2012;26:1953–8.PubMedCrossRef Siegler JC, Marshall PW, Bray J, et al. Sodium bicarbonate supplementation and ingestion timing: does it matter? J Strength Cond Res. 2012;26:1953–8.PubMedCrossRef
59.
go back to reference De Franca E, Xavier AP, Dias IR, et al. Fractionated sodium bicarbonate coingestion with carbohydrate increase performance without gastrointestinal discomfort. Rbne. 2015;9:437–46. De Franca E, Xavier AP, Dias IR, et al. Fractionated sodium bicarbonate coingestion with carbohydrate increase performance without gastrointestinal discomfort. Rbne. 2015;9:437–46.
60.
go back to reference Hilton NP, Leach NK, Craig MM, et al. Enteric-coated sodium bicarbonate attenuates gastrointestinal side-effects. International Journal of Sport Nutrition & Exercise Metabolism. 2020;30:62–8.CrossRef Hilton NP, Leach NK, Craig MM, et al. Enteric-coated sodium bicarbonate attenuates gastrointestinal side-effects. International Journal of Sport Nutrition & Exercise Metabolism. 2020;30:62–8.CrossRef
61.
go back to reference Grgic J, Garofolini A, Pickering C, et al. Isolated effects of caffeine and sodium bicarbonate ingestion on performance in the yo-yo test: a systematic review and meta-analysis. J Sci Med Sport. 2020;23:41–7.PubMedCrossRef Grgic J, Garofolini A, Pickering C, et al. Isolated effects of caffeine and sodium bicarbonate ingestion on performance in the yo-yo test: a systematic review and meta-analysis. J Sci Med Sport. 2020;23:41–7.PubMedCrossRef
62.
go back to reference Ferreira LHB, Smolarek AC, Chilibeck PD, et al.: High doses of sodium bicarbonate increase lactate levels and delay exhaustion in a cycling performance test. Nutrition (Burbank, Los Angeles County, Calif) 2019, 60:94–99. Ferreira LHB, Smolarek AC, Chilibeck PD, et al.: High doses of sodium bicarbonate increase lactate levels and delay exhaustion in a cycling performance test. Nutrition (Burbank, Los Angeles County, Calif) 2019, 60:94–99.
Metadata
Title
Effect of sodium bicarbonate contribution on energy metabolism during exercise: a systematic review and meta-analysis
Authors
Jorge Lorenzo Calvo
Huanteng Xu
Daniel Mon-López
Helios Pareja-Galeano
Sergio Lorenzo Jiménez
Publication date
01-12-2021
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-021-00410-y

Other articles of this Issue 1/2021

Journal of the International Society of Sports Nutrition 1/2021 Go to the issue