Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Clopidogrel | Research

Evaluating the frequency and the impact of pharmacogenetic alleles in an ancestrally diverse Biobank population

Authors: Shefali S. Verma, Karl Keat, Binglan Li, Glenda Hoffecker, Marjorie Risman, Katrin Sangkuhl, Michelle Whirl-Carrillo, Scott Dudek, Anurag Verma, Teri E. Klein, Marylyn D. Ritchie, Sony Tuteja, Regeneron Genetics Center

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Pharmacogenomics (PGx) aims to utilize a patient’s genetic data to enable safer and more effective prescribing of medications. The Clinical Pharmacogenetics Implementation Consortium (CPIC) provides guidelines with strong evidence for 24 genes that affect 72 medications. Despite strong evidence linking PGx alleles to drug response, there is a large gap in the implementation and return of actionable pharmacogenetic findings to patients in standard clinical practice. In this study, we evaluated opportunities for genetically guided medication prescribing in a diverse health system and determined the frequencies of actionable PGx alleles in an ancestrally diverse biobank population.

Methods

A retrospective analysis of the Penn Medicine electronic health records (EHRs), which includes ~ 3.3 million patients between 2012 and 2020, provides a snapshot of the trends in prescriptions for drugs with genotype-based prescribing guidelines (‘CPIC level A or B’) in the Penn Medicine health system. The Penn Medicine BioBank (PMBB) consists of a diverse group of 43,359 participants whose EHRs are linked to genome-wide SNP array and whole exome sequencing (WES) data. We used the Pharmacogenomics Clinical Annotation Tool (PharmCAT), to annotate PGx alleles from PMBB variant call format (VCF) files and identify samples with actionable PGx alleles.

Results

We identified ~ 316.000 unique patients that were prescribed at least 2 drugs with CPIC Level A or B guidelines. Genetic analysis in PMBB identified that 98.9% of participants carry one or more PGx actionable alleles where treatment modification would be recommended. After linking the genetic data with prescription data from the EHR, 14.2% of participants (n = 6157) were prescribed medications that could be impacted by their genotype (as indicated by their PharmCAT report). For example, 856 participants received clopidogrel who carried CYP2C19 reduced function alleles, placing them at increased risk for major adverse cardiovascular events. When we stratified by genetic ancestry, we found disparities in PGx allele frequencies and clinical burden. Clopidogrel users of Asian ancestry in PMBB had significantly higher rates of CYP2C19 actionable alleles than European ancestry users of clopidrogrel (p < 0.0001, OR = 3.68).

Conclusions

Clinically actionable PGx alleles are highly prevalent in our health system and many patients were prescribed medications that could be affected by PGx alleles. These results illustrate the potential utility of preemptive genotyping for tailoring of medications and implementation of PGx into routine clinical care.
Appendix
Available only for authorised users
Literature
1.
go back to reference Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89(3):464–7.CrossRefPubMedPubMedCentral Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89(3):464–7.CrossRefPubMedPubMedCentral
2.
go back to reference Relling MV, Klein TE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Caudle KE. The clinical pharmacogenetics implementation consortium: 10 years later. Clin Pharmacol Ther. 2020;107(1):171–5.CrossRefPubMed Relling MV, Klein TE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Caudle KE. The clinical pharmacogenetics implementation consortium: 10 years later. Clin Pharmacol Ther. 2020;107(1):171–5.CrossRefPubMed
3.
go back to reference Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics working group. Clin Transl Sci. 2020;13(1):116–24.CrossRefPubMed Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics working group. Clin Transl Sci. 2020;13(1):116–24.CrossRefPubMed
5.
go back to reference Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2021;110(3):563–72.CrossRefPubMedPubMedCentral Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2021;110(3):563–72.CrossRefPubMedPubMedCentral
6.
go back to reference Wu AH, White MJ, Oh S, Burchard E. The Hawaii clopidogrel lawsuit: the possible effect on clinical laboratory testing. Per Med. 2015;12(3):179–81.CrossRefPubMed Wu AH, White MJ, Oh S, Burchard E. The Hawaii clopidogrel lawsuit: the possible effect on clinical laboratory testing. Per Med. 2015;12(3):179–81.CrossRefPubMed
7.
go back to reference Ramirez AH, Shi Y, Schildcrout JS, Delaney JT, Xu H, Oetjens MT, et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics. 2012;13(4):407–18.CrossRefPubMed Ramirez AH, Shi Y, Schildcrout JS, Delaney JT, Xu H, Oetjens MT, et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics. 2012;13(4):407–18.CrossRefPubMed
9.
go back to reference Mosley JD, Shaffer CM, Van Driest SL, Weeke PE, Wells QS, Karnes JH, et al. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough. Pharmacogenomics J. 2016;16(3):231–7.CrossRefPubMed Mosley JD, Shaffer CM, Van Driest SL, Weeke PE, Wells QS, Karnes JH, et al. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough. Pharmacogenomics J. 2016;16(3):231–7.CrossRefPubMed
10.
go back to reference Bush WS, Crosslin DR, Owusu-Obeng A, Wallace J, Almoguera B, Basford MA, et al. Genetic variation among 82 pharmacogenes: the PGRNseq data from the eMERGE network. Clin Pharmacol Ther. 2016;100(2):160–9.CrossRefPubMedPubMedCentral Bush WS, Crosslin DR, Owusu-Obeng A, Wallace J, Almoguera B, Basford MA, et al. Genetic variation among 82 pharmacogenes: the PGRNseq data from the eMERGE network. Clin Pharmacol Ther. 2016;100(2):160–9.CrossRefPubMedPubMedCentral
11.
go back to reference Samwald M, Xu H, Blagec K, Empey PE, Malone DC, Ahmed SM, et al. Incidence of exposure of patients in the United States to multiple drugs for which pharmacogenomic guidelines are available. PLoS One. 2016;11(10):e0164972.CrossRefPubMedPubMedCentral Samwald M, Xu H, Blagec K, Empey PE, Malone DC, Ahmed SM, et al. Incidence of exposure of patients in the United States to multiple drugs for which pharmacogenomic guidelines are available. PLoS One. 2016;11(10):e0164972.CrossRefPubMedPubMedCentral
12.
go back to reference Chanfreau-Coffinier C, Hull LE, Lynch JA, DuVall SL, Damrauer SM, Cunningham FE, et al. Projected prevalence of actionable pharmacogenetic variants and level A drugs prescribed among us veterans health administration pharmacy users. JAMA Netw Open. 2019;2(6):e195345.CrossRefPubMedPubMedCentral Chanfreau-Coffinier C, Hull LE, Lynch JA, DuVall SL, Damrauer SM, Cunningham FE, et al. Projected prevalence of actionable pharmacogenetic variants and level A drugs prescribed among us veterans health administration pharmacy users. JAMA Netw Open. 2019;2(6):e195345.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature. 2020;586(7831):749–56.CrossRefPubMedPubMedCentral Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature. 2020;586(7831):749–56.CrossRefPubMedPubMedCentral
15.
go back to reference Sun BB, Kurki MI, Foley CN, Mechakra A, Chen CY, Marshall E, et al. Genetic associations of protein-coding variants in human disease. Nature. 2022;603(7899):95–102.CrossRefPubMedPubMedCentral Sun BB, Kurki MI, Foley CN, Mechakra A, Chen CY, Marshall E, et al. Genetic associations of protein-coding variants in human disease. Nature. 2022;603(7899):95–102.CrossRefPubMedPubMedCentral
16.
go back to reference McInnes G, Lavertu A, Sangkuhl K, Klein TE, Whirl-Carrillo M, Altman RB. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin Pharmacol Ther. 2021;109(6):1528–37.CrossRefPubMed McInnes G, Lavertu A, Sangkuhl K, Klein TE, Whirl-Carrillo M, Altman RB. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin Pharmacol Ther. 2021;109(6):1528–37.CrossRefPubMed
