Skip to main content
Top
Published in: Journal of Translational Medicine 1/2016

Open Access 01-12-2016 | Review

Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation?

Authors: T. C. Saat, E. K. van den Akker, J. N. M. IJzermans, F. J. M. F. Dor, R. W. F. de Bruin

Published in: Journal of Translational Medicine | Issue 1/2016

Login to get access

Abstract

Kidney transplantation is the treatment of choice in patients with end stage renal disease. During kidney transplantation ischemia reperfusion injury (IRI) occurs, which is a risk factor for acute kidney injury, delayed graft function and acute and chronic rejection. Kidneys from living donors show a superior short- and long-term graft survival compared with deceased donors. However, the shortage of donor kidneys has resulted in expansion of the donor pool by using not only living- and brain death donors but also kidneys from donation after circulatory death and from extended criteria donors. These grafts are associated with an increased sensitivity to IRI and decreased graft outcome due to prolonged ischemia and donor comorbidity. Therefore, preventing or ameliorating IRI may improve graft survival. Animal experiments focus on understanding the mechanism behind IRI and try to find methods to minimize IRI either before, during or after ischemia. This review evaluates the different experimental strategies that have been investigated to prevent or ameliorate renal IRI. In addition, we review the current state of translation to the clinical setting. Experimental research has contributed to the development of strategies to prevent or ameliorate IRI, but promising results in animal studies have not yet been successfully translated to clinical use.
Literature
1.
go back to reference Klein AS, et al. Organ donation and utilization in the United States, 1999–2008. Am J Transplant. 2010;10(4 Pt 2):973–86.PubMedCrossRef Klein AS, et al. Organ donation and utilization in the United States, 1999–2008. Am J Transplant. 2010;10(4 Pt 2):973–86.PubMedCrossRef
2.
go back to reference Tonelli M, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11(10):2093–109.PubMedCrossRef Tonelli M, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11(10):2093–109.PubMedCrossRef
3.
go back to reference Gjertson DW, Cecka JM. Living unrelated donor kidney transplantation. Kