Skip to main content
Top
Published in: European Journal of Applied Physiology 3/2013

01-03-2013 | Original Article

Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance

Authors: Benjamin M. Carr, Michael J. Webster, Joseph C. Boyd, Geoffrey M. Hudson, Timothy P. Scheett

Published in: European Journal of Applied Physiology | Issue 3/2013

Login to get access

Abstract

The aim of the present study was to examine the effects of sodium bicarbonate (NaHCO3) administration on lower-body, hypertrophy-type resistance exercise (HRE). Using a double-blind randomized counterbalanced design, 12 resistance-trained male participants (mean ± SD; age = 20.3 ± 2 years, mass = 88.3 ± 13.2 kg, height = 1.80 ± 0.07 m) ingested 0.3 g kg−1 of NaHCO3 or placebo 60 min before initiation of an HRE regimen. The protocol employed multiple exercises: squat, leg press, and knee extension, utilizing four sets each, with 10–12 repetition-maximum loads and short rest periods between sets. Exercise performance was determined by total repetitions generated during each exercise, total accumulated repetitions, and a performance test involving a fifth set of knee extensions to failure. Arterialized capillary blood was collected via fingertip puncture at four time points and analyzed for pH, [HCO3 ], base excess (BE), and lactate [Lac]. NaHCO3 supplementation induced a significant alkaline state (pH: NaHCO3: 7.49 ± 0.02, placebo: 7.42 ± 0.02, P < 0.05; [HCO3 ]: NaHCO3: 31.50 ± 2.59, placebo: 25.38 ± 1.78 mEq L−1, P < 0.05; BE: NaHCO3: 7.92 ± 2.57, placebo: 1.08 ± 2.11 mEq L−1, P < 0.05). NaHCO3 administration resulted in significantly more total repetitions than placebo (NaHCO3: 139.8 ± 13.2, placebo: 134.4 ± 13.5), as well as significantly greater blood [Lac] after the exercise protocol (NaHCO3: 17.92 ± 2.08, placebo: 15.55 ± 2.50 mM, P < 0.05). These findings demonstrate ergogenic efficacy for NaHCO3 during HRE and warrant further investigation into chronic training applications.
Literature
go back to reference ACSM (2009) Position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708CrossRef ACSM (2009) Position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708CrossRef
go back to reference Allen DG, Westerblad H, Lannergren J (1995) The role of intracellular acidosis in muscle fatigue. In: Gandevia SC, Enoka RM, McComas AJ, Stuart DG, Thomas CK (eds) Advances in experimental medicine and biology. Plenum Press, New York, pp 57–68 Allen DG, Westerblad H, Lannergren J (1995) The role of intracellular acidosis in muscle fatigue. In: Gandevia SC, Enoka RM, McComas AJ, Stuart DG, Thomas CK (eds) Advances in experimental medicine and biology. Plenum Press, New York, pp 57–68
go back to reference Artioli GG, Gualano B, Coelho DF, Benatti FB, Gailey AW, Lancha AH Jr (2007) Does sodium-bicarbonate ingestion improve simulated Judo performance? Int J Sport Nutr Exerc Metab 17(2):206–217PubMed Artioli GG, Gualano B, Coelho DF, Benatti FB, Gailey AW, Lancha AH Jr (2007) Does sodium-bicarbonate ingestion improve simulated Judo performance? Int J Sport Nutr Exerc Metab 17(2):206–217PubMed
go back to reference Bird SP, Tarpenning KM, Marino FE (2005) Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sport Med 35(10):841–851CrossRef Bird SP, Tarpenning KM, Marino FE (2005) Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sport Med 35(10):841–851CrossRef
go back to reference Chin ER, Allen DG (1998) The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 512(3):831–840PubMedCrossRef Chin ER, Allen DG (1998) The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 512(3):831–840PubMedCrossRef
go back to reference Coombes J, McNaughton LR (1993) Effects of bicarbonate ingestion on leg strength and power during isokinetic knee flexion and extension. J Strength Cond Res 7(4):241–249 Coombes J, McNaughton LR (1993) Effects of bicarbonate ingestion on leg strength and power during isokinetic knee flexion and extension. J Strength Cond Res 7(4):241–249
go back to reference Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W (1984) Acid–base balance during repeated bouts of exercise: influence of HCO3. Int J Sports Med 5(5):228–231PubMedCrossRef Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W (1984) Acid–base balance during repeated bouts of exercise: influence of HCO3. Int J Sports Med 5(5):228–231PubMedCrossRef
go back to reference Dascombe BJ, Reaburn PR, Sirotic AC, Coutts AJ (2007) The reliability of the i-STAT clinical portable analyser. J Sci Med Sport 10(3):135–140PubMedCrossRef Dascombe BJ, Reaburn PR, Sirotic AC, Coutts AJ (2007) The reliability of the i-STAT clinical portable analyser. J Sci Med Sport 10(3):135–140PubMedCrossRef
go back to reference de Salles BF, Simao R, Miranda F, Novaes Jda S, Lemos A, Willardson JM (2009) Rest interval between sets in strength training. Sport Med 39(9):765–777CrossRef de Salles BF, Simao R, Miranda F, Novaes Jda S, Lemos A, Willardson JM (2009) Rest interval between sets in strength training. Sport Med 39(9):765–777CrossRef
go back to reference Douroudos I, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A et al (2006) Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc 38(10):1746–1753PubMedCrossRef Douroudos I, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A et al (2006) Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc 38(10):1746–1753PubMedCrossRef
go back to reference Edge J, Bishop D, Goodman C (2006) Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol 101(3):918–925PubMedCrossRef Edge J, Bishop D, Goodman C (2006) Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol 101(3):918–925PubMedCrossRef
go back to reference Elias AN, Wilson AF, Naqvi S, Pandian MR (1997) Effects of blood pH and blood lactate on growth hormone, prolactin, and gonadotropin release after acute exercise in male volunteers. Proc Soc Exp Biol Med 214(2):156–160PubMed Elias AN, Wilson AF, Naqvi S, Pandian MR (1997) Effects of blood pH and blood lactate on growth hormone, prolactin, and gonadotropin release after acute exercise in male volunteers. Proc Soc Exp Biol Med 214(2):156–160PubMed
go back to reference Epley B (1985) Poundage chart. In: Boyd Epley Workout. Body Enterprises, Lincoln, NE Epley B (1985) Poundage chart. In: Boyd Epley Workout. Body Enterprises, Lincoln, NE
go back to reference Fleck SJ, Kraemer WJ (1988) Resistance training: basic principles (part 1 of 4). Physician Sports Med 16:160–171 Fleck SJ, Kraemer WJ (1988) Resistance training: basic principles (part 1 of 4). Physician Sports Med 16:160–171
go back to reference Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679PubMedCrossRef Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679PubMedCrossRef
go back to reference Gao J, Costill DL, Horswill CA, Park SH (1988) Sodium bicarbonate ingestion improves performance in interval swimming. Eur J Appl Physiol 58(1/2):171–174CrossRef Gao J, Costill DL, Horswill CA, Park SH (1988) Sodium bicarbonate ingestion improves performance in interval swimming. Eur J Appl Physiol 58(1/2):171–174CrossRef
go back to reference Godfrey RJ, Madgwick Z, Whyte GP (2003) The exercise-induced growth hormone response in athletes. Sports Med 33(8):599–613PubMedCrossRef Godfrey RJ, Madgwick Z, Whyte GP (2003) The exercise-induced growth hormone response in athletes. Sports Med 33(8):599–613PubMedCrossRef
go back to reference Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttger HG (1994) Effect of acid–base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76(2):821–829PubMed Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttger HG (1994) Effect of acid–base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76(2):821–829PubMed
go back to reference Gotshalk LA, Loebel C, Nindl BC et al (1997) Hormonal responses of multi-set versus single set heavy resistance exercise protocols. Can J Appl Physiol 22:244–255PubMedCrossRef Gotshalk LA, Loebel C, Nindl BC et al (1997) Hormonal responses of multi-set versus single set heavy resistance exercise protocols. Can J Appl Physiol 22:244–255PubMedCrossRef
go back to reference Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 41(2):E316–E329 Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 41(2):E316–E329
go back to reference Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD (1992) Growth hormone, IGF-I, and testosterone responses to resistive exercise. Med Sci Sports Exerc 24(12):1346–1352PubMed Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD (1992) Growth hormone, IGF-I, and testosterone responses to resistive exercise. Med Sci Sports Exerc 24(12):1346–1352PubMed
go back to reference Kraemer WJ, Harman FS, Vos NH et al (2000) Effects of exercise and alkalosis on serum insulin-like growth factor I and IGF-binding protein-3. Can J Appl Physiol 25(2):127–137PubMedCrossRef Kraemer WJ, Harman FS, Vos NH et al (2000) Effects of exercise and alkalosis on serum insulin-like growth factor I and IGF-binding protein-3. Can J Appl Physiol 25(2):127–137PubMedCrossRef
go back to reference Lambert CP, Flynn MG (2002) Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med 32(8):511–522PubMedCrossRef Lambert CP, Flynn MG (2002) Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med 32(8):511–522PubMedCrossRef
go back to reference Linnamo V, Pakarinen A, Komi PV, Kraemer WJ, Häkkinen K (2005) Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res 19(3):566–571 Linnamo V, Pakarinen A, Komi PV, Kraemer WJ, Häkkinen K (2005) Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res 19(3):566–571
go back to reference Matson LG, Tran ZV (1993) Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr 3(1):2–28PubMed Matson LG, Tran ZV (1993) Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr 3(1):2–28PubMed
go back to reference Maughan RJ, Leiper JB, Litchfield PE (1986) The effects of induced acidosis and alkalosis on isometric endurance capacity in man. In: Dotson CO, Humphrey JH (eds) Exercise physiology: current selected research, vol 2. AMS Press, New York, pp 73–82 Maughan RJ, Leiper JB, Litchfield PE (1986) The effects of induced acidosis and alkalosis on isometric endurance capacity in man. In: Dotson CO, Humphrey JH (eds) Exercise physiology: current selected research, vol 2. AMS Press, New York, pp 73–82
go back to reference McKenzie DC, Coutts KD, Stirling DR, Hoeben HH, Kuzara G (1986) Maximal work production following two levels of artificially induced metabolic alkalosis. J Sport Sci 4(1):35–38CrossRef McKenzie DC, Coutts KD, Stirling DR, Hoeben HH, Kuzara G (1986) Maximal work production following two levels of artificially induced metabolic alkalosis. J Sport Sci 4(1):35–38CrossRef
go back to reference McNaughton L, Siegler J, Midgley A (2008) Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep 7(4):230–236PubMed McNaughton L, Siegler J, Midgley A (2008) Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep 7(4):230–236PubMed
go back to reference Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75(4):1654–1660PubMed Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75(4):1654–1660PubMed
go back to reference Messonnier L, Kristensen M, Juel C, Denis C (2007) Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol 102(5):1936–1944PubMedCrossRef Messonnier L, Kristensen M, Juel C, Denis C (2007) Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol 102(5):1936–1944PubMedCrossRef
go back to reference Portington KJ, Pascoe DD, Webster MJ, Anderson LH, Rutland RR, Gladden LB (1998) Effect of induced alkalosis on exhaustive leg press performance. Med Sci Sports Exerc 30(4):523–528PubMedCrossRef Portington KJ, Pascoe DD, Webster MJ, Anderson LH, Rutland RR, Gladden LB (1998) Effect of induced alkalosis on exhaustive leg press performance. Med Sci Sports Exerc 30(4):523–528PubMedCrossRef
go back to reference Raymer GH, Marsh GD, Kowalchuk JM, Terry TR (2004) Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 96(6):2050–2056PubMedCrossRef Raymer GH, Marsh GD, Kowalchuk JM, Terry TR (2004) Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 96(6):2050–2056PubMedCrossRef
go back to reference Rico H, Paez E, Aznar L, Hernandez ER, Seco S, Villa LF (2001) Effects of sodium bicarbonate supplementation on axial and peripheral bone mass in rats on strenuous treadmill training exercise. J Bone Miner Metab 19:97–101PubMedCrossRef Rico H, Paez E, Aznar L, Hernandez ER, Seco S, Villa LF (2001) Effects of sodium bicarbonate supplementation on axial and peripheral bone mass in rats on strenuous treadmill training exercise. J Bone Miner Metab 19:97–101PubMedCrossRef
go back to reference Siegler JC, Hirscher K (2010) Sodium bicarbonate ingestion and boxing performance. J Strength Cond Res 24(1):103–108PubMedCrossRef Siegler JC, Hirscher K (2010) Sodium bicarbonate ingestion and boxing performance. J Strength Cond Res 24(1):103–108PubMedCrossRef
go back to reference Siegler JC, Midgley AW, Polman RC, Lever R (2010) Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res 24(9):2551–2557PubMedCrossRef Siegler JC, Midgley AW, Polman RC, Lever R (2010) Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res 24(9):2551–2557PubMedCrossRef
go back to reference Smilios I, Pilianidis T, Karamouzis M, Tokmakidis SP (2003) Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 35(4):644–654PubMedCrossRef Smilios I, Pilianidis T, Karamouzis M, Tokmakidis SP (2003) Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 35(4):644–654PubMedCrossRef
go back to reference Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK (2002) Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 34(4):614–621PubMedCrossRef Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK (2002) Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 34(4):614–621PubMedCrossRef
go back to reference Sutton JR, Jones NL, Toews CJ (1976) Growth hormone secretion in acid–base alterations at rest and during exercise. Clin Sci 50(4):241–247 Sutton JR, Jones NL, Toews CJ (1976) Growth hormone secretion in acid–base alterations at rest and during exercise. Clin Sci 50(4):241–247
go back to reference Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci 61(3):331–338PubMed Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci 61(3):331–338PubMed
go back to reference Tarpenning KM, Wiswell RA, Hawkins SA, Marcell TJ (2001) Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sport 4(4):431–446PubMedCrossRef Tarpenning KM, Wiswell RA, Hawkins SA, Marcell TJ (2001) Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sport 4(4):431–446PubMedCrossRef
go back to reference Trivedi B, Danforth WH (1966) Effects of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241:4110–4114PubMed Trivedi B, Danforth WH (1966) Effects of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241:4110–4114PubMed
go back to reference Verbitsky O, Mizrahi J, Levin M, Isakov E (1997) Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol 83(2):333–337PubMed Verbitsky O, Mizrahi J, Levin M, Isakov E (1997) Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol 83(2):333–337PubMed
go back to reference Wahl P, Zinner C, Achtzehn S, Bloch W, Mester J (2010) Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm IGF Res 20(5):380–385PubMedCrossRef Wahl P, Zinner C, Achtzehn S, Bloch W, Mester J (2010) Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm IGF Res 20(5):380–385PubMedCrossRef
go back to reference Webster MJ, Webster MN, Crawford RE, Gladden LB (1993) Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sport Exerc 25(8):960–965CrossRef Webster MJ, Webster MN, Crawford RE, Gladden LB (1993) Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sport Exerc 25(8):960–965CrossRef
go back to reference Zajac A, Cholewa J, Poprzecki S, Waskiewicz Z, Langfort J (2009) Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J Sports Sci Med 8(1):45–50 Zajac A, Cholewa J, Poprzecki S, Waskiewicz Z, Langfort J (2009) Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J Sports Sci Med 8(1):45–50
go back to reference Zavorsky GS, Lands LC, Schneider W, Carli F (2005) Comparison of fingertip to arterial blood samples at rest and during exercise. Clin J Sport Med 15(4):263–270PubMedCrossRef Zavorsky GS, Lands LC, Schneider W, Carli F (2005) Comparison of fingertip to arterial blood samples at rest and during exercise. Clin J Sport Med 15(4):263–270PubMedCrossRef
Metadata
Title
Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance
Authors
Benjamin M. Carr
Michael J. Webster
Joseph C. Boyd
Geoffrey M. Hudson
Timothy P. Scheett
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 3/2013
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-012-2484-8

Other articles of this Issue 3/2013

European Journal of Applied Physiology 3/2013 Go to the issue