17.
go back to reference Blout Zawatsky CL, Shah N, Machini K, Perez E, Christensen KD, Zouk H, et al. Returning actionable genomic results in a research biobank: analytic validity, clinical implementation, and resource utilization. Am J Hum Genet. 2021;108(12):2224–37.CrossRefPubMedPubMedCentral Blout Zawatsky CL, Shah N, Machini K, Perez E, Christensen KD, Zouk H, et al. Returning actionable genomic results in a research biobank: analytic validity, clinical implementation, and resource utilization. Am J Hum Genet. 2021;108(12):2224–37.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Sangkuhl K, Whirl-Carrillo M, Whaley RM, Woon M, Lavertu A, Altman RB, et al. Pharmacogenomics clinical annotation tool (PharmCAT). Clin Pharmacol Ther. 2020;107(1):203–10.CrossRefPubMed Sangkuhl K, Whirl-Carrillo M, Whaley RM, Woon M, Lavertu A, Altman RB, et al. Pharmacogenomics clinical annotation tool (PharmCAT). Clin Pharmacol Ther. 2020;107(1):203–10.CrossRefPubMed
20.
go back to reference Hicks JK, El Rouby N, Ong HH, Schildcrout JS, Ramsey LB, Shi Y, et al. Opportunity for genotype-guided prescribing among adult patients in 11 US health systems. Clin Pharmacol Ther. 2021;110(1):179–88.CrossRefPubMed Hicks JK, El Rouby N, Ong HH, Schildcrout JS, Ramsey LB, Shi Y, et al. Opportunity for genotype-guided prescribing among adult patients in 11 US health systems. Clin Pharmacol Ther. 2021;110(1):179–88.CrossRefPubMed
21.
go back to reference Peterson PE, Nicholson WT, Moyer AM, Arendt CJ, Smischney NJ, Seelhammer TG, et al. Description of pharmacogenomic testing among patients admitted to the intensive care unit after cardiovascular surgery. J Intensive Care Med. 2021;36(11):1281–5.CrossRefPubMed Peterson PE, Nicholson WT, Moyer AM, Arendt CJ, Smischney NJ, Seelhammer TG, et al. Description of pharmacogenomic testing among patients admitted to the intensive care unit after cardiovascular surgery. J Intensive Care Med. 2021;36(11):1281–5.CrossRefPubMed
22.
go back to reference David SP, Singh L, Pruitt J, Hensing A, Hulick P, Meltzer DO, et al. The contribution of pharmacogenetic drug interactions to 90-day hospital readmissions: preliminary results from a real-world healthcare system. J Pers Med. 2021;11(12):1242.CrossRefPubMedPubMedCentral David SP, Singh L, Pruitt J, Hensing A, Hulick P, Meltzer DO, et al. The contribution of pharmacogenetic drug interactions to 90-day hospital readmissions: preliminary results from a real-world healthcare system. J Pers Med. 2021;11(12):1242.CrossRefPubMedPubMedCentral
23.
go back to reference Truong TM, Apfelbaum J, Shahul S, Anitescu M, Danahey K, Knoebel RW, et al. The ImPreSS trial: implementation of point-of-care pharmacogenomic decision support in perioperative care. Clin Pharmacol Ther. 2019;106(6):1179–83.CrossRefPubMed Truong TM, Apfelbaum J, Shahul S, Anitescu M, Danahey K, Knoebel RW, et al. The ImPreSS trial: implementation of point-of-care pharmacogenomic decision support in perioperative care. Clin Pharmacol Ther. 2019;106(6):1179–83.CrossRefPubMed
24.
go back to reference Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.CrossRefPubMed Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.CrossRefPubMed
25.
go back to reference Gage BF, Bass AR, Lin H, Woller SC, Stevens SM, Al-Hammadi N, et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. JAMA. 2017;318(12):1115–24.CrossRefPubMedPubMedCentral Gage BF, Bass AR, Lin H, Woller SC, Stevens SM, Al-Hammadi N, et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. JAMA. 2017;318(12):1115–24.CrossRefPubMedPubMedCentral
26.
go back to reference Zhu Y, Moriarty JP, Swanson KM, Takahashi PY, Bielinski SJ, Weinshilboum R, et al. A model-based cost-effectiveness analysis of pharmacogenomic panel testing in cardiovascular disease management: preemptive, reactive, or none? Genet Med. 2021;23(3):461–70.CrossRefPubMed Zhu Y, Moriarty JP, Swanson KM, Takahashi PY, Bielinski SJ, Weinshilboum R, et al. A model-based cost-effectiveness analysis of pharmacogenomic panel testing in cardiovascular disease management: preemptive, reactive, or none? Genet Med. 2021;23(3):461–70.CrossRefPubMed
27.
go back to reference Denny JC, Rutter JL, Goldstein DB, Philippakis A, Smoller JW, Jenkins W, Dishman E (2019) The “All of Us” research program. N Engl J Med 381(7):668–76.CrossRefPubMed Denny JC, Rutter JL, Goldstein DB, Philippakis A, Smoller JW, Jenkins W, Dishman E (2019) The “All of Us” research program. N Engl J Med 381(7):668–76.CrossRefPubMed
Metadata
Title
Evaluating the frequency and the impact of pharmacogenetic alleles in an ancestrally diverse Biobank population
Authors
Shefali S. Verma
Karl Keat
Binglan Li
Glenda Hoffecker
Marjorie Risman
Katrin Sangkuhl
Michelle Whirl-Carrillo
Scott Dudek
Anurag Verma
Teri E. Klein
Marylyn D. Ritchie
Sony Tuteja
Regeneron Genetics Center
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Clopidogrel
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03745-5

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine