Skip to main content
Top
Published in: Journal of Translational Medicine 1/2023

Open Access 01-12-2023 | Prostate Cancer | Research

Proteome-wide mendelian randomization study implicates therapeutic targets in common cancers

Authors: Feihong Ren, Qiubai Jin, Tongtong Liu, Xuelei Ren, Yongli Zhan

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

Background

The interest in targeted cancer therapies has been growing rapidly. While numerous cancer biomarkers and targeted treatment strategies have been developed and employed, there are still significant limitations and challenges in the early diagnosis and targeted treatment of cancers. Accordingly, there is an urgent need to identify novel targets and develop new targeted drugs.

Methods

The study was conducted using combined cis-Mendelian randomization (cis-MR) and colocalization analysis. We analyzed data from 732 plasma proteins to identify potential drug targets associated with eight site-specific cancers. These findings were further validated using the UK Biobank dataset. Then, a protein–protein interaction network was also constructed to examine the interplay between the identified proteins and the targets of existing cancer medications.

Results

This MR analysis revealed associations between five plasma proteins and prostate cancer, five with breast cancer, and three with lung cancer. Subsequently, these proteins were classified into four distinct target groups, with a focus on tier 1 and 2 targets due to their higher potential to become drug targets. Our study indicatied that genetically predicted KDELC2 (OR: 0.89, 95% CI 0.86–0.93) and TNFRSF10B (OR: 0.74, 95% CI 0.65–0.83) are inversely associated with prostate cancer. Furthermore, we observed an inverse association between CPNE1 (OR: 0.96, 95% CI 0.94–0.98) and breast cancer, while PDIA3 (OR: 1.19, 95% CI 1.10–1.30) were found to be associated with the risk of breast cancer. In addition, we also propose that SPINT2 (OR: 1.05, 95% CI 1.03–1.06), GSTP1 (OR: 0.82, 95% CI 0.74–0.90), and CTSS (OR: 0.91, 95% CI 0.88–0.95) may serve as potential therapeutic targets in prostate cancer. Similarly, GDI2 (OR: 0.85, 95% CI 0.80–0.91), ISLR2 (OR: 0.87, 95% CI 0.82–0.93), and CTSF (OR: 1.14, 95% CI 1.08–1.21) could potentially be targets for breast cancer. Additionally, we identified SFTPB (OR: 0.93, 95% CI 0.91–0.95), ICAM5 (OR: 0.95, 95% CI 0.93–0.97), and FLRT3 (OR: 1.10, 95% CI 1.05–1.15) as potential targets for lung cancer. Notably, TNFRSF10B, GSTP1, and PDIA3 were found to interact with the target proteins of current medications used in prostate or breast cancer treatment.

Conclusions

This comprehensive analysis has highlighted thirteen plasma proteins with potential roles in three site-specific cancers. Continued research in this area may reveal their therapeutic potential, particularly KDELC2, TNFRSF10B, CPNE1, and PDIA3, paving the way for more effective cancer treatments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2022;8(3):420–44.PubMedCrossRef Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2022;8(3):420–44.PubMedCrossRef
2.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed
3.
4.
go back to reference Overman MJ, Modak J, Kopetz S, Murthy R, Yao JC, Hicks ME, et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J Clin Oncol. 2013;31(1):17–22.PubMedCrossRef Overman MJ, Modak J, Kopetz S, Murthy R, Yao JC, Hicks ME, et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J Clin Oncol. 2013;31(1):17–22.PubMedCrossRef
5.
go back to reference Zhao M, Wei F, Sun G, Wen Y, Xiang J, Su F, et al. Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: a review. Front Pharmacol. 2022;13:1004383.PubMedPubMedCentralCrossRef Zhao M, Wei F, Sun G, Wen Y, Xiang J, Su F, et al. Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: a review. Front Pharmacol. 2022;13:1004383.PubMedPubMedCentralCrossRef
6.
go back to reference Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8:14357.PubMedPubMedCentralCrossRef Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8:14357.PubMedPubMedCentralCrossRef
7.
go back to reference Davies MPA, Sato T, Ashoor H, Hou L, Liloglou T, Yang R, et al. Plasma protein biomarkers for early prediction of lung cancer. EBioMedicine. 2023;93: 104686.PubMedPubMedCentralCrossRef Davies MPA, Sato T, Ashoor H, Hou L, Liloglou T, Yang R, et al. Plasma protein biomarkers for early prediction of lung cancer. EBioMedicine. 2023;93: 104686.PubMedPubMedCentralCrossRef
8.
9.
go back to reference Ross T, Ahmed K, Raison N, Challacombe B, Dasgupta P. Clarifying the PSA grey zone: The management of patients with a borderline PSA. Int J Clin Pract. 2016;70(11):950–9.PubMedCrossRef Ross T, Ahmed K, Raison N, Challacombe B, Dasgupta P. Clarifying the PSA grey zone: The management of patients with a borderline PSA. Int J Clin Pract. 2016;70(11):950–9.PubMedCrossRef
10.
go back to reference Landegren U, Hammond M. Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations. Mol Oncol. 2021;15(6):1715–26.PubMedCrossRef Landegren U, Hammond M. Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations. Mol Oncol. 2021;15(6):1715–26.PubMedCrossRef
11.
go back to reference Bonaterra GA, Schleper A, Skowronek M, Kilian LS, Rink T, Schwarzbach H, et al. Increased density of growth differentiation factor-15+ immunoreactive M1/M2 macrophages in prostate cancer of different gleason scores compared with benign prostate hyperplasia. Cancers (Basel). 2022;14(19):4591.PubMedPubMedCentralCrossRef Bonaterra GA, Schleper A, Skowronek M, Kilian LS, Rink T, Schwarzbach H, et al. Increased density of growth differentiation factor-15+ immunoreactive M1/M2 macrophages in prostate cancer of different gleason scores compared with benign prostate hyperplasia. Cancers (Basel). 2022;14(19):4591.PubMedPubMedCentralCrossRef
12.
go back to reference Gu X, Coates P, Wang L, Erdogan B, Salehi A, Sgaramella N, et al. Variation in plasma levels of TRAF2 protein during development of squamous cell carcinoma of the oral tongue. Front Oncol. 2021;11: 753699.PubMedPubMedCentralCrossRef Gu X, Coates P, Wang L, Erdogan B, Salehi A, Sgaramella N, et al. Variation in plasma levels of TRAF2 protein during development of squamous cell carcinoma of the oral tongue. Front Oncol. 2021;11: 753699.PubMedPubMedCentralCrossRef
13.
go back to reference Reay WR, Cairns MJ. Advancing the use of genome-wide association studies for drug repurposing. Nat Rev Genet. 2021;22(10):658–71.PubMedCrossRef Reay WR, Cairns MJ. Advancing the use of genome-wide association studies for drug repurposing. Nat Rev Genet. 2021;22(10):658–71.PubMedCrossRef
14.
go back to reference Chen L, Peters JE, Prins B, Persyn E, Traylor M, Surendran P, et al. Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke. Nat Commun. 2022;13(1):6143.PubMedPubMedCentralCrossRef Chen L, Peters JE, Prins B, Persyn E, Traylor M, Surendran P, et al. Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke. Nat Commun. 2022;13(1):6143.PubMedPubMedCentralCrossRef
15.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
16.
go back to reference Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet. 2020;52(10):1122–31.PubMedPubMedCentralCrossRef Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet. 2020;52(10):1122–31.PubMedPubMedCentralCrossRef
17.
go back to reference Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21.PubMedCrossRef Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21.PubMedCrossRef
18.
go back to reference Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, et al. Co-regulatory networks of human serum proteins link genetics to disease. Science. 2018;361(6404):769–73.PubMedPubMedCentralCrossRef Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, et al. Co-regulatory networks of human serum proteins link genetics to disease. Science. 2018;361(6404):769–73.PubMedPubMedCentralCrossRef
19.
go back to reference Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun. 2018;9(1):3268.PubMedPubMedCentralCrossRef Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun. 2018;9(1):3268.PubMedPubMedCentralCrossRef
20.
go back to reference Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Frånberg M, Sennblad B, et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet. 2017;13(4): e1006706.PubMedPubMedCentralCrossRef Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Frånberg M, Sennblad B, et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet. 2017;13(4): e1006706.PubMedPubMedCentralCrossRef
21.
go back to reference Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36.PubMedPubMedCentralCrossRef Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36.PubMedPubMedCentralCrossRef
22.
go back to reference Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–4.PubMedPubMedCentralCrossRef Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–4.PubMedPubMedCentralCrossRef
23.
go back to reference McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126–32.PubMedPubMedCentralCrossRef McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126–32.PubMedPubMedCentralCrossRef
24.
go back to reference Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017;49(5):680–91.PubMedPubMedCentralCrossRef Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017;49(5):680–91.PubMedPubMedCentralCrossRef
25.
go back to reference Zhang C, Qin F, Li X, Du X, Li T. Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes. BMC Med. 2022;20(1):211.PubMedPubMedCentralCrossRef Zhang C, Qin F, Li X, Du X, Li T. Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes. BMC Med. 2022;20(1):211.PubMedPubMedCentralCrossRef
26.
go back to reference Deng YT, Ou YN, Wu BS, Yang YX, Jiang Y, Huang YY, et al. Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood. Mol Psychiatry. 2022;27(6):2849–57.PubMedCrossRef Deng YT, Ou YN, Wu BS, Yang YX, Jiang Y, Huang YY, et al. Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood. Mol Psychiatry. 2022;27(6):2849–57.PubMedCrossRef
27.
go back to reference Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.PubMedPubMedCentralCrossRef Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.PubMedPubMedCentralCrossRef
29.
go back to reference Hemani G, Tilling K, Davey SG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11): e1007081.PubMedPubMedCentralCrossRef Hemani G, Tilling K, Davey SG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11): e1007081.PubMedPubMedCentralCrossRef
30.
go back to reference Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5): e1004383.PubMedPubMedCentralCrossRef Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5): e1004383.PubMedPubMedCentralCrossRef
31.
go back to reference Chen J, Xu F, Ruan X, Sun J, Zhang Y, Zhang H, et al. Therapeutic targets for inflammatory bowel disease: proteome-wide Mendelian randomization and colocalization analyses. EBioMedicine. 2023;89: 104494.PubMedPubMedCentralCrossRef Chen J, Xu F, Ruan X, Sun J, Zhang Y, Zhang H, et al. Therapeutic targets for inflammatory bowel disease: proteome-wide Mendelian randomization and colocalization analyses. EBioMedicine. 2023;89: 104494.PubMedPubMedCentralCrossRef
32.
go back to reference Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35(22):4851–3.PubMedPubMedCentralCrossRef Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35(22):4851–3.PubMedPubMedCentralCrossRef
33.
go back to reference Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(1):D1074-d82.PubMedCrossRef Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(1):D1074-d82.PubMedCrossRef
34.
go back to reference Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.PubMedCrossRef Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.PubMedCrossRef
35.
go back to reference Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46.PubMedCrossRef Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46.PubMedCrossRef
36.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
37.
go back to reference Tsai YL, Chen Y, Chen YC, Tsai WC. KDELC2 upregulates glioblastoma angiogenesis via reactive oxygen species activation and tumor-associated macrophage proliferation. Antioxidants (Basel). 2023;12(4):923.PubMedPubMedCentralCrossRef Tsai YL, Chen Y, Chen YC, Tsai WC. KDELC2 upregulates glioblastoma angiogenesis via reactive oxygen species activation and tumor-associated macrophage proliferation. Antioxidants (Basel). 2023;12(4):923.PubMedPubMedCentralCrossRef
38.
go back to reference Tsai YL, Chang HH, Chen YC, Chang YC, Chen Y, Tsai WC. Molecular mechanisms of KDELC2 on glioblastoma tumorigenesis and temozolomide resistance. Biomedicines. 2020;8(9):339.PubMedPubMedCentralCrossRef Tsai YL, Chang HH, Chen YC, Chang YC, Chen Y, Tsai WC. Molecular mechanisms of KDELC2 on glioblastoma tumorigenesis and temozolomide resistance. Biomedicines. 2020;8(9):339.PubMedPubMedCentralCrossRef
39.
go back to reference Takeuchi H, Schneider M, Williamson DB, Ito A, Takeuchi M, Handford PA, et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc Natl Acad Sci USA. 2018;115(36):E8395–402.PubMedPubMedCentralCrossRef Takeuchi H, Schneider M, Williamson DB, Ito A, Takeuchi M, Handford PA, et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc Natl Acad Sci USA. 2018;115(36):E8395–402.PubMedPubMedCentralCrossRef
41.
go back to reference Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8(2):97–106.PubMedCrossRef Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8(2):97–106.PubMedCrossRef
42.
go back to reference Zhang YQ, Liang YK, Wu Y, Chen M, Chen WL, Li RH, et al. Notch3 inhibits cell proliferation and tumorigenesis and predicts better prognosis in breast cancer through transactivating PTEN. Cell Death Dis. 2021;12(6):502.PubMedPubMedCentralCrossRef Zhang YQ, Liang YK, Wu Y, Chen M, Chen WL, Li RH, et al. Notch3 inhibits cell proliferation and tumorigenesis and predicts better prognosis in breast cancer through transactivating PTEN. Cell Death Dis. 2021;12(6):502.PubMedPubMedCentralCrossRef
43.
go back to reference Yan Y, Huang H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv Exp Med Biol. 2019;1210:319–31.PubMedCrossRef Yan Y, Huang H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv Exp Med Biol. 2019;1210:319–31.PubMedCrossRef
44.
go back to reference Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001;61(19):7291–7.PubMed Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001;61(19):7291–7.PubMed
45.
go back to reference Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology. 2010;20(8):931–49.PubMedPubMedCentralCrossRef Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology. 2010;20(8):931–49.PubMedPubMedCentralCrossRef
46.
go back to reference Haines N, Irvine KD. Glycosylation regulates notch signalling. Nat Rev Mol Cell Biol. 2003;4(10):786–97.PubMedCrossRef Haines N, Irvine KD. Glycosylation regulates notch signalling. Nat Rev Mol Cell Biol. 2003;4(10):786–97.PubMedCrossRef
47.
go back to reference Moloney DJ, Shair LH, Lu FM, Xia J, Locke R, Matta KL, et al. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem. 2000;275(13):9604–11.PubMedCrossRef Moloney DJ, Shair LH, Lu FM, Xia J, Locke R, Matta KL, et al. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem. 2000;275(13):9604–11.PubMedCrossRef
48.
go back to reference Matsuura A, Ito M, Sakaidani Y, Kondo T, Murakami K, Furukawa K, et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J Biol Chem. 2008;283(51):35486–95.PubMedCrossRef Matsuura A, Ito M, Sakaidani Y, Kondo T, Murakami K, Furukawa K, et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J Biol Chem. 2008;283(51):35486–95.PubMedCrossRef
49.
go back to reference Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, et al. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ Toxicol. 2018;33(11):1168–81.PubMedCrossRef Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, et al. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ Toxicol. 2018;33(11):1168–81.PubMedCrossRef
50.
go back to reference Wang D, Lu J, Tindall DJ. Androgens regulate TRAIL-induced cell death in prostate cancer cells via multiple mechanisms. Cancer Lett. 2013;335(1):136–44.PubMedPubMedCentralCrossRef Wang D, Lu J, Tindall DJ. Androgens regulate TRAIL-induced cell death in prostate cancer cells via multiple mechanisms. Cancer Lett. 2013;335(1):136–44.PubMedPubMedCentralCrossRef
51.
go back to reference Koschny R, Walczak H, Ganten TM. The promise of TRAIL–potential and risks of a novel anticancer therapy. J Mol Med (Berl). 2007;85(9):923–35.PubMedCrossRef Koschny R, Walczak H, Ganten TM. The promise of TRAIL–potential and risks of a novel anticancer therapy. J Mol Med (Berl). 2007;85(9):923–35.PubMedCrossRef
52.
go back to reference Hesry V, Piquet-Pellorce C, Travert M, Donaghy L, Jégou B, Patard JJ, et al. Sensitivity of prostate cells to TRAIL-induced apoptosis increases with tumor progression: DR5 and caspase 8 are key players. Prostate. 2006;66(9):987–95.PubMedCrossRef Hesry V, Piquet-Pellorce C, Travert M, Donaghy L, Jégou B, Patard JJ, et al. Sensitivity of prostate cells to TRAIL-induced apoptosis increases with tumor progression: DR5 and caspase 8 are key players. Prostate. 2006;66(9):987–95.PubMedCrossRef
53.
go back to reference Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol. 2022;112(5):1273–84.PubMedCrossRef Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol. 2022;112(5):1273–84.PubMedCrossRef
54.
go back to reference Khurana N, Kim H, Chandra PK, Talwar S, Sharma P, Abdel-Mageed AB, et al. Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells: advocating a potent pharmaceutical combination against castration-resistant prostate cancer. Oncol Rep. 2017;38(5):2774–86.PubMedPubMedCentralCrossRef Khurana N, Kim H, Chandra PK, Talwar S, Sharma P, Abdel-Mageed AB, et al. Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells: advocating a potent pharmaceutical combination against castration-resistant prostate cancer. Oncol Rep. 2017;38(5):2774–86.PubMedPubMedCentralCrossRef
55.
go back to reference Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J, et al. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J Biol Chem. 1998;273(3):1393–402.PubMedCrossRef Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J, et al. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J Biol Chem. 1998;273(3):1393–402.PubMedCrossRef
56.
go back to reference Cao J, Cao R, Liu Y, Dai T. CPNE1 mediates glycolysis and metastasis of breast cancer through activation of PI3K/AKT/HIF-1α signaling. Pathol Res Pract. 2023;248:154634.PubMedCrossRef Cao J, Cao R, Liu Y, Dai T. CPNE1 mediates glycolysis and metastasis of breast cancer through activation of PI3K/AKT/HIF-1α signaling. Pathol Res Pract. 2023;248:154634.PubMedCrossRef
57.
go back to reference Germon A, Heesom KJ, Amoah R, Adams JC. Protein disulfide isomerase A3 activity promotes extracellular accumulation of proteins relevant to basal breast cancer outcomes in human MDA-MB-A231 breast cancer cells. Am J Physiol Cell Physiol. 2023;324(1):C113–32.PubMedCrossRef Germon A, Heesom KJ, Amoah R, Adams JC. Protein disulfide isomerase A3 activity promotes extracellular accumulation of proteins relevant to basal breast cancer outcomes in human MDA-MB-A231 breast cancer cells. Am J Physiol Cell Physiol. 2023;324(1):C113–32.PubMedCrossRef
58.
go back to reference Song MN, Moon PG, Lee JE, Na M, Kang W, Chae YS, et al. Proteomic analysis of breast cancer tissues to identify biomarker candidates by gel-assisted digestion and label-free quantification methods using LC-MS/MS. Arch Pharm Res. 2012;35(10):1839–47.PubMedCrossRef Song MN, Moon PG, Lee JE, Na M, Kang W, Chae YS, et al. Proteomic analysis of breast cancer tissues to identify biomarker candidates by gel-assisted digestion and label-free quantification methods using LC-MS/MS. Arch Pharm Res. 2012;35(10):1839–47.PubMedCrossRef
59.
go back to reference Hussmann M, Janke K, Kranz P, Neumann F, Mersch E, Baumann M, et al. Depletion of the thiol oxidoreductase ERp57 in tumor cells inhibits proliferation and increases sensitivity to ionizing radiation and chemotherapeutics. Oncotarget. 2015;6(36):39247–61.PubMedPubMedCentralCrossRef Hussmann M, Janke K, Kranz P, Neumann F, Mersch E, Baumann M, et al. Depletion of the thiol oxidoreductase ERp57 in tumor cells inhibits proliferation and increases sensitivity to ionizing radiation and chemotherapeutics. Oncotarget. 2015;6(36):39247–61.PubMedPubMedCentralCrossRef
60.
go back to reference Santana-Codina N, Carretero R, Sanz-Pamplona R, Cabrera T, Guney E, Oliva B, et al. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis. Mol Cell Proteomics. 2013;12(8):2111–25.PubMedPubMedCentralCrossRef Santana-Codina N, Carretero R, Sanz-Pamplona R, Cabrera T, Guney E, Oliva B, et al. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis. Mol Cell Proteomics. 2013;12(8):2111–25.PubMedPubMedCentralCrossRef
61.
go back to reference Guo Z, Wang G, Wu B, Chou WC, Cheng L, Zhou C, et al. DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J Clin Invest. 2020;130(11):5893–908.PubMedPubMedCentralCrossRef Guo Z, Wang G, Wu B, Chou WC, Cheng L, Zhou C, et al. DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J Clin Invest. 2020;130(11):5893–908.PubMedPubMedCentralCrossRef
62.
go back to reference Cui J, Li G, Yin J, Li L, Tan Y, Wei H, et al. GSTP1 and cancer: expression, methylation, polymorphisms and signaling (Review). Int J Oncol. 2020;56(4):867–78.PubMed Cui J, Li G, Yin J, Li L, Tan Y, Wei H, et al. GSTP1 and cancer: expression, methylation, polymorphisms and signaling (Review). Int J Oncol. 2020;56(4):867–78.PubMed
63.
go back to reference Latonen L, Afyounian E, Jylhä A, Nättinen J, Aapola U, Annala M, et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat Commun. 2018;9(1):1176.PubMedPubMedCentralCrossRef Latonen L, Afyounian E, Jylhä A, Nättinen J, Aapola U, Annala M, et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat Commun. 2018;9(1):1176.PubMedPubMedCentralCrossRef
64.
go back to reference Latosinska A, Davalieva K, Makridakis M, Mullen W, Schanstra JP, Vlahou A, et al. Molecular changes in tissue proteome during prostate cancer development: proof-of-principle investigation. Diagnostics (Basel). 2020;10(9):655.PubMedPubMedCentralCrossRef Latosinska A, Davalieva K, Makridakis M, Mullen W, Schanstra JP, Vlahou A, et al. Molecular changes in tissue proteome during prostate cancer development: proof-of-principle investigation. Diagnostics (Basel). 2020;10(9):655.PubMedPubMedCentralCrossRef
Metadata
Title
Proteome-wide mendelian randomization study implicates therapeutic targets in common cancers
Authors
Feihong Ren
Qiubai Jin
Tongtong Liu
Xuelei Ren
Yongli Zhan
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04525-5

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine