Skip to main content
Top
Published in: Journal of Translational Medicine 1/2023

Open Access 01-12-2023 | Celiac Disease | Research

Transcriptome profile and immune infiltrated landscape revealed a novel role of γδT cells in mediating pyroptosis in celiac disease

Authors: Shuze Chen, Xiuying Liu, Zhi Wang, Dekai Zheng, Ying Wang, Yiling Yan, Xiaojie Peng, Qiujuan Ye, Ye Chen

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

Background

Celiac disease (CeD) is a primary malabsorption syndrome with no specific therapy, which greatly affects the quality of life. Since the pathogenesis of CeD remains riddled, based on multiple transcriptome profiles, this study aimed to establish an immune interaction network and elucidated new mechanisms involved in the pathogenesis of CeD, providing potentially new evidence for the diagnosis and treatment of CeD.

Methods

Three microarray and three RNA sequencing datasets of human duodenal tissue with or without CeD were included in Gene Expression Omnibus and respectively merged into derivation and validation cohorts. Differential expression gene and functional enrichment analysis were developed, then pyroptosis enrichment score (PES) model was established to quantify pyroptosis levels. Immune infiltration and co-expression network were constructed based on Xcell database. Protein–protein interaction and weighted gene co-expression network analysis were determined to identify pyroptosis relative hub genes, whose predictive efficiency were tested using a least absolute shrinkage and selection operator (LASSO) regression model. CeD animal and in vitro cell line models were established to verify the occurrence of pyroptosis and molecules expression employing immunofluorescence, western blotting, cell counting kit-8 assay and enzyme-linked immunosorbent assay. Analysis of single-cell RNAseq (scRNAseq) was performed using “Seurat” R package.

Results

Differentially expressed genes (DEGs) (137) were identified in derivation cohort whose function was mainly enriched in interferon response and suppression of metabolism. Since an enrichment of pyroptosis pathway in CeD was unexpectedly discovered, a PES model with high efficiency was constructed and verified with two external databases, which confirmed that pyroptosis was significantly upregulated in CeD epithelia. γδT cells exhibited high expression of IFN-γ were the most relevant cells associated with pyroptosis and occupied a greater weight in the LASSO predictive model of CeD. An accumulation of GSDMD expressed in epithelia was identified using scRNAseq, while animal model and in vitro experiments confirmed that epithelium cells were induced to become “pre-pyroptotic” status via IFN-γ/IRF1/GSDMD axis. Furthermore, gluten intake triggered pyroptosis via caspase-1/GSDMD/IL-1β pathway.

Conclusion

Our study demonstrated that pyroptosis was involved in the pathogenesis of CeD, and elucidated the novel role of γδT cells in mediating epithelial cell pyroptosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Choung RS, Larson SA, Khaleghi S, Rubio-Tapia A, Ovsyannikova IG, King KS, Larson JJ, Lahr BD, Poland GA, Camilleri MJ, Murray JA. Prevalence and morbidity of undiagnosed celiac disease from a community-based study. Gastroenterology. 2017;152:830-839.e835.CrossRefPubMed Choung RS, Larson SA, Khaleghi S, Rubio-Tapia A, Ovsyannikova IG, King KS, Larson JJ, Lahr BD, Poland GA, Camilleri MJ, Murray JA. Prevalence and morbidity of undiagnosed celiac disease from a community-based study. Gastroenterology. 2017;152:830-839.e835.CrossRefPubMed
3.
go back to reference Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK, Sarna VK, Lundin KE, Qiao SW, Sollid LM. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest. 2018;128:2642–50.CrossRefPubMedPubMedCentral Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK, Sarna VK, Lundin KE, Qiao SW, Sollid LM. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest. 2018;128:2642–50.CrossRefPubMedPubMedCentral
4.
go back to reference Christophersen A, Risnes LF, Dahal-Koirala S, Sollid LM. Therapeutic and diagnostic implications of T cell scarring in celiac disease and beyond. Trends Mol Med. 2019;25:836–52.CrossRefPubMed Christophersen A, Risnes LF, Dahal-Koirala S, Sollid LM. Therapeutic and diagnostic implications of T cell scarring in celiac disease and beyond. Trends Mol Med. 2019;25:836–52.CrossRefPubMed
5.
go back to reference Rust C, Kooy Y, Peña S, Mearin ML, Kluin P, Koning F. Phenotypical and functional characterization of small intestinal TcR gamma delta + T cells in coeliac disease. Scand J Immunol. 1992;35:459–68.CrossRefPubMed Rust C, Kooy Y, Peña S, Mearin ML, Kluin P, Koning F. Phenotypical and functional characterization of small intestinal TcR gamma delta + T cells in coeliac disease. Scand J Immunol. 1992;35:459–68.CrossRefPubMed
6.
go back to reference Sarra M, Cupi ML, Monteleone I, Franzè E, Ronchetti G, Di Sabatino A, Gentileschi P, Franceschilli L, Sileri P, Sica G, et al. IL-15 positively regulates IL-21 production in celiac disease mucosa. Mucosal Immunol. 2013;6:244–55.CrossRefPubMed Sarra M, Cupi ML, Monteleone I, Franzè E, Ronchetti G, Di Sabatino A, Gentileschi P, Franceschilli L, Sileri P, Sica G, et al. IL-15 positively regulates IL-21 production in celiac disease mucosa. Mucosal Immunol. 2013;6:244–55.CrossRefPubMed
7.
go back to reference Mayassi T, Ladell K, Gudjonson H, McLaren JE, Shaw DG, Tran MT, Rokicka JJ, Lawrence I, Grenier JC, van Unen V, et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell. 2019;176:967-981.e919.CrossRefPubMedPubMedCentral Mayassi T, Ladell K, Gudjonson H, McLaren JE, Shaw DG, Tran MT, Rokicka JJ, Lawrence I, Grenier JC, van Unen V, et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell. 2019;176:967-981.e919.CrossRefPubMedPubMedCentral
8.
go back to reference Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D’Agate C, et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41:408–19.CrossRefPubMed Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D’Agate C, et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41:408–19.CrossRefPubMed
9.
go back to reference Jørgensen SF, Reims HM, Frydenlund D, Holm K, Paulsen V, Michelsen AE, Jørgensen KK, Osnes LT, Bratlie J, Eide TJ, et al. A cross-sectional study of the prevalence of gastrointestinal symptoms and pathology in patients with common variable immunodeficiency. Am J Gastroenterol. 2016;111:1467–75.CrossRefPubMed Jørgensen SF, Reims HM, Frydenlund D, Holm K, Paulsen V, Michelsen AE, Jørgensen KK, Osnes LT, Bratlie J, Eide TJ, et al. A cross-sectional study of the prevalence of gastrointestinal symptoms and pathology in patients with common variable immunodeficiency. Am J Gastroenterol. 2016;111:1467–75.CrossRefPubMed
10.
go back to reference Acharya P, Kutum R, Pandey R, Mishra A, Saha R, Munjal A, Ahuja V, Mukerji M, Makharia GK. First degree relatives of patients with celiac disease harbour an intestinal transcriptomic signature that might protect them from enterocyte damage. Clin Transl Gastroenterol. 2018;9:195.CrossRefPubMedPubMedCentral Acharya P, Kutum R, Pandey R, Mishra A, Saha R, Munjal A, Ahuja V, Mukerji M, Makharia GK. First degree relatives of patients with celiac disease harbour an intestinal transcriptomic signature that might protect them from enterocyte damage. Clin Transl Gastroenterol. 2018;9:195.CrossRefPubMedPubMedCentral
11.
go back to reference Wolf J, Willscher E, Loeffler-Wirth H, Schmidt M. Deciphering the transcriptomic heterogeneity of duodenal coeliac disease biopsies. Int J Mol Sci. 2021;22:2551.CrossRefPubMedPubMedCentral Wolf J, Willscher E, Loeffler-Wirth H, Schmidt M. Deciphering the transcriptomic heterogeneity of duodenal coeliac disease biopsies. Int J Mol Sci. 2021;22:2551.CrossRefPubMedPubMedCentral
12.
go back to reference Loberman-Nachum N, Sosnovski K, Di Segni A, Efroni G, Braun T, BenShoshan M, Anafi L, Avivi C, Barshack I, Shouval DS, et al. Defining the celiac disease transcriptome using clinical pathology specimens reveals biologic pathways and supports diagnosis. Sci Rep. 2019;9:16163.CrossRefPubMedPubMedCentral Loberman-Nachum N, Sosnovski K, Di Segni A, Efroni G, Braun T, BenShoshan M, Anafi L, Avivi C, Barshack I, Shouval DS, et al. Defining the celiac disease transcriptome using clinical pathology specimens reveals biologic pathways and supports diagnosis. Sci Rep. 2019;9:16163.CrossRefPubMedPubMedCentral
13.
go back to reference Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, Tastet O, Voisine J, Discepolo V, Marietta EV, Hawash MBF, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020;578:600–4.CrossRefPubMedPubMedCentral Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, Tastet O, Voisine J, Discepolo V, Marietta EV, Hawash MBF, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020;578:600–4.CrossRefPubMedPubMedCentral
14.
go back to reference van der Graaf A, Zorro MM, Claringbould A, Võsa U, Aguirre-Gamboa R, Li C, Mooiweer J, Ricaño-Ponce I, Borek Z, Koning F, et al. Systematic prioritization of candidate genes in disease loci identifies TRAFD1 as a master regulator of IFNγ signaling in celiac disease. Front Genet. 2020;11: 562434.CrossRefPubMed van der Graaf A, Zorro MM, Claringbould A, Võsa U, Aguirre-Gamboa R, Li C, Mooiweer J, Ricaño-Ponce I, Borek Z, Koning F, et al. Systematic prioritization of candidate genes in disease loci identifies TRAFD1 as a master regulator of IFNγ signaling in celiac disease. Front Genet. 2020;11: 562434.CrossRefPubMed
15.
go back to reference Pietz G, De R, Hedberg M, Sjöberg V, Sandström O, Hernell O, Hammarström S, Hammarström ML. Immunopathology of childhood celiac disease—key role of intestinal epithelial cells. PLoS ONE. 2017;12: e0185025.CrossRefPubMedPubMedCentral Pietz G, De R, Hedberg M, Sjöberg V, Sandström O, Hernell O, Hammarström S, Hammarström ML. Immunopathology of childhood celiac disease—key role of intestinal epithelial cells. PLoS ONE. 2017;12: e0185025.CrossRefPubMedPubMedCentral
16.
go back to reference Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, Roose-Girma M, Modrusan Z, Sagolla MS, Webster JD, Dixit VM. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575:679–82.CrossRefPubMed Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, Roose-Girma M, Modrusan Z, Sagolla MS, Webster JD, Dixit VM. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575:679–82.CrossRefPubMed
17.
go back to reference Rana N, Privitera G, Kondolf HC, Bulek K, Lechuga S, De Salvo C, Corridoni D, Antanaviciute A, Maywald RL, Hurtado AM, et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell. 2022;185:283-298.e217.CrossRefPubMedPubMedCentral Rana N, Privitera G, Kondolf HC, Bulek K, Lechuga S, De Salvo C, Corridoni D, Antanaviciute A, Maywald RL, Hurtado AM, et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell. 2022;185:283-298.e217.CrossRefPubMedPubMedCentral
18.
go back to reference Dieckman T, Schreurs M, Mahfouz A, Kooy-Winkelaar Y, Neefjes-Borst A, Bouma G, Koning F. Single-cell analysis of refractory celiac disease demonstrates inter- and intra-patient aberrant cell heterogeneity. Cell Mol Gastroenterol Hepatol. 2022;14:173–92.CrossRefPubMedPubMedCentral Dieckman T, Schreurs M, Mahfouz A, Kooy-Winkelaar Y, Neefjes-Borst A, Bouma G, Koning F. Single-cell analysis of refractory celiac disease demonstrates inter- and intra-patient aberrant cell heterogeneity. Cell Mol Gastroenterol Hepatol. 2022;14:173–92.CrossRefPubMedPubMedCentral
19.
go back to reference Dotsenko V, Oittinen M, Taavela J, Popp A, Peräaho M, Staff S, Sarin J, Leon F, Isola J, Mäki M, Viiri K. Genome-wide transcriptomic analysis of intestinal mucosa in celiac disease patients on a gluten-free diet and postgluten challenge. Cell Mol Gastroenterol Hepatol. 2021;11:13–32.CrossRefPubMed Dotsenko V, Oittinen M, Taavela J, Popp A, Peräaho M, Staff S, Sarin J, Leon F, Isola J, Mäki M, Viiri K. Genome-wide transcriptomic analysis of intestinal mucosa in celiac disease patients on a gluten-free diet and postgluten challenge. Cell Mol Gastroenterol Hepatol. 2021;11:13–32.CrossRefPubMed
20.
go back to reference Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.CrossRefPubMedPubMedCentral Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.CrossRefPubMedPubMedCentral
21.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47.CrossRefPubMedPubMedCentral Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47.CrossRefPubMedPubMedCentral
24.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.CrossRefPubMedPubMedCentral Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Lin W, Chen Y, Wu B, Chen Y, Li Z. Identification of the pyroptosis-related prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discov. 2021;7:161.CrossRefPubMedPubMedCentral Lin W, Chen Y, Wu B, Chen Y, Li Z. Identification of the pyroptosis-related prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discov. 2021;7:161.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Patankar JV, Becker C. Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol. 2020;17:543–56.CrossRefPubMed Patankar JV, Becker C. Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol. 2020;17:543–56.CrossRefPubMed
33.
go back to reference Levescot A, Malamut G. Immunopathogenesis and environmental triggers in coeliac disease. Gut. 2022;71:2337–49.CrossRefPubMed Levescot A, Malamut G. Immunopathogenesis and environmental triggers in coeliac disease. Gut. 2022;71:2337–49.CrossRefPubMed
34.
go back to reference Pinto-Sanchez MI, Silvester JA, Lebwohl B, Leffler DA, Anderson RP. Society for the study of celiac disease position statement on gaps and opportunities in coeliac disease. Nat Rev Gastroenterol Hepatol. 2021;18:875–84.CrossRefPubMedPubMedCentral Pinto-Sanchez MI, Silvester JA, Lebwohl B, Leffler DA, Anderson RP. Society for the study of celiac disease position statement on gaps and opportunities in coeliac disease. Nat Rev Gastroenterol Hepatol. 2021;18:875–84.CrossRefPubMedPubMedCentral
36.
37.
go back to reference Zhou H, Tang YD, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev. 2022;64:1–6.CrossRefPubMed Zhou H, Tang YD, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev. 2022;64:1–6.CrossRefPubMed
38.
go back to reference Wang W, Zhao H, Yang Y, Chi Y, Lv X, Zhang L. Interferon-γ exerts dual functions on human erythropoiesis via interferon regulatory factor 1 signal pathway. Biochem Biophys Res Commun. 2020;521:326–32.CrossRefPubMed Wang W, Zhao H, Yang Y, Chi Y, Lv X, Zhang L. Interferon-γ exerts dual functions on human erythropoiesis via interferon regulatory factor 1 signal pathway. Biochem Biophys Res Commun. 2020;521:326–32.CrossRefPubMed
Metadata
Title
Transcriptome profile and immune infiltrated landscape revealed a novel role of γδT cells in mediating pyroptosis in celiac disease
Authors
Shuze Chen
Xiuying Liu
Zhi Wang
Dekai Zheng
Ying Wang
Yiling Yan
Xiaojie Peng
Qiujuan Ye
Ye Chen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04359-1

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine