Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-01-2017 | Research

Use of self-gated radial cardiovascular magnetic resonance to detect and classify arrhythmias (atrial fibrillation and premature ventricular contraction)

Authors: Eve Piekarski, Teodora Chitiboi, Rebecca Ramb, Li Feng, Leon Axel

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP).

Methods

One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC.

Results

Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10−9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89.

Conclusions

Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
Literature
2.
go back to reference Liu J, Spincemaille P, Codella NCF, Nguyen TD, Prince MR, Wang Y. Respiratory and Cardiac Self-Gated Free-Breathing Cardiac CINE Imaging With Multiecho 3D Hybrid Radial SSFP Acquisition. Magn Reson Med. 2010;63:1230–7.CrossRefPubMedPubMedCentral Liu J, Spincemaille P, Codella NCF, Nguyen TD, Prince MR, Wang Y. Respiratory and Cardiac Self-Gated Free-Breathing Cardiac CINE Imaging With Multiecho 3D Hybrid Radial SSFP Acquisition. Magn Reson Med. 2010;63:1230–7.CrossRefPubMedPubMedCentral
3.
go back to reference Thompson RB, McVeigh ER. Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magn Reson Med. 2006;56(6):1301–10.CrossRefPubMedPubMedCentral Thompson RB, McVeigh ER. Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magn Reson Med. 2006;56(6):1301–10.CrossRefPubMedPubMedCentral
4.
go back to reference Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics—2016 Update. A Report from the American Heart Association. Circulation. 2016;133(4):e38–60.CrossRefPubMed Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics—2016 Update. A Report from the American Heart Association. Circulation. 2016;133(4):e38–60.CrossRefPubMed
5.
go back to reference Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion-State Dimensions Using Compressed Sensing. Magn Reson Med. 2016;75(2):775–88.CrossRefPubMed Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion-State Dimensions Using Compressed Sensing. Magn Reson Med. 2016;75(2):775–88.CrossRefPubMed
6.
go back to reference Feng X, Salerno M, Kramer CM, Meyer CH. Non-Cartesian balanced steady-state free precession pulse sequences for real-time cardiac MRI. Magn Reson Med. 2016;75(4):1546–55.CrossRefPubMed Feng X, Salerno M, Kramer CM, Meyer CH. Non-Cartesian balanced steady-state free precession pulse sequences for real-time cardiac MRI. Magn Reson Med. 2016;75(4):1546–55.CrossRefPubMed
7.
go back to reference Moran CJ, Brodsky EK, Bancroft LH, Reeder SB, Yu H, Kijowski R, Engel D, et al. High-resolution 3D radial bSSFP with IDEAL. Magn Reson Med. 2014;71(1):95–104.CrossRefPubMed Moran CJ, Brodsky EK, Bancroft LH, Reeder SB, Yu H, Kijowski R, Engel D, et al. High-resolution 3D radial bSSFP with IDEAL. Magn Reson Med. 2014;71(1):95–104.CrossRefPubMed
8.
go back to reference Saloner D, Liu J, Haraldsson H. MR physics in practice: how to optimize acquisition quality and time for cardiac MR imaging. Magn Reson Imaging Clin N Am. 2015;23(1):1–6.CrossRefPubMedPubMedCentral Saloner D, Liu J, Haraldsson H. MR physics in practice: how to optimize acquisition quality and time for cardiac MR imaging. Magn Reson Imaging Clin N Am. 2015;23(1):1–6.CrossRefPubMedPubMedCentral
9.
go back to reference Wech T, Pickl W, Tran-Gia J, Ritter C, Beer M, Hahn D, et al. Whole-Heart Cine MRI in a Single Breath-Hold – A Compressed Sensing Accelerated 3D Acquisition Technique for Assessment of Cardiac Function. Rofo. 2014;186(1):37–41.PubMed Wech T, Pickl W, Tran-Gia J, Ritter C, Beer M, Hahn D, et al. Whole-Heart Cine MRI in a Single Breath-Hold – A Compressed Sensing Accelerated 3D Acquisition Technique for Assessment of Cardiac Function. Rofo. 2014;186(1):37–41.PubMed
10.
go back to reference Lustig M, Donoho D, Santos J, Pauly JM. Compressed Sensing MRI. IEEE Signal Process Mag. 2008;25(2):72–82.CrossRef Lustig M, Donoho D, Santos J, Pauly JM. Compressed Sensing MRI. IEEE Signal Process Mag. 2008;25(2):72–82.CrossRef
11.
go back to reference Vincenti G, Monney P, Chaptinel J, Rutz T, Coppo S, Zenge MO, et al. Compressed Sensing Single–Breath-Hold CMR for Fast Quantification of LV Function, Volumes, and Mass. JACC Cardiovasc Imaging. 2014;7(9):882–92.CrossRefPubMed Vincenti G, Monney P, Chaptinel J, Rutz T, Coppo S, Zenge MO, et al. Compressed Sensing Single–Breath-Hold CMR for Fast Quantification of LV Function, Volumes, and Mass. JACC Cardiovasc Imaging. 2014;7(9):882–92.CrossRefPubMed
12.
go back to reference Smith DS, Li X, Abramson RG, Quarles CC, Yankeelov TE, Welch EB. Potential of compressed sensing in quantitative MR imaging of cancer. Cancer Imaging. 2013;13(4):633–44.CrossRefPubMedPubMedCentral Smith DS, Li X, Abramson RG, Quarles CC, Yankeelov TE, Welch EB. Potential of compressed sensing in quantitative MR imaging of cancer. Cancer Imaging. 2013;13(4):633–44.CrossRefPubMedPubMedCentral
13.
go back to reference Lustig M, Donoho D, Sparse PJM, MRI. The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefPubMed Lustig M, Donoho D, Sparse PJM, MRI. The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefPubMed
14.
go back to reference Babacan SD, Peng X, Wang XP, Do MN, Liang ZP. Reference-guided sparsifying transform design for compressive sensing MRI. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5718–21.PubMedPubMedCentral Babacan SD, Peng X, Wang XP, Do MN, Liang ZP. Reference-guided sparsifying transform design for compressive sensing MRI. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5718–21.PubMedPubMedCentral
15.
go back to reference Zibetti MV, and De Pierro AR. Improving compressive sensing in MRI with separate magnitude and phase priors. Multidimens Syst Signal Process 2016; in press, doi: 10.1007/s11045-016-0383-6. Zibetti MV, and De Pierro AR. Improving compressive sensing in MRI with separate magnitude and phase priors. Multidimens Syst Signal Process 2016; in press, doi: 10.​1007/​s11045-016-0383-6.
16.
go back to reference Spincemaille P, Liu J, Nguyen T, Prince MR, Wang Y. Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging. Magn Reson Imaging. 2011;29:861–8.CrossRefPubMedPubMedCentral Spincemaille P, Liu J, Nguyen T, Prince MR, Wang Y. Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging. Magn Reson Imaging. 2011;29:861–8.CrossRefPubMedPubMedCentral
17.
go back to reference Spincemaille P, Nguyen TD, Prince MR, Wang Y. Quantitative study of motion detection performance of center-of-kspace measurements. Proc Intl Soc Mag Reson Med. 2007;15:1826. Spincemaille P, Nguyen TD, Prince MR, Wang Y. Quantitative study of motion detection performance of center-of-kspace measurements. Proc Intl Soc Mag Reson Med. 2007;15:1826.
18.
go back to reference Lustig M, Santos M, Donoho D, Pauly JM. k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity. Conference: 13th Annual Meeting of ISMRM, 06–12 May 2006. Seattle: Washington State Convention & Trade Center; 2006. Lustig M, Santos M, Donoho D, Pauly JM. k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity. Conference: 13th Annual Meeting of ISMRM, 06–12 May 2006. Seattle: Washington State Convention & Trade Center; 2006.
19.
go back to reference Tsipouras MG, Fotiadis DI, Sideris D. An arrhythmia classification system based on the RR-interval signal. Artif Intell Med. 2005;33(3):237–50.CrossRefPubMed Tsipouras MG, Fotiadis DI, Sideris D. An arrhythmia classification system based on the RR-interval signal. Artif Intell Med. 2005;33(3):237–50.CrossRefPubMed
20.
go back to reference Ciaccio EJ, Biviano AB, Gambhir A, Einstein AJ, Garan H. Ventricular Cycle Length Characteristics Estimative of Prolonged RR Interval during Atrial Fibrillation. Pacing Clin Electrophysiol. 2014;37(3):336–44.CrossRefPubMed Ciaccio EJ, Biviano AB, Gambhir A, Einstein AJ, Garan H. Ventricular Cycle Length Characteristics Estimative of Prolonged RR Interval during Atrial Fibrillation. Pacing Clin Electrophysiol. 2014;37(3):336–44.CrossRefPubMed
21.
go back to reference Cuesta P, Lado MJ, Vila XA, Alonso R. Detection of premature ventricular contractions using the RR-interval signal: a simple algorithm for mobile devices. Technol Health Care. 2014;22(4):651–6.PubMed Cuesta P, Lado MJ, Vila XA, Alonso R. Detection of premature ventricular contractions using the RR-interval signal: a simple algorithm for mobile devices. Technol Health Care. 2014;22(4):651–6.PubMed
22.
go back to reference Oster J, Clifford GD. Impact of the presence of noise on RR interval-based atrial fibrillation detection. J Electrocardiol. 2015;48(6):947–51.CrossRefPubMed Oster J, Clifford GD. Impact of the presence of noise on RR interval-based atrial fibrillation detection. J Electrocardiol. 2015;48(6):947–51.CrossRefPubMed
23.
go back to reference Lee SH, Ko HC, Yoon YR. Classification of Ventricular Arrhythmia using a Support Vector Machine based on Morphological Features. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5785–8.PubMed Lee SH, Ko HC, Yoon YR. Classification of Ventricular Arrhythmia using a Support Vector Machine based on Morphological Features. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5785–8.PubMed
24.
go back to reference Karmakar C, Udhayakumar RK, Palaniswami M. Distribution Entropy (DistEn): A Complexity Measure to Detect Arrhythmia from Short Length RR Interval Time Series. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5207–10.PubMed Karmakar C, Udhayakumar RK, Palaniswami M. Distribution Entropy (DistEn): A Complexity Measure to Detect Arrhythmia from Short Length RR Interval Time Series. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5207–10.PubMed
25.
go back to reference Filos D, Chouvarda I, Dakos G, Vassilikos V, Maglaveras N. Two dimensional wavelet energy analysis on a beat to beat basis: application to atrial fibrillation. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:3793–6.PubMed Filos D, Chouvarda I, Dakos G, Vassilikos V, Maglaveras N. Two dimensional wavelet energy analysis on a beat to beat basis: application to atrial fibrillation. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:3793–6.PubMed
26.
go back to reference Tateno K, Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ARR intervals. Med Biol Eng Comput. 2001;39:664–71.CrossRefPubMed Tateno K, Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ARR intervals. Med Biol Eng Comput. 2001;39:664–71.CrossRefPubMed
27.
go back to reference Sarkar S, Ritscher D, Mehra R. A Detector for a chronic implantable atrial tachyarrhythmia monitor. IEEE Trans Biomed Eng. 2008;55(3):1219–24.CrossRefPubMed Sarkar S, Ritscher D, Mehra R. A Detector for a chronic implantable atrial tachyarrhythmia monitor. IEEE Trans Biomed Eng. 2008;55(3):1219–24.CrossRefPubMed
28.
go back to reference Zhang L, Guo T, Xi B, Fan Y, Wang K, Bi J, Wang Y. Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots. Physiol Meas. 2015;36(2):283–301.CrossRefPubMed Zhang L, Guo T, Xi B, Fan Y, Wang K, Bi J, Wang Y. Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots. Physiol Meas. 2015;36(2):283–301.CrossRefPubMed
29.
go back to reference Carrara M, Carozzi L, Moss TJ. Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy. Physiol Meas. 2015;36(9):1873–88.CrossRefPubMed Carrara M, Carozzi L, Moss TJ. Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy. Physiol Meas. 2015;36(9):1873–88.CrossRefPubMed
30.
go back to reference Kapidžić A, Platiša MM, Bojić T, Kalauzi A. Nonlinear properties of cardiac rhythm and respiratory signal under paced breathing in young and middle-aged healthy subjects. Med Eng Phys. 2014;36(12):1577–84.CrossRefPubMed Kapidžić A, Platiša MM, Bojić T, Kalauzi A. Nonlinear properties of cardiac rhythm and respiratory signal under paced breathing in young and middle-aged healthy subjects. Med Eng Phys. 2014;36(12):1577–84.CrossRefPubMed
31.
go back to reference Magtibay K, Beheshti M, Foomany FH, Massé S, Lai PF, Zamiri N, et al. Feature-based MRI data fusion for cardiac arrhythmia studies. Comput Biol Med. 2016;72:13–21.CrossRefPubMed Magtibay K, Beheshti M, Foomany FH, Massé S, Lai PF, Zamiri N, et al. Feature-based MRI data fusion for cardiac arrhythmia studies. Comput Biol Med. 2016;72:13–21.CrossRefPubMed
32.
go back to reference Da Poian G, Bernardini R, Rinaldo R. Separation and Analysis of Fetal-ECG Signals from Compressed Sensed Abdominal ECG Recordings. IEEE Trans Biomed Eng. 2016;63(6):1269–79.CrossRefPubMed Da Poian G, Bernardini R, Rinaldo R. Separation and Analysis of Fetal-ECG Signals from Compressed Sensed Abdominal ECG Recordings. IEEE Trans Biomed Eng. 2016;63(6):1269–79.CrossRefPubMed
33.
go back to reference Huang H, Liu J, Zhu Q, Wang R, Hu G. A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals. Biomed Eng Online. 2014;13:90.CrossRefPubMedPubMedCentral Huang H, Liu J, Zhu Q, Wang R, Hu G. A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals. Biomed Eng Online. 2014;13:90.CrossRefPubMedPubMedCentral
Metadata
Title
Use of self-gated radial cardiovascular magnetic resonance to detect and classify arrhythmias (atrial fibrillation and premature ventricular contraction)
Authors
Eve Piekarski
Teodora Chitiboi
Rebecca Ramb
Li Feng
Leon Axel
Publication date
01-01-2017
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-016-0306-6

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue