Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Stroke | Research article

Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes

Authors: Chengcheng Zhang, Fengqin Qin, Xiaojing Li, Xiangdong Du, Tao Li

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Previous genome-wide association studies (GWAS) have identified numerous risk genes for lacunar stroke, but it is challenging to decipher how they confer risk for the disease. We employed an integrative analytical pipeline to efficiently transform genetic associations to identify novel proteins for lacunar stroke.

Methods

We systematically integrated lacunar stroke genome-wide association study (GWAS) (N=7338) with human brain proteomes (N=376) to perform proteome-wide association studies (PWAS), Mendelian randomization (MR), and Bayesian colocalization. We also used an independent human brain proteomic dataset (N=152) to annotate the new genes.

Results

We found that the protein abundance of seven genes (ICA1L, CAND2, ALDH2, MADD, MRVI1, CSPG4, and PTPN11) in the brain was associated with lacunar stroke. These seven genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and astrocytes. Three genes (ICA1L, CAND2, ALDH2) were causal in lacunar stroke (P < 0.05/proteins identified for PWAS; posterior probability of hypothesis 4 ≥ 75 % for Bayesian colocalization), and they were linked with lacunar stroke in confirmatory PWAS and independent MR. We also found that ICA1L is related to lacunar stroke at the brain transcriptome level.

Conclusions

Our present proteomic findings have identified ICA1L, CAND2, and ALDH2 as compelling genes that may give key hints for future functional research and possible therapeutic targets for lacunar stroke.
Appendix
Available only for authorised users
Literature
2.
go back to reference Regenhardt RW, Das AS, Lo EH, Caplan LR. Advances in understanding the pathophysiology of lacunar stroke: a review. JAMA Neurol. 2018;75(10):1273–81.PubMedPubMedCentralCrossRef Regenhardt RW, Das AS, Lo EH, Caplan LR. Advances in understanding the pathophysiology of lacunar stroke: a review. JAMA Neurol. 2018;75(10):1273–81.PubMedPubMedCentralCrossRef
3.
go back to reference Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84.PubMedCrossRef Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84.PubMedCrossRef
4.
go back to reference Yang C, Farias FHG. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci. 2021;24(9):1302–12.PubMedPubMedCentralCrossRef Yang C, Farias FHG. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci. 2021;24(9):1302–12.PubMedPubMedCentralCrossRef
5.
go back to reference Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, et al. Cell type– and brain region–resolved mouse brain proteome. Nat Neurosci. 2015;18(12):1819–31.PubMedPubMedCentralCrossRef Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, et al. Cell type– and brain region–resolved mouse brain proteome. Nat Neurosci. 2015;18(12):1819–31.PubMedPubMedCentralCrossRef
6.
go back to reference Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.PubMedPubMedCentralCrossRef Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.PubMedPubMedCentralCrossRef
7.
go back to reference Rolland DCM, Basrur V, Jeon Y-K, McNeil-Schwalm C, Fermin D, Conlon KP, et al. Functional proteogenomics reveals biomarkers and therapeutic targets in lymphomas. Proc Natl Acad Sci. 2017;114(25):6581–6.PubMedPubMedCentralCrossRef Rolland DCM, Basrur V, Jeon Y-K, McNeil-Schwalm C, Fermin D, Conlon KP, et al. Functional proteogenomics reveals biomarkers and therapeutic targets in lymphomas. Proc Natl Acad Sci. 2017;114(25):6581–6.PubMedPubMedCentralCrossRef
9.
go back to reference Asoh S, Ohsawa I, Mori T, Katsura K-I, Hiraide T, Katayama Y, et al. Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci. 2002;99(26):17107–12.PubMedPubMedCentralCrossRef Asoh S, Ohsawa I, Mori T, Katsura K-I, Hiraide T, Katayama Y, et al. Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci. 2002;99(26):17107–12.PubMedPubMedCentralCrossRef
11.
go back to reference Imamura A, Morimoto Y, Ono S, Kurotaki N, Kanegae S, Yamamoto N, et al. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J Neural Transm (Vienna). 2020;127(11):1501–15.CrossRef Imamura A, Morimoto Y, Ono S, Kurotaki N, Kanegae S, Yamamoto N, et al. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. J Neural Transm (Vienna). 2020;127(11):1501–15.CrossRef
12.
go back to reference Wingo TS, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci. 2021;24(6):810–7.PubMedPubMedCentralCrossRef Wingo TS, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci. 2021;24(6):810–7.PubMedPubMedCentralCrossRef
13.
go back to reference Traylor M, Malik R, Nalls MA, Cotlarciuc I, Radmanesh F, Thorleifsson G, et al. Genetic variation at 16q24. 2 is associated with small vessel stroke. Ann Neurol. 2017;81(3):383–94.PubMedPubMedCentralCrossRef Traylor M, Malik R, Nalls MA, Cotlarciuc I, Radmanesh F, Thorleifsson G, et al. Genetic variation at 16q24. 2 is associated with small vessel stroke. Ann Neurol. 2017;81(3):383–94.PubMedPubMedCentralCrossRef
14.
go back to reference Traylor M, Persyn E, Tomppo L, Klasson S, Abedi V, Bakker MK, et al. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 2021;20(5):351–61.PubMedPubMedCentralCrossRef Traylor M, Persyn E, Tomppo L, Klasson S, Abedi V, Bakker MK, et al. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 2021;20(5):351–61.PubMedPubMedCentralCrossRef
15.
go back to reference Wingo AP, Dammer EB, Breen MS, Logsdon BA, Duong DM, Troncosco JC, et al. Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nat Commun. 2019;10(1):1619.PubMedPubMedCentralCrossRef Wingo AP, Dammer EB, Breen MS, Logsdon BA, Duong DM, Troncosco JC, et al. Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nat Commun. 2019;10(1):1619.PubMedPubMedCentralCrossRef
17.
go back to reference Ou Y-N, Yang Y-X, Deng Y-T, Zhang C, Hu H, Wu B-S, et al. Identification of novel drug targets for Alzheimer’s disease by integrating genetics and proteomes from brain and blood. Mol Psychiatry. 2021;26:6065–73.PubMedCrossRef Ou Y-N, Yang Y-X, Deng Y-T, Zhang C, Hu H, Wu B-S, et al. Identification of novel drug targets for Alzheimer’s disease by integrating genetics and proteomes from brain and blood. Mol Psychiatry. 2021;26:6065–73.PubMedCrossRef
18.
go back to reference Liu J, Li X, Luo X-J. Proteome-wide association study provides insights into the genetic component of protein abundance in psychiatric disorders. Biol Psychiatr. 2021;90(11):781-9. Liu J, Li X, Luo X-J. Proteome-wide association study provides insights into the genetic component of protein abundance in psychiatric disorders. Biol Psychiatr. 2021;90(11):781-9.
19.
go back to reference Wang M, Beckmann ND, Roussos P, Wang E, Zhou X, Wang Q, et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci Data. 2018;5(1):1–16.CrossRef Wang M, Beckmann ND, Roussos P, Wang E, Zhou X, Wang Q, et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci Data. 2018;5(1):1–16.CrossRef
20.
go back to reference De Jager PL, Ma Y, McCabe C, Xu J, Vardarajan BN, Felsky D, et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci Data. 2018;5:180142.PubMedPubMedCentralCrossRef De Jager PL, Ma Y, McCabe C, Xu J, Vardarajan BN, Felsky D, et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci Data. 2018;5:180142.PubMedPubMedCentralCrossRef
21.
go back to reference Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat Genet. 2021;53(2):143–6.PubMedPubMedCentralCrossRef Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat Genet. 2021;53(2):143–6.PubMedPubMedCentralCrossRef
22.
go back to reference Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology. 2015;35(4):354–89.PubMedPubMedCentralCrossRef Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology. 2015;35(4):354–89.PubMedPubMedCentralCrossRef
23.
go back to reference Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19(11):1442–53.PubMedPubMedCentralCrossRef Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19(11):1442–53.PubMedPubMedCentralCrossRef
24.
go back to reference Li M, Huang L, Grigoroiu-Serbanescu M, Bergen SE, Landén M, Hultman CM, et al. Convergent lines of evidence support LRP8 as a susceptibility gene for psychosis. Mol Neurobiol. 2016;53(10):6608–19.PubMedCrossRef Li M, Huang L, Grigoroiu-Serbanescu M, Bergen SE, Landén M, Hultman CM, et al. Convergent lines of evidence support LRP8 as a susceptibility gene for psychosis. Mol Neurobiol. 2016;53(10):6608–19.PubMedCrossRef
25.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.PubMedPubMedCentralCrossRef Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.PubMedPubMedCentralCrossRef
26.
go back to reference Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52.PubMedPubMedCentralCrossRef Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52.PubMedPubMedCentralCrossRef
27.
go back to reference Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentralCrossRef Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentralCrossRef
28.
go back to reference Rasooly D, Patel CJ. Conducting a reproducible Mendelian randomization analysis using the R analytic statistical environment. Curr Protoc Hum Genet. 2019;101(1):e82.PubMedPubMedCentral Rasooly D, Patel CJ. Conducting a reproducible Mendelian randomization analysis using the R analytic statistical environment. Curr Protoc Hum Genet. 2019;101(1):e82.PubMedPubMedCentral
29.
go back to reference Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.PubMedPubMedCentralCrossRef Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.PubMedPubMedCentralCrossRef
30.
go back to reference Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383.PubMedPubMedCentralCrossRef Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383.PubMedPubMedCentralCrossRef
31.
go back to reference Su X, Li W, Lv L, Li X, Yang J, Luo X-J, et al. Transcriptome-wide association study provides insights into the genetic component of gene expression in anxiety. Front Genet. 2021;12:740134.PubMedPubMedCentralCrossRef Su X, Li W, Lv L, Li X, Yang J, Luo X-J, et al. Transcriptome-wide association study provides insights into the genetic component of gene expression in anxiety. Front Genet. 2021;12:740134.PubMedPubMedCentralCrossRef
33.
go back to reference Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796–804.PubMedPubMedCentralCrossRef Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796–804.PubMedPubMedCentralCrossRef
34.
go back to reference Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524–37.PubMedPubMedCentralCrossRef Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524–37.PubMedPubMedCentralCrossRef
35.
go back to reference Knol MJ, Lu D, Traylor M, Adams HHH, Romero JRJ, Smith AV, et al. Association of common genetic variants with brain microbleeds: a genome-wide association study. Neurology. 2020;95(24):e3331–43.PubMedPubMedCentralCrossRef Knol MJ, Lu D, Traylor M, Adams HHH, Romero JRJ, Smith AV, et al. Association of common genetic variants with brain microbleeds: a genome-wide association study. Neurology. 2020;95(24):e3331–43.PubMedPubMedCentralCrossRef
36.
go back to reference Nagel M, Jansen PR, Stringer S. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50(7):920–7.PubMedCrossRef Nagel M, Jansen PR, Stringer S. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50(7):920–7.PubMedCrossRef
37.
go back to reference Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9.PubMedPubMedCentralCrossRef Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9.PubMedPubMedCentralCrossRef
38.
go back to reference Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166–74.PubMedCrossRef Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166–74.PubMedCrossRef
39.
go back to reference Liu M, Xu P, Guan Z, Qian X, Dockery P, Fitzgerald U, et al. Ulk4 deficiency leads to hypomyelination in mice. Glia. 2018;66(1):175–90.PubMedCrossRef Liu M, Xu P, Guan Z, Qian X, Dockery P, Fitzgerald U, et al. Ulk4 deficiency leads to hypomyelination in mice. Glia. 2018;66(1):175–90.PubMedCrossRef
40.
go back to reference Akiyama K, Liang YQ, Isono M, Kato N. Investigation of functional genes at homologous loci identified based on genome-wide association studies of blood lipids via high-fat diet intervention in rats using an in vivo approach. J Atheroscler Thromb. 2015;22(5):455–80.PubMedCrossRef Akiyama K, Liang YQ, Isono M, Kato N. Investigation of functional genes at homologous loci identified based on genome-wide association studies of blood lipids via high-fat diet intervention in rats using an in vivo approach. J Atheroscler Thromb. 2015;22(5):455–80.PubMedCrossRef
41.
go back to reference Centeno C, Repici M, Chatton JY, Riederer BM, Bonny C, Nicod P, et al. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death Differ. 2007;14(2):240–53.PubMedCrossRef Centeno C, Repici M, Chatton JY, Riederer BM, Bonny C, Nicod P, et al. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death Differ. 2007;14(2):240–53.PubMedCrossRef
42.
go back to reference Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020;14:51.PubMedPubMedCentralCrossRef Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020;14:51.PubMedPubMedCentralCrossRef
43.
go back to reference Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009;41(1):47–55.PubMedCrossRef Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009;41(1):47–55.PubMedCrossRef
44.
go back to reference Wang XB, Han YD, Cui NH, Gao JJ, Yang J, Huang ZL, et al. Associations of lipid levels susceptibility loci with coronary artery disease in Chinese population. Lipids Health Dis. 2015;14:80.PubMedPubMedCentralCrossRef Wang XB, Han YD, Cui NH, Gao JJ, Yang J, Huang ZL, et al. Associations of lipid levels susceptibility loci with coronary artery disease in Chinese population. Lipids Health Dis. 2015;14:80.PubMedPubMedCentralCrossRef
45.
go back to reference Koskimäki J, Zhang D, Li Y, Saadat L, Moore T, Lightle R, et al. Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations. Acta Neuropathol Commun. 2019;7(1):132.PubMedPubMedCentralCrossRef Koskimäki J, Zhang D, Li Y, Saadat L, Moore T, Lightle R, et al. Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations. Acta Neuropathol Commun. 2019;7(1):132.PubMedPubMedCentralCrossRef
46.
go back to reference Wang Q, Meng L, Wang Z. Combined cerebral microbleeds with lacunar infarctions in familial cerebral cavernous malformations. JAMA Neurol. 2019;76(9):1117–8.CrossRef Wang Q, Meng L, Wang Z. Combined cerebral microbleeds with lacunar infarctions in familial cerebral cavernous malformations. JAMA Neurol. 2019;76(9):1117–8.CrossRef
47.
go back to reference Johnson AD, Yanek LR, Chen MH, Faraday N, Larson MG, Tofler G, et al. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat Genet. 2010;42(7):608–13.PubMedPubMedCentralCrossRef Johnson AD, Yanek LR, Chen MH, Faraday N, Larson MG, Tofler G, et al. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat Genet. 2010;42(7):608–13.PubMedPubMedCentralCrossRef
48.
go back to reference Tsai SH, Hsu LA, Tsai HY, Yeh YH, Lu CY, Chen PC, et al. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB J. 2020;34(7):9498–511.PubMedCrossRef Tsai SH, Hsu LA, Tsai HY, Yeh YH, Lu CY, Chen PC, et al. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB J. 2020;34(7):9498–511.PubMedCrossRef
49.
go back to reference Kessler T, Schunkert H, von Hundelshausen P. Novel approaches to fine-tune therapeutic targeting of platelets in atherosclerosis: a critical appraisal. Thromb Haemost. 2020;120(11):1492–504.PubMedCrossRef Kessler T, Schunkert H, von Hundelshausen P. Novel approaches to fine-tune therapeutic targeting of platelets in atherosclerosis: a critical appraisal. Thromb Haemost. 2020;120(11):1492–504.PubMedCrossRef
50.
go back to reference Rouhl RP, Damoiseaux JG, Lodder J, Theunissen RO, Knottnerus IL, Staals J, et al. Vascular inflammation in cerebral small vessel disease. Neurobiol Aging. 2012;33(8):1800–6.PubMedCrossRef Rouhl RP, Damoiseaux JG, Lodder J, Theunissen RO, Knottnerus IL, Staals J, et al. Vascular inflammation in cerebral small vessel disease. Neurobiol Aging. 2012;33(8):1800–6.PubMedCrossRef
51.
go back to reference Acampa M, Lazzerini PE, Manfredi C, Guideri F, Tassi R, Domenichelli C, et al. Non-stenosing carotid atherosclerosis and arterial stiffness in embolic stroke of undetermined source. Front Neurol. 2020;11:725.PubMedPubMedCentralCrossRef Acampa M, Lazzerini PE, Manfredi C, Guideri F, Tassi R, Domenichelli C, et al. Non-stenosing carotid atherosclerosis and arterial stiffness in embolic stroke of undetermined source. Front Neurol. 2020;11:725.PubMedPubMedCentralCrossRef
52.
go back to reference Nishiyama A, Dahlin KJ, Prince JT, Johnstone SR, Stallcup WB. The primary structure of NG2, a novel membrane-spanning proteoglycan. J Cell Biol. 1991;114(2):359–71.PubMedCrossRef Nishiyama A, Dahlin KJ, Prince JT, Johnstone SR, Stallcup WB. The primary structure of NG2, a novel membrane-spanning proteoglycan. J Cell Biol. 1991;114(2):359–71.PubMedCrossRef
53.
go back to reference Fung K, Ramírez J, Warren HR, Aung N, Lee AM, Tzanis E, et al. Genome-wide association study identifies loci for arterial stiffness index in 127,121 UK Biobank participants. Sci Rep. 2019;9(1):9143.PubMedPubMedCentralCrossRef Fung K, Ramírez J, Warren HR, Aung N, Lee AM, Tzanis E, et al. Genome-wide association study identifies loci for arterial stiffness index in 127,121 UK Biobank participants. Sci Rep. 2019;9(1):9143.PubMedPubMedCentralCrossRef
54.
go back to reference Santoro C, Giugliano T, Kraemer M, Torella A, Schwitalla JC, Cirillo M, et al. Whole exome sequencing identifies MRVI1 as a susceptibility gene for moyamoya syndrome in neurofibromatosis type 1. PLoS One. 2018;13(7):e0200446.PubMedPubMedCentralCrossRef Santoro C, Giugliano T, Kraemer M, Torella A, Schwitalla JC, Cirillo M, et al. Whole exome sequencing identifies MRVI1 as a susceptibility gene for moyamoya syndrome in neurofibromatosis type 1. PLoS One. 2018;13(7):e0200446.PubMedPubMedCentralCrossRef
55.
go back to reference Rudzik R, Dziedziejko V, Rać ME, Sawczuk M, Maciejewska-Skrendo A, Safranow K, et al. Polymorphisms in GP6, PEAR1A, MRVI1, PIK3CG, JMJD1C, and SHH genes in patients with unstable angina. Int J Environ Res Public Health. 2020;17(20):7506.PubMedCentralCrossRef Rudzik R, Dziedziejko V, Rać ME, Sawczuk M, Maciejewska-Skrendo A, Safranow K, et al. Polymorphisms in GP6, PEAR1A, MRVI1, PIK3CG, JMJD1C, and SHH genes in patients with unstable angina. Int J Environ Res Public Health. 2020;17(20):7506.PubMedCentralCrossRef
56.
go back to reference Liu KW, Feng H, Bachoo R, Kazlauskas A, Smith EM, Symes K, et al. SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. J Clin Investig. 2011;121(3):905–17.PubMedPubMedCentralCrossRef Liu KW, Feng H, Bachoo R, Kazlauskas A, Smith EM, Symes K, et al. SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. J Clin Investig. 2011;121(3):905–17.PubMedPubMedCentralCrossRef
57.
go back to reference Sang Y, Hou Y, Cheng R, Zheng L, Alvarez AA, Hu B, et al. Targeting PDGFRα-activated glioblastoma through specific inhibition of SHP-2-mediated signaling. Neuro-Oncology. 2019;21(11):1423–35.PubMedPubMedCentralCrossRef Sang Y, Hou Y, Cheng R, Zheng L, Alvarez AA, Hu B, et al. Targeting PDGFRα-activated glioblastoma through specific inhibition of SHP-2-mediated signaling. Neuro-Oncology. 2019;21(11):1423–35.PubMedPubMedCentralCrossRef
58.
go back to reference Roccograndi L, Binder ZA, Zhang L, Aceto N, Zhang Z, Bentires-Alj M, et al. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J Neuro-Oncol. 2017;135(3):487–96.CrossRef Roccograndi L, Binder ZA, Zhang L, Aceto N, Zhang Z, Bentires-Alj M, et al. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J Neuro-Oncol. 2017;135(3):487–96.CrossRef
59.
go back to reference Yang Z, Li Y, Yin F, Chan RJ. Activating PTPN11 mutants promote hematopoietic progenitor cell-cycle progression and survival. Exp Hematol. 2008;36(10):1285–96.PubMedPubMedCentralCrossRef Yang Z, Li Y, Yin F, Chan RJ. Activating PTPN11 mutants promote hematopoietic progenitor cell-cycle progression and survival. Exp Hematol. 2008;36(10):1285–96.PubMedPubMedCentralCrossRef
60.
61.
go back to reference Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50(4):538–48.PubMedPubMedCentralCrossRef Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50(4):538–48.PubMedPubMedCentralCrossRef
62.
go back to reference Kaiser J, Maibach M, Salpeter I, Hagenbuch N, de Souza VBC, Robinson MD, et al. The spinal transcriptome after cortical stroke: in search of molecular factors regulating spontaneous recovery in the spinal cord. J Neurosci. 2019;39(24):4714–26.PubMedPubMedCentralCrossRef Kaiser J, Maibach M, Salpeter I, Hagenbuch N, de Souza VBC, Robinson MD, et al. The spinal transcriptome after cortical stroke: in search of molecular factors regulating spontaneous recovery in the spinal cord. J Neurosci. 2019;39(24):4714–26.PubMedPubMedCentralCrossRef
63.
go back to reference Battle A, Khan Z, Wang SH, et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science. 2015;347(6222):664-7. Battle A, Khan Z, Wang SH, et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science. 2015;347(6222):664-7.
64.
go back to reference Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet. 2015;16(4):197–212.PubMedCrossRef Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet. 2015;16(4):197–212.PubMedCrossRef
65.
go back to reference Carvalho-Silva D, Pierleoni A, Pignatelli M, Ong C, Fumis L, Karamanis N, et al. Open Targets Platform: new developments and updates two years on. Nucleic Acids Res. 2019;47(D1):D1056–d1065.PubMedCrossRef Carvalho-Silva D, Pierleoni A, Pignatelli M, Ong C, Fumis L, Karamanis N, et al. Open Targets Platform: new developments and updates two years on. Nucleic Acids Res. 2019;47(D1):D1056–d1065.PubMedCrossRef
66.
go back to reference Kwan A, Wei J, Dowling NM, Power MC, Nadareishvili Z. Cognitive impairment after lacunar stroke and the risk of recurrent stroke and death. Cerebrovasc Dis. 2021;50(4):383–9.PubMedCrossRef Kwan A, Wei J, Dowling NM, Power MC, Nadareishvili Z. Cognitive impairment after lacunar stroke and the risk of recurrent stroke and death. Cerebrovasc Dis. 2021;50(4):383–9.PubMedCrossRef
67.
go back to reference Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 2016;17:72.PubMedPubMedCentralCrossRef Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 2016;17:72.PubMedPubMedCentralCrossRef
68.
Metadata
Title
Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes
Authors
Chengcheng Zhang
Fengqin Qin
Xiaojing Li
Xiangdong Du
Tao Li
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Stroke
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02408-y

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue