Skip to main content
Top
Published in: Journal of Translational Medicine 1/2023

Open Access 01-12-2023 | Research

Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model

Authors: Qian Liu, Jun Liu, Minmei Guo, Tzu-Cheng Sung, Ting Wang, Tao Yu, Zeyu Tian, Guoping Fan, Wencan Wu, Akon Higuchi

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

Background

Retinal degeneration (RD) is a group of disorders on irreversible vision loss. Multiple types of stem cells were used in clinical trials for RD treatment. However, it remains unknown what kinds of stem cells are most effective for the treatment. Therefore, we investigated the subretinal transplantation of several types of stem cells, human adipose-derived stem cells (hADSCs), amniotic fluid stem cells (hAFSCs), bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), induced pluripotent stem cell (hiPSC), and hiPSC-derived retinal pigment epithelium (RPE) cells for protection effects, paracrine effects and treatment efficiency in an RD disease model rats.

Methods

The generation and characterization of these stem cells and hiPSC-derived RPE cells were performed before transplantation. The stem cells or hiPSC-derived RPE cell suspension labelled with CellTracker Green to detect transplanted cells were delivered into the subretinal space of 3-week-old RCS rats. The control group received subretinal PBS injection or non-injection. A series of detections including fundus photography, optomotor response (OMR) evaluations, light–dark box testing, electroretinography (ERG), and hematoxylin and eosin (HE) staining of retinal sections were conducted after subretinal injection of the cells.

Results

Each stem cell, hiPSC-derived RPE cell or PBS (blank experiment) was successfully transplanted into at least six RCS rats subretinally. Compared with the control rats, RCS rats subjected to subretinal transplantation of any stem cells except hiPSCs showed higher ERG waves (p < 0.05) and quantitative OMR (qOMR) index values (hADSCs: 1.166, hAFSCs: 1.249, hBMSCs: 1.098, hDPSCs: 1.238, hiPSCs: 1.208, hiPSC-RPE cells: 1.294, non-injection: 1.03, PBS: 1.06), which indicated better visual function, at 4 weeks post-injection. However, only rats that received hiPSC-derived RPE cells maintained their visual function at 8 weeks post-injection (p < 0.05). The outer nuclear layer thickness observed in histological sections after HE staining showed the same pattern as the ERG and qOMR results.

Conclusions

Compared to hiPSC-derived RPE cells, adult and fetal stem cells yielded improvements in visual function for up to 4 weeks post-injection; this outcome was mainly based on the paracrine effects of several types of growth factors secreted by the stem cells. Patients with RD will benefit from the stem cell therapy.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.PubMedCrossRef Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.PubMedCrossRef
3.
go back to reference Huang XF, Huang F, Wu KC, Wu J, Chen J, Pang CP, et al. Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med. 2015;17(4):271–8.PubMedCrossRef Huang XF, Huang F, Wu KC, Wu J, Chen J, Pang CP, et al. Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med. 2015;17(4):271–8.PubMedCrossRef
4.
go back to reference Xu Y, Guan L, Shen T, Zhang J, Xiao X, Jiang H, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.PubMedCrossRef Xu Y, Guan L, Shen T, Zhang J, Xiao X, Jiang H, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.PubMedCrossRef
5.
go back to reference Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56.PubMedCrossRef Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56.PubMedCrossRef
6.
go back to reference Rosenblatt TR, Vail D, Saroj N, Boucher N, Moshfeghi DM, Moshfeghi AA. Increasing incidence and prevalence of common retinal diseases in retina practices across the United States. Ophthalmic Surg Lasers Imaging Retina. 2021;52(1):29–36.PubMedCrossRef Rosenblatt TR, Vail D, Saroj N, Boucher N, Moshfeghi DM, Moshfeghi AA. Increasing incidence and prevalence of common retinal diseases in retina practices across the United States. Ophthalmic Surg Lasers Imaging Retina. 2021;52(1):29–36.PubMedCrossRef
7.
go back to reference Binate G, Ganbarov K. Biological activity of chalcones as carbonyl compound derivatives. Adv Biol Earth Sci. 2023;8(1):19–26. Binate G, Ganbarov K. Biological activity of chalcones as carbonyl compound derivatives. Adv Biol Earth Sci. 2023;8(1):19–26.
8.
go back to reference Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res. 2022;89:101029.PubMedCrossRef Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res. 2022;89:101029.PubMedCrossRef
12.
go back to reference Ramazanli V. Effect of pH and temperature on the synthesis of silver nano particles extracted from olive leaf. Adv Biol Earth Sci. 2021;6(2):169–73. Ramazanli V. Effect of pH and temperature on the synthesis of silver nano particles extracted from olive leaf. Adv Biol Earth Sci. 2021;6(2):169–73.
13.
go back to reference Higuchi A, Kumar SS, Benelli G, Alarfaj AA, Munusamy MA, Umezawa A, et al. Stem cell therapies for reversing vision loss. Trends Biotechnol. 2017;35(11):1102–17.PubMedCrossRef Higuchi A, Kumar SS, Benelli G, Alarfaj AA, Munusamy MA, Umezawa A, et al. Stem cell therapies for reversing vision loss. Trends Biotechnol. 2017;35(11):1102–17.PubMedCrossRef
14.
go back to reference Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;22(6):834–49.PubMedPubMedCentralCrossRef Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;22(6):834–49.PubMedPubMedCentralCrossRef
15.
go back to reference Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11(475):eaat5580.PubMedPubMedCentralCrossRef Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11(475):eaat5580.PubMedPubMedCentralCrossRef
16.
go back to reference Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.PubMedCrossRef Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.PubMedCrossRef
17.
go back to reference Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.PubMedCrossRef Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.PubMedCrossRef
18.
go back to reference da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–37.PubMedCrossRef da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328–37.PubMedCrossRef
19.
go back to reference Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.PubMedCrossRef Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.PubMedCrossRef
20.
go back to reference Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765–75.PubMedCrossRef Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765–75.PubMedCrossRef
21.
go back to reference Li SY, Liu Y, Wang L, Wang F, Zhao TT, Li QY, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years’ follow-up. Cell Prolif. 2021;54(9):e13100.PubMedPubMedCentralCrossRef Li SY, Liu Y, Wang L, Wang F, Zhao TT, Li QY, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years’ follow-up. Cell Prolif. 2021;54(9):e13100.PubMedPubMedCentralCrossRef
22.
go back to reference Sung Y, Lee MJ, Choi J, Jung SY, Chong SY, Sung JH, et al. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br J Ophthalmol. 2021;105(6):829–37.PubMedCrossRef Sung Y, Lee MJ, Choi J, Jung SY, Chong SY, Sung JH, et al. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br J Ophthalmol. 2021;105(6):829–37.PubMedCrossRef
23.
go back to reference Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, et al. Retinal stem cell transplantation: balancing safety and potential. Prog Retin Eye Res. 2020;75:100779.PubMedCrossRef Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, et al. Retinal stem cell transplantation: balancing safety and potential. Prog Retin Eye Res. 2020;75:100779.PubMedCrossRef
24.
go back to reference Mitrousis N, Hacibekiroglu S, Ho MT, Sauvé Y, Nagy A, van der Kooy D, et al. Hydrogel-mediated co-transplantation of retinal pigmented epithelium and photoreceptors restores vision in an animal model of advanced retinal degeneration. Biomaterials. 2020;257:120233.PubMedCrossRef Mitrousis N, Hacibekiroglu S, Ho MT, Sauvé Y, Nagy A, van der Kooy D, et al. Hydrogel-mediated co-transplantation of retinal pigmented epithelium and photoreceptors restores vision in an animal model of advanced retinal degeneration. Biomaterials. 2020;257:120233.PubMedCrossRef
25.
go back to reference Khalilov R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. Adv Biol Earth Sci. 2023;8(1):5–18. Khalilov R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. Adv Biol Earth Sci. 2023;8(1):5–18.
26.
go back to reference Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, et al. Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res. 2014;118:135–44.PubMedCrossRef Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, et al. Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res. 2014;118:135–44.PubMedCrossRef
27.
go back to reference Deng CL, Hu CB, Ling ST, Zhao N, Bao LH, Zhou F, et al. Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ. 2021;28(3):1041–61.PubMedCrossRef Deng CL, Hu CB, Ling ST, Zhao N, Bao LH, Zhou F, et al. Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ. 2021;28(3):1041–61.PubMedCrossRef
28.
go back to reference Alsaeedi HA, Koh AE, Lam C, Rashid MBA, Harun MHN, Saleh M, et al. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J Photochem Photobiol B. 2019;198:111561.PubMedCrossRef Alsaeedi HA, Koh AE, Lam C, Rashid MBA, Harun MHN, Saleh M, et al. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J Photochem Photobiol B. 2019;198:111561.PubMedCrossRef
29.
go back to reference Lam C, Alsaeedi HA, Koh AE, Harun MHN, Hwei ANM, Mok PL, et al. Human dental pulp stem cells (DPSCs) therapy in rescuing photoreceptors and establishing a sodium iodate-induced retinal degeneration rat model. Tissue Eng Regen Med. 2021;18(1):143–54.PubMedPubMedCentralCrossRef Lam C, Alsaeedi HA, Koh AE, Harun MHN, Hwei ANM, Mok PL, et al. Human dental pulp stem cells (DPSCs) therapy in rescuing photoreceptors and establishing a sodium iodate-induced retinal degeneration rat model. Tissue Eng Regen Med. 2021;18(1):143–54.PubMedPubMedCentralCrossRef
30.
go back to reference Shahi S, Dehghani F, Abdolahinia ED, Sharifi S, Ahmadian E, Gajdács M, et al. Effect of gelatinous spongy scaffold containing nano-hydroxyapatite on the induction of odontogenic activity of dental pulp stem cells. J King Saud Univ-Sci. 2022;34(8):102340.CrossRef Shahi S, Dehghani F, Abdolahinia ED, Sharifi S, Ahmadian E, Gajdács M, et al. Effect of gelatinous spongy scaffold containing nano-hydroxyapatite on the induction of odontogenic activity of dental pulp stem cells. J King Saud Univ-Sci. 2022;34(8):102340.CrossRef
31.
go back to reference Li Z, Wang J, Gao F, Zhang J, Tian H, Shi X, et al. Human adipose-derived stem cells delay retinal degeneration in royal college of surgeons rats through anti-apoptotic and VEGF-mediated neuroprotective effects. Curr Mol Med. 2016;16(6):553–66.PubMedCrossRef Li Z, Wang J, Gao F, Zhang J, Tian H, Shi X, et al. Human adipose-derived stem cells delay retinal degeneration in royal college of surgeons rats through anti-apoptotic and VEGF-mediated neuroprotective effects. Curr Mol Med. 2016;16(6):553–66.PubMedCrossRef
32.
go back to reference Rajashekhar G, Ramadan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina C, et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS ONE. 2014;9(1):e84671.PubMedPubMedCentralCrossRef Rajashekhar G, Ramadan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina C, et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS ONE. 2014;9(1):e84671.PubMedPubMedCentralCrossRef
33.
go back to reference Sun J, Mandai M, Kamao H, Hashiguchi T, Shikamura M, Kawamata S, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice. Stem Cells. 2015;33(5):1543–53.PubMedCrossRef Sun J, Mandai M, Kamao H, Hashiguchi T, Shikamura M, Kawamata S, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice. Stem Cells. 2015;33(5):1543–53.PubMedCrossRef
34.
go back to reference Salas A, Duarri A, Fontrodona L, Ramírez DM, Badia A, Isla-Magrané H, et al. Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. Mol Ther Methods Clin Dev. 2021;20:688–702.PubMedPubMedCentralCrossRef Salas A, Duarri A, Fontrodona L, Ramírez DM, Badia A, Isla-Magrané H, et al. Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. Mol Ther Methods Clin Dev. 2021;20:688–702.PubMedPubMedCentralCrossRef
35.
go back to reference Ben M’Barek K, Habeler W, Plancheron A, Jarraya M, Regent F, Terray A, et al. Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med. 2017;9(421):eaai7471.PubMedCrossRef Ben M’Barek K, Habeler W, Plancheron A, Jarraya M, Regent F, Terray A, et al. Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med. 2017;9(421):eaai7471.PubMedCrossRef
36.
go back to reference Li P, Tian H, Li Z, Wang L, Gao F, Ou Q, et al. Subpopulations of bone marrow mesenchymal stem cells exhibit differential effects in delaying retinal degeneration. Curr Mol Med. 2016;16(6):567–81.PubMedCrossRef Li P, Tian H, Li Z, Wang L, Gao F, Ou Q, et al. Subpopulations of bone marrow mesenchymal stem cells exhibit differential effects in delaying retinal degeneration. Curr Mol Med. 2016;16(6):567–81.PubMedCrossRef
37.
go back to reference Riera M, Fontrodona L, Albert S, Ramirez DM, Seriola A, Salas A, et al. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev. 2016;3:16010.PubMedPubMedCentralCrossRef Riera M, Fontrodona L, Albert S, Ramirez DM, Seriola A, Salas A, et al. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev. 2016;3:16010.PubMedPubMedCentralCrossRef
38.
go back to reference Wang L, Li P, Tian Y, Li Z, Lian C, Ou Q, et al. Human umbilical cord mesenchymal stem cells: subpopulations and their difference in cell biology and effects on retinal degeneration in RCS rats. Curr Mol Med. 2017;17(6):421–35.PubMed Wang L, Li P, Tian Y, Li Z, Lian C, Ou Q, et al. Human umbilical cord mesenchymal stem cells: subpopulations and their difference in cell biology and effects on retinal degeneration in RCS rats. Curr Mol Med. 2017;17(6):421–35.PubMed
39.
go back to reference Liu Q, Liu J, Higuchi A. hPSC-derived RPE transplantation for the treatment of macular degeneration. Prog Mol Biol Transl Sci. 2023;199:227–69.PubMedCrossRef Liu Q, Liu J, Higuchi A. hPSC-derived RPE transplantation for the treatment of macular degeneration. Prog Mol Biol Transl Sci. 2023;199:227–69.PubMedCrossRef
40.
go back to reference Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS ONE. 2014;9(10):e109305.PubMedPubMedCentralCrossRef Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS ONE. 2014;9(10):e109305.PubMedPubMedCentralCrossRef
41.
go back to reference D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9(4):645–51.PubMedCrossRef D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9(4):645–51.PubMedCrossRef
42.
go back to reference Ru L, Wu N, Wei K, Zeng Y, Li Q, Weng C, et al. Improving cell survival and engraftment in vivo via layer-by-layer nanocoating of hESC-derived RPE cells. Stem Cell Res Ther. 2020;11(1):495.PubMedPubMedCentralCrossRef Ru L, Wu N, Wei K, Zeng Y, Li Q, Weng C, et al. Improving cell survival and engraftment in vivo via layer-by-layer nanocoating of hESC-derived RPE cells. Stem Cell Res Ther. 2020;11(1):495.PubMedPubMedCentralCrossRef
43.
go back to reference Surendran H, Nandakumar S, Reddy KV, Stoddard J, Mohan KV, Upadhyay PK, et al. Transplantation of retinal pigment epithelium and photoreceptors generated concomitantly via small molecule-mediated differentiation rescues visual function in rodent models of retinal degeneration. Stem Cell Res Ther. 2021;12(1):70.PubMedPubMedCentralCrossRef Surendran H, Nandakumar S, Reddy KV, Stoddard J, Mohan KV, Upadhyay PK, et al. Transplantation of retinal pigment epithelium and photoreceptors generated concomitantly via small molecule-mediated differentiation rescues visual function in rodent models of retinal degeneration. Stem Cell Res Ther. 2021;12(1):70.PubMedPubMedCentralCrossRef
44.
go back to reference Martínez-Vacas A, Di Pierdomenico J, Gallego-Ortega A, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, et al. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol. 2022;57:102506.PubMedPubMedCentralCrossRef Martínez-Vacas A, Di Pierdomenico J, Gallego-Ortega A, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, et al. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol. 2022;57:102506.PubMedPubMedCentralCrossRef
45.
go back to reference Tso MO, Zhang C, Abler AS, Chang CJ, Wong F, Chang GQ, et al. Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci. 1994;35(6):2693–9.PubMed Tso MO, Zhang C, Abler AS, Chang CJ, Wong F, Chang GQ, et al. Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci. 1994;35(6):2693–9.PubMed
46.
go back to reference Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci. 2020;61(11):34.PubMedPubMedCentralCrossRef Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci. 2020;61(11):34.PubMedPubMedCentralCrossRef
47.
go back to reference Muduli S, Lee HH, Yang JS, Chen TY, Higuchi A, Kumar SS, et al. Proliferation and osteogenic differentiation of amniotic fluid-derived stem cells. J Mater Chem B. 2017;5(27):5345–54.PubMedCrossRef Muduli S, Lee HH, Yang JS, Chen TY, Higuchi A, Kumar SS, et al. Proliferation and osteogenic differentiation of amniotic fluid-derived stem cells. J Mater Chem B. 2017;5(27):5345–54.PubMedCrossRef
48.
go back to reference Gao Y, Tian Z, Liu Q, Wang T, Ban LK, Lee HH, et al. Neuronal cell differentiation of human dental pulp stem cells on synthetic polymeric surfaces coated with ECM proteins. Front Cell Dev Biol. 2022;10:893241.PubMedPubMedCentralCrossRef Gao Y, Tian Z, Liu Q, Wang T, Ban LK, Lee HH, et al. Neuronal cell differentiation of human dental pulp stem cells on synthetic polymeric surfaces coated with ECM proteins. Front Cell Dev Biol. 2022;10:893241.PubMedPubMedCentralCrossRef
49.
go back to reference Maruotti J, Sripathi SR, Bharti K, Fuller J, Wahlin KJ, Ranganathan V, et al. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci USA. 2015;112(35):10950–5.PubMedPubMedCentralCrossRef Maruotti J, Sripathi SR, Bharti K, Fuller J, Wahlin KJ, Ranganathan V, et al. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci USA. 2015;112(35):10950–5.PubMedPubMedCentralCrossRef
50.
go back to reference Smith EN, D’Antonio-Chronowska A, Greenwald WW, Borja V, Aguiar LR, Pogue R, et al. Human iPSC-derived retinal pigment epithelium: a model system for prioritizing and functionally characterizing causal variants at AMD risk loci. Stem Cell Reports. 2019;12(6):1342–53.PubMedPubMedCentralCrossRef Smith EN, D’Antonio-Chronowska A, Greenwald WW, Borja V, Aguiar LR, Pogue R, et al. Human iPSC-derived retinal pigment epithelium: a model system for prioritizing and functionally characterizing causal variants at AMD risk loci. Stem Cell Reports. 2019;12(6):1342–53.PubMedPubMedCentralCrossRef
51.
go back to reference Qin H, Zhang W, Zhang S, Feng Y, Xu W, Qi J, et al. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med. 2023;220(5):e20220776.PubMedPubMedCentralCrossRef Qin H, Zhang W, Zhang S, Feng Y, Xu W, Qi J, et al. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med. 2023;220(5):e20220776.PubMedPubMedCentralCrossRef
52.
go back to reference Zhu D, Xie M, Gademann F, Cao J, Wang P, Guo Y, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther. 2020;11(1):98.PubMedPubMedCentralCrossRef Zhu D, Xie M, Gademann F, Cao J, Wang P, Guo Y, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther. 2020;11(1):98.PubMedPubMedCentralCrossRef
53.
go back to reference Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136(1):1–26.PubMedPubMedCentralCrossRef Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136(1):1–26.PubMedPubMedCentralCrossRef
54.
go back to reference Liu Z, Ilmarinen T, Tan GSW, Hongisto H, Wong EYM, Tsai ASH, et al. Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model. Stem Cell Res Ther. 2021;12(1):423.PubMedPubMedCentralCrossRef Liu Z, Ilmarinen T, Tan GSW, Hongisto H, Wong EYM, Tsai ASH, et al. Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model. Stem Cell Res Ther. 2021;12(1):423.PubMedPubMedCentralCrossRef
55.
go back to reference Michelet F, Balasankar A, Teo N, Stanton LW, Singhal S. Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res Ther. 2020;11(1):47.PubMedPubMedCentralCrossRef Michelet F, Balasankar A, Teo N, Stanton LW, Singhal S. Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res Ther. 2020;11(1):47.PubMedPubMedCentralCrossRef
56.
go back to reference Ito A, Ye K, Onda M, Morimoto N, Osakada F. Efficient and robust induction of retinal pigment epithelium cells by tankyrase inhibition regardless of the differentiation propensity of human induced pluripotent stem cells. Biochem Biophys Res Commun. 2021;552:66–72.PubMedCrossRef Ito A, Ye K, Onda M, Morimoto N, Osakada F. Efficient and robust induction of retinal pigment epithelium cells by tankyrase inhibition regardless of the differentiation propensity of human induced pluripotent stem cells. Biochem Biophys Res Commun. 2021;552:66–72.PubMedCrossRef
57.
go back to reference McGill TJ, Bohana-Kashtan O, Stoddard JW, Andrews MD, Pandit N, Rosenberg-Belmaker LR, et al. Long-term efficacy of GMP grade xeno-free hESC-derived RPE cells following transplantation. Transl Vis Sci Technol. 2017;6(3):17.PubMedPubMedCentralCrossRef McGill TJ, Bohana-Kashtan O, Stoddard JW, Andrews MD, Pandit N, Rosenberg-Belmaker LR, et al. Long-term efficacy of GMP grade xeno-free hESC-derived RPE cells following transplantation. Transl Vis Sci Technol. 2017;6(3):17.PubMedPubMedCentralCrossRef
58.
go back to reference Muniz A, Greene WA, Plamper ML, Choi JH, Johnson AJ, Tsin AT, et al. Retinoid uptake, processing, and secretion in human iPS-RPE support the visual cycle. Invest Ophthalmol Vis Sci. 2014;55(1):198–209.PubMedPubMedCentralCrossRef Muniz A, Greene WA, Plamper ML, Choi JH, Johnson AJ, Tsin AT, et al. Retinoid uptake, processing, and secretion in human iPS-RPE support the visual cycle. Invest Ophthalmol Vis Sci. 2014;55(1):198–209.PubMedPubMedCentralCrossRef
59.
go back to reference Francia S, Shmal D, Di Marco S, Chiaravalli G, Maya-Vetencourt JF, Mantero G, et al. Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats. Nat Commun. 2022;13(1):3677.PubMedPubMedCentralCrossRef Francia S, Shmal D, Di Marco S, Chiaravalli G, Maya-Vetencourt JF, Mantero G, et al. Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats. Nat Commun. 2022;13(1):3677.PubMedPubMedCentralCrossRef
60.
go back to reference Suh S, Choi EH, Leinonen H, Foik AT, Newby GA, Yeh WH, et al. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng. 2021;5(2):169–78.PubMedCrossRef Suh S, Choi EH, Leinonen H, Foik AT, Newby GA, Yeh WH, et al. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng. 2021;5(2):169–78.PubMedCrossRef
61.
go back to reference Yin R, Xu Z, Mei M, Chen Z, Wang K, Liu Y, et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat Commun. 2018;9(1):2334.PubMedPubMedCentralCrossRef Yin R, Xu Z, Mei M, Chen Z, Wang K, Liu Y, et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat Commun. 2018;9(1):2334.PubMedPubMedCentralCrossRef
62.
go back to reference Tzekov R. Full-field ERG in diabetic retinopathy: a screening tool? Graefes Arch Clin Exp Ophthalmol. 2015;253(7):987–8.PubMedCrossRef Tzekov R. Full-field ERG in diabetic retinopathy: a screening tool? Graefes Arch Clin Exp Ophthalmol. 2015;253(7):987–8.PubMedCrossRef
63.
go back to reference Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Metabolic profile and neurogenic potential of human amniotic fluid stem cells from normal vs. fetus-affected gestations. Front Cell Dev Biol. 2021;9:700634.PubMedPubMedCentralCrossRef Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Metabolic profile and neurogenic potential of human amniotic fluid stem cells from normal vs. fetus-affected gestations. Front Cell Dev Biol. 2021;9:700634.PubMedPubMedCentralCrossRef
65.
go back to reference Liu X, Chen F, Chen Y, Lu H, Lu X, Peng X, et al. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res Ther. 2020;11(1):142.PubMedPubMedCentralCrossRef Liu X, Chen F, Chen Y, Lu H, Lu X, Peng X, et al. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res Ther. 2020;11(1):142.PubMedPubMedCentralCrossRef
66.
go back to reference Bobba S, Di Girolamo N, Munsie M, Chen F, Pébay A, Harkin D, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:65–75.PubMedCrossRef Bobba S, Di Girolamo N, Munsie M, Chen F, Pébay A, Harkin D, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:65–75.PubMedCrossRef
67.
go back to reference Shahin S, Tan P, Chetsawang J, Lu B, Svendsen S, Ramirez S, et al. Human neural progenitors expressing GDNF enhance retinal protection in a rodent model of retinal degeneration. Stem Cells Transl Med. 2023;12(11):727–44.PubMedPubMedCentralCrossRef Shahin S, Tan P, Chetsawang J, Lu B, Svendsen S, Ramirez S, et al. Human neural progenitors expressing GDNF enhance retinal protection in a rodent model of retinal degeneration. Stem Cells Transl Med. 2023;12(11):727–44.PubMedPubMedCentralCrossRef
68.
go back to reference Ohnaka M, Miki K, Gong YY, Stevens R, Iwase T, Hackett SF, et al. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. J Neurochem. 2012;122(5):1047–53.PubMedPubMedCentralCrossRef Ohnaka M, Miki K, Gong YY, Stevens R, Iwase T, Hackett SF, et al. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. J Neurochem. 2012;122(5):1047–53.PubMedPubMedCentralCrossRef
69.
go back to reference Frasson M, Picaud S, Léveillard T, Simonutti M, Mohand-Said S, Dreyfus H, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci. 1999;40(11):2724–34.PubMed Frasson M, Picaud S, Léveillard T, Simonutti M, Mohand-Said S, Dreyfus H, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci. 1999;40(11):2724–34.PubMed
70.
go back to reference Afarid M, Torabi-Nami M, Zare B. Neuroprotective and restorative effects of the brain-derived neurotrophic factor in retinal diseases. J Neurol Sci. 2016;363:43–50.PubMedCrossRef Afarid M, Torabi-Nami M, Zare B. Neuroprotective and restorative effects of the brain-derived neurotrophic factor in retinal diseases. J Neurol Sci. 2016;363:43–50.PubMedCrossRef
71.
go back to reference Telegina DV, Kolosova NG, Kozhevnikova OS. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12(Suppl 2):48.PubMedPubMedCentralCrossRef Telegina DV, Kolosova NG, Kozhevnikova OS. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12(Suppl 2):48.PubMedPubMedCentralCrossRef
72.
go back to reference Hernández-Pinto A, Polato F, Subramanian P, Rocha-Muñoz A, Vitale S, de la Rosa EJ, et al. PEDF peptides promote photoreceptor survival in rd10 retina models. Exp Eye Res. 2019;184:24–9.PubMedPubMedCentralCrossRef Hernández-Pinto A, Polato F, Subramanian P, Rocha-Muñoz A, Vitale S, de la Rosa EJ, et al. PEDF peptides promote photoreceptor survival in rd10 retina models. Exp Eye Res. 2019;184:24–9.PubMedPubMedCentralCrossRef
73.
go back to reference Chen X, Xu M, Zhang X, Barnstable CJ, Li X, Tombran-Tink J. Deletion of the Pedf gene leads to inflammation, photoreceptor loss and vascular disturbances in the retina. Exp Eye Res. 2022;222:109171.PubMedCrossRef Chen X, Xu M, Zhang X, Barnstable CJ, Li X, Tombran-Tink J. Deletion of the Pedf gene leads to inflammation, photoreceptor loss and vascular disturbances in the retina. Exp Eye Res. 2022;222:109171.PubMedCrossRef
74.
go back to reference Le YZ, Xu B, Chucair-Elliott AJ, Zhang H, Zhu M. VEGF mediates retinal Müller cell viability and neuroprotection through BDNF in diabetes. Biomolecules. 2021;11(5):712.PubMedPubMedCentralCrossRef Le YZ, Xu B, Chucair-Elliott AJ, Zhang H, Zhu M. VEGF mediates retinal Müller cell viability and neuroprotection through BDNF in diabetes. Biomolecules. 2021;11(5):712.PubMedPubMedCentralCrossRef
75.
go back to reference Foxton RH, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw PT, Morgan JE, et al. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013;182(4):1379–90.PubMedCrossRef Foxton RH, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw PT, Morgan JE, et al. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013;182(4):1379–90.PubMedCrossRef
76.
go back to reference Wang SK, Xue Y, Cepko CL. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration. J Clin Invest. 2020;130(8):4360–9.PubMedPubMedCentral Wang SK, Xue Y, Cepko CL. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration. J Clin Invest. 2020;130(8):4360–9.PubMedPubMedCentral
77.
go back to reference Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2014;2(2):205–18.PubMedPubMedCentralCrossRef Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2014;2(2):205–18.PubMedPubMedCentralCrossRef
78.
go back to reference Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.PubMedCrossRef Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.PubMedCrossRef
Metadata
Title
Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model
Authors
Qian Liu
Jun Liu
Minmei Guo
Tzu-Cheng Sung
Ting Wang
Tao Yu
Zeyu Tian
Guoping Fan
Wencan Wu
Akon Higuchi
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04785-1

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.