Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Fatty Liver | Research

Identification of MAP3K4 as a novel regulation factor of hepatic lipid metabolism in non-alcoholic fatty liver disease

Authors: Zhiyong He, Yangyang Bin, Guangshun Chen, Qiang Li, Wenling Fan, Yongqiang Ma, Junfang Yi, Xiaohua Luo, Zhi Tan, Jiequn Li

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder with abnormal lipid metabolism. The present study was to identify regulatory genes related to lipid droplets (LDs) abnormal accumulation in NAFLD.

Methods

transcriptomic analysis and bioinformatics analysis (GEO database) were used to identify potential genes in abnormal lipid metabolism of NAFLD. A candidate gene MAP3K4 expression were detected by immunohistochemistry staining in NAFLD and controls. RNA interference and immunoblotting were used to verify the roles of MAP3K4 in the formation of hepatic LDs.

Results

A total of 134 candidate genes were screened, including 44 up-regulated genes and 90 down-regulated genes. 29 genes in the protein–protein interaction (PPI) were selected as hub genes, including MAP3K4. The expression levels of MAP3K4 were positively correlated with NAFLD activity score (r = 0.702, p = 0.002). Furthermore, we found a positive correlation of MAP3K4 expression with serum total cholesterol (r = 0.564, p = 0.023), uric acid levels (r = 0.520, p = 0.039), and body mass index (r = 0.574, p = 0.020). Downregulation of MAP3K4 decreased LDs accumulation in HepG2 cells and reduced the expression of CGI-58 and Plin-2 by imbibition of JNK and group IVA cytosolic phospholipase A2 (cPLA2) activation.

Conclusion

The study revealed a number of regulatory genes related to hepatic lipid metabolism of NAFLD, and demonstrated that MAP3K4 played a pivotal role in the hepatic lipogenesis of NAFLD.
Appendix
Available only for authorised users
Literature
2.
go back to reference Yuan X, Diao J, Du A, Wen S, Zhou L, Pan Y. Circular RNA expression profiles and features in NAFLD mice: a study using RNA-seq data. J Transl Med. 2020;18(1):476.PubMedPubMedCentralCrossRef Yuan X, Diao J, Du A, Wen S, Zhou L, Pan Y. Circular RNA expression profiles and features in NAFLD mice: a study using RNA-seq data. J Transl Med. 2020;18(1):476.PubMedPubMedCentralCrossRef
3.
go back to reference Murag S, Ahmed A, Kim D. Recent epidemiology of nonalcoholic fatty liver disease. Gut Liver. 2021;15(2):206–16.PubMedCrossRef Murag S, Ahmed A, Kim D. Recent epidemiology of nonalcoholic fatty liver disease. Gut Liver. 2021;15(2):206–16.PubMedCrossRef
4.
go back to reference Tobari M, Hashimoto E. Characteristic features of nonalcoholic fatty liver disease in Japan with a focus on the roles of age, sex and body mass index. Gut Liver. 2020;14(5):537–45.PubMedPubMedCentralCrossRef Tobari M, Hashimoto E. Characteristic features of nonalcoholic fatty liver disease in Japan with a focus on the roles of age, sex and body mass index. Gut Liver. 2020;14(5):537–45.PubMedPubMedCentralCrossRef
5.
go back to reference Younossi ZM. Non-alcoholic fatty liver disease—a global public health perspective. J Hepatol. 2019;70(3):531–44.PubMedCrossRef Younossi ZM. Non-alcoholic fatty liver disease—a global public health perspective. J Hepatol. 2019;70(3):531–44.PubMedCrossRef
6.
7.
go back to reference Zhang CH, Zhou BG, Sheng JQ, Chen Y, Cao YQ, Chen C. Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol Res. 2020;159: 104984.PubMedCrossRef Zhang CH, Zhou BG, Sheng JQ, Chen Y, Cao YQ, Chen C. Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol Res. 2020;159: 104984.PubMedCrossRef
8.
go back to reference Guo XY, He CX, Wang YQ, Sun C, Li GM, Su Q, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. Biomed Res Int. 2017;2017:5936171.PubMedPubMedCentralCrossRef Guo XY, He CX, Wang YQ, Sun C, Li GM, Su Q, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. Biomed Res Int. 2017;2017:5936171.PubMedPubMedCentralCrossRef
9.
go back to reference Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. Diabetes Metab. 2013;39(1):16–26.PubMedCrossRef Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. Diabetes Metab. 2013;39(1):16–26.PubMedCrossRef
10.
go back to reference Hong T, Chen Y, Li X, Lu Y. The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD. Oxid Med Cell Longev. 2021;2021:6889533.PubMedPubMedCentralCrossRef Hong T, Chen Y, Li X, Lu Y. The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD. Oxid Med Cell Longev. 2021;2021:6889533.PubMedPubMedCentralCrossRef
11.
go back to reference Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67(1):145–58.PubMedCrossRef Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67(1):145–58.PubMedCrossRef
13.
go back to reference Zhao C, Li Z, Chen J, Su L, Wang J, Chen DS, et al. Site-specific biomimicry of antioxidative melanin formation and its application for acute liver injury therapy and imaging. Adv Mater. 2021;33(34): e2102391.PubMedCrossRef Zhao C, Li Z, Chen J, Su L, Wang J, Chen DS, et al. Site-specific biomimicry of antioxidative melanin formation and its application for acute liver injury therapy and imaging. Adv Mater. 2021;33(34): e2102391.PubMedCrossRef
14.
go back to reference Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT, Barnhart TE, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv Mater. 2019;31(40): e1902956.PubMedPubMedCentralCrossRef Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT, Barnhart TE, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv Mater. 2019;31(40): e1902956.PubMedPubMedCentralCrossRef
16.
go back to reference Mu J, Li C, Shi Y, Liu G, Zou J, Zhang DY, et al. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat Commun. 2022;13(1):2513.PubMedPubMedCentralCrossRef Mu J, Li C, Shi Y, Liu G, Zou J, Zhang DY, et al. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat Commun. 2022;13(1):2513.PubMedPubMedCentralCrossRef
17.
go back to reference Eftekhari A, Ahmadian E, Azarmi Y, Parvizpur A, Fard JK, Eghbal MA. The effects of cimetidine, N-acetylcysteine, and taurine on thioridazine metabolic activation and induction of oxidative stress in isolated rat hepatocytes. Pharm Chem J. 2018;51(11):965–9.CrossRef Eftekhari A, Ahmadian E, Azarmi Y, Parvizpur A, Fard JK, Eghbal MA. The effects of cimetidine, N-acetylcysteine, and taurine on thioridazine metabolic activation and induction of oxidative stress in isolated rat hepatocytes. Pharm Chem J. 2018;51(11):965–9.CrossRef
18.
go back to reference Ahmadian E, Babaei H, Mohajjel Nayebi A, Eftekhari A, Eghbal MA. Mechanistic approach for toxic effects of bupropion in primary rat hepatocytes. Drug Res (Stuttg). 2017;67(4):217–22.CrossRef Ahmadian E, Babaei H, Mohajjel Nayebi A, Eftekhari A, Eghbal MA. Mechanistic approach for toxic effects of bupropion in primary rat hepatocytes. Drug Res (Stuttg). 2017;67(4):217–22.CrossRef
19.
go back to reference Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: an emerging therapeutic target for metabolic diseases. Free Radic Biol Med. 2020;152:33–42.PubMedCrossRef Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: an emerging therapeutic target for metabolic diseases. Free Radic Biol Med. 2020;152:33–42.PubMedCrossRef
20.
go back to reference Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver disease. World J Hepatol. 2020;12(8):436–50.PubMedPubMedCentralCrossRef Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver disease. World J Hepatol. 2020;12(8):436–50.PubMedPubMedCentralCrossRef
21.
go back to reference BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci USA. 2019;116(19):9521–6.PubMedPubMedCentralCrossRef BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci USA. 2019;116(19):9521–6.PubMedPubMedCentralCrossRef
22.
go back to reference Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76(1):99–128.PubMedCrossRef Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76(1):99–128.PubMedCrossRef
23.
go back to reference Galbo T, Perry RJ, Jurczak MJ, Camporez JP, Alves TC, Kahn M, et al. Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci USA. 2013;110(31):12780–5.PubMedPubMedCentralCrossRef Galbo T, Perry RJ, Jurczak MJ, Camporez JP, Alves TC, Kahn M, et al. Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci USA. 2013;110(31):12780–5.PubMedPubMedCentralCrossRef
24.
go back to reference Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011;121(5):1858–70.PubMedPubMedCentralCrossRef Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011;121(5):1858–70.PubMedPubMedCentralCrossRef
25.
go back to reference Schattenberg JM, Wang Y, Singh R, Rigoli RM, Czaja MJ. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J Biol Chem. 2005;280(11):9887–94.PubMedCrossRef Schattenberg JM, Wang Y, Singh R, Rigoli RM, Czaja MJ. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J Biol Chem. 2005;280(11):9887–94.PubMedCrossRef
26.
go back to reference Kathirvel E, Morgan K, French SW, Morgan TR. Overexpression of liver-specific cytochrome P4502E1 impairs hepatic insulin signaling in a transgenic mouse model of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2009;21(9):973–83.PubMedCrossRef Kathirvel E, Morgan K, French SW, Morgan TR. Overexpression of liver-specific cytochrome P4502E1 impairs hepatic insulin signaling in a transgenic mouse model of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2009;21(9):973–83.PubMedCrossRef
27.
go back to reference Woolsey SJ, Mansell SE, Kim RB, Tirona RG, Beaton MD. CYP3A activity and expression in nonalcoholic fatty liver disease. Drug Metab Dispos. 2015;43(10):1484–90.PubMedCrossRef Woolsey SJ, Mansell SE, Kim RB, Tirona RG, Beaton MD. CYP3A activity and expression in nonalcoholic fatty liver disease. Drug Metab Dispos. 2015;43(10):1484–90.PubMedCrossRef
28.
go back to reference Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. 2018;68(2):268–79.PubMedCrossRef Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. 2018;68(2):268–79.PubMedCrossRef
29.
go back to reference Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol. 2015;11(9):535–46.PubMedCrossRef Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol. 2015;11(9):535–46.PubMedCrossRef
30.
go back to reference Dong Y, Ma N, Fan L, Yuan L, Wu Q, Gong L, et al. GADD45beta stabilized by direct interaction with HSP72 ameliorates insulin resistance and lipid accumulation. Pharmacol Res. 2021;173: 105879.PubMedCrossRef Dong Y, Ma N, Fan L, Yuan L, Wu Q, Gong L, et al. GADD45beta stabilized by direct interaction with HSP72 ameliorates insulin resistance and lipid accumulation. Pharmacol Res. 2021;173: 105879.PubMedCrossRef
31.
33.
go back to reference Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.PubMedCrossRef Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.PubMedCrossRef
34.
go back to reference Si Z, Guan X, Teng X, Peng X, Wan Z, Li Q, et al. Identification of CYP46A1 as a new regulator of lipid metabolism through CRISPR-based whole-genome screening. FASEB J. 2020;34(10):13776–91.PubMedCrossRef Si Z, Guan X, Teng X, Peng X, Wan Z, Li Q, et al. Identification of CYP46A1 as a new regulator of lipid metabolism through CRISPR-based whole-genome screening. FASEB J. 2020;34(10):13776–91.PubMedCrossRef
35.
go back to reference Ma Y, Tan Z, Li Q, Fan W, Chen G, Bin Y, et al. Combined analysis of expression profiles in a mouse model and patients identified BHMT2 as a new regulator of lipid metabolism in metabolic-associated fatty liver disease. Front Cell Dev Biol. 2021;9: 741710.PubMedPubMedCentralCrossRef Ma Y, Tan Z, Li Q, Fan W, Chen G, Bin Y, et al. Combined analysis of expression profiles in a mouse model and patients identified BHMT2 as a new regulator of lipid metabolism in metabolic-associated fatty liver disease. Front Cell Dev Biol. 2021;9: 741710.PubMedPubMedCentralCrossRef
36.
go back to reference Ma Y, Li Q, Chen G, Tan Z, Cao H, Bin Y, et al. Transcriptomic analysis reveals a novel regulatory factor of ECHDC1 involved in lipid metabolism of non-alcoholic fatty liver disease. Biochem Biophys Res Commun. 2022;605:1–8.PubMedCrossRef Ma Y, Li Q, Chen G, Tan Z, Cao H, Bin Y, et al. Transcriptomic analysis reveals a novel regulatory factor of ECHDC1 involved in lipid metabolism of non-alcoholic fatty liver disease. Biochem Biophys Res Commun. 2022;605:1–8.PubMedCrossRef
37.
38.
39.
go back to reference Di Ciaula A, Garruti G, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQ, et al. Bile acid physiology. Ann Hepatol. 2017;16(Suppl 1):S4–14.PubMedCrossRef Di Ciaula A, Garruti G, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQ, et al. Bile acid physiology. Ann Hepatol. 2017;16(Suppl 1):S4–14.PubMedCrossRef
40.
go back to reference Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063–75.PubMedPubMedCentralCrossRef Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018;68(5):1063–75.PubMedPubMedCentralCrossRef
43.
go back to reference Lacroix M, Linares LK, Rueda-Rincon N, Bloch K, Di Michele M, De Blasio C, et al. The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nat Commun. 2021;12(1):7037.PubMedPubMedCentralCrossRef Lacroix M, Linares LK, Rueda-Rincon N, Bloch K, Di Michele M, De Blasio C, et al. The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nat Commun. 2021;12(1):7037.PubMedPubMedCentralCrossRef
44.
go back to reference Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int J Mol Sci. 2018;19(11):3634.PubMedCentralCrossRef Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int J Mol Sci. 2018;19(11):3634.PubMedCentralCrossRef
45.
go back to reference Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24(25):2661–72.PubMedPubMedCentralCrossRef Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24(25):2661–72.PubMedPubMedCentralCrossRef
46.
go back to reference Jia J, Gou J, Zhao X, Yi T, Li Z. Apolipoprotein A1 and heterogeneous nuclear ribonucleoprotein E1 implicated in the regulation of embryo implantation by inhibiting lipid peroxidation. Reprod Biomed Online. 2016;33(5):635–45.PubMedCrossRef Jia J, Gou J, Zhao X, Yi T, Li Z. Apolipoprotein A1 and heterogeneous nuclear ribonucleoprotein E1 implicated in the regulation of embryo implantation by inhibiting lipid peroxidation. Reprod Biomed Online. 2016;33(5):635–45.PubMedCrossRef
47.
go back to reference Eslam M, Sarin SK, Wong VW, Fan JG, Kawaguchi T, Ahn SH, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 2020;14(6):889–919.PubMedCrossRef Eslam M, Sarin SK, Wong VW, Fan JG, Kawaguchi T, Ahn SH, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int. 2020;14(6):889–919.PubMedCrossRef
48.
go back to reference Yamaguchi T, Omatsu N, Matsushita S, Osumi T. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J Biol Chem. 2004;279(29):30490–7.PubMedCrossRef Yamaguchi T, Omatsu N, Matsushita S, Osumi T. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J Biol Chem. 2004;279(29):30490–7.PubMedCrossRef
49.
go back to reference Gubern A, Barcelo-Torns M, Barneda D, Lopez JM, Masgrau R, Picatoste F, et al. JNK and ceramide kinase govern the biogenesis of lipid droplets through activation of group IVA phospholipase A2. J Biol Chem. 2009;284(47):32359–69.PubMedPubMedCentralCrossRef Gubern A, Barcelo-Torns M, Barneda D, Lopez JM, Masgrau R, Picatoste F, et al. JNK and ceramide kinase govern the biogenesis of lipid droplets through activation of group IVA phospholipase A2. J Biol Chem. 2009;284(47):32359–69.PubMedPubMedCentralCrossRef
50.
go back to reference Frances L, Tavernier G, Viguerie N. Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci. 2021;22(19):10460.PubMedPubMedCentralCrossRef Frances L, Tavernier G, Viguerie N. Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci. 2021;22(19):10460.PubMedPubMedCentralCrossRef
52.
go back to reference Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, et al. Troxerutin improves hepatic lipid homeostasis by restoring NAD(+)-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochem Pharmacol. 2014;91(1):74–86.PubMedCrossRef Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, et al. Troxerutin improves hepatic lipid homeostasis by restoring NAD(+)-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochem Pharmacol. 2014;91(1):74–86.PubMedCrossRef
53.
go back to reference Li H, Xu M, Lee J, He C, Xie Z. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab. 2012;303(10):E1234-1244.PubMedPubMedCentralCrossRef Li H, Xu M, Lee J, He C, Xie Z. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab. 2012;303(10):E1234-1244.PubMedPubMedCentralCrossRef
54.
go back to reference Tao R, Wei D, Gao H, Liu Y, DePinho RA, Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem. 2011;286(16):14681–90.PubMedPubMedCentralCrossRef Tao R, Wei D, Gao H, Liu Y, DePinho RA, Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem. 2011;286(16):14681–90.PubMedPubMedCentralCrossRef
55.
go back to reference Bogani D, Siggers P, Brixey R, Warr N, Beddow S, Edwards J, et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol. 2009;7(9): e1000196.PubMedPubMedCentralCrossRef Bogani D, Siggers P, Brixey R, Warr N, Beddow S, Edwards J, et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol. 2009;7(9): e1000196.PubMedPubMedCentralCrossRef
56.
58.
go back to reference Utzschneider KM, Kahn SE. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91(12):4753–61.PubMedCrossRef Utzschneider KM, Kahn SE. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91(12):4753–61.PubMedCrossRef
59.
go back to reference Karin M, Gallagher E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life. 2005;57(4–5):283–95.PubMedCrossRef Karin M, Gallagher E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life. 2005;57(4–5):283–95.PubMedCrossRef
60.
go back to reference Cooreman A, Van Campenhout R, Ballet S, Annaert P, Van Den Bossche B, Colle I, et al. Connexin and Pannexin (Hemi)channels: emerging targets in the treatment of liver disease. Hepatology. 2019;69(3):1317–23.PubMedCrossRef Cooreman A, Van Campenhout R, Ballet S, Annaert P, Van Den Bossche B, Colle I, et al. Connexin and Pannexin (Hemi)channels: emerging targets in the treatment of liver disease. Hepatology. 2019;69(3):1317–23.PubMedCrossRef
61.
go back to reference Naiki-Ito A, Kato H, Naiki T, Yeewa R, Aoyama Y, Nagayasu Y, et al. A novel model of non-alcoholic steatohepatitis with fibrosis and carcinogenesis in connexin 32 dominant-negative transgenic rats. Arch Toxicol. 2020;94(12):4085–97.PubMedPubMedCentralCrossRef Naiki-Ito A, Kato H, Naiki T, Yeewa R, Aoyama Y, Nagayasu Y, et al. A novel model of non-alcoholic steatohepatitis with fibrosis and carcinogenesis in connexin 32 dominant-negative transgenic rats. Arch Toxicol. 2020;94(12):4085–97.PubMedPubMedCentralCrossRef
62.
go back to reference Xiao F, Waldrop SL, Khimji AK, Kilic G. Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells. Am J Physiol Cell Physiol. 2012;303(10):C1034-1044.PubMedPubMedCentralCrossRef Xiao F, Waldrop SL, Khimji AK, Kilic G. Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells. Am J Physiol Cell Physiol. 2012;303(10):C1034-1044.PubMedPubMedCentralCrossRef
63.
go back to reference Gubern A, Casas J, Barcelo-Torns M, Barneda D, de la Rosa X, Masgrau R, et al. Group IVA phospholipase A2 is necessary for the biogenesis of lipid droplets. J Biol Chem. 2008;283(41):27369–82.PubMedCrossRef Gubern A, Casas J, Barcelo-Torns M, Barneda D, de la Rosa X, Masgrau R, et al. Group IVA phospholipase A2 is necessary for the biogenesis of lipid droplets. J Biol Chem. 2008;283(41):27369–82.PubMedCrossRef
64.
go back to reference Ghosh M, Tucker DE, Burchett SA, Leslie CC. Properties of the Group IV phospholipase A2 family. Prog Lipid Res. 2006;45(6):487–510.PubMedCrossRef Ghosh M, Tucker DE, Burchett SA, Leslie CC. Properties of the Group IV phospholipase A2 family. Prog Lipid Res. 2006;45(6):487–510.PubMedCrossRef
65.
go back to reference Perry CH, Mullins NA, Sweileh RBA, Shendy NAM, Roberto PA, Broadhurst AL, et al. MAP3K4 promotes fetal and placental growth by controlling the receptor tyrosine kinases IGF1R/IR and Akt signaling pathway. J Biol Chem. 2022;298(9): 102310.PubMedPubMedCentralCrossRef Perry CH, Mullins NA, Sweileh RBA, Shendy NAM, Roberto PA, Broadhurst AL, et al. MAP3K4 promotes fetal and placental growth by controlling the receptor tyrosine kinases IGF1R/IR and Akt signaling pathway. J Biol Chem. 2022;298(9): 102310.PubMedPubMedCentralCrossRef
Metadata
Title
Identification of MAP3K4 as a novel regulation factor of hepatic lipid metabolism in non-alcoholic fatty liver disease
Authors
Zhiyong He
Yangyang Bin
Guangshun Chen
Qiang Li
Wenling Fan
Yongqiang Ma
Junfang Yi
Xiaohua Luo
Zhi Tan
Jiequn Li
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Fatty Liver
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03734-8

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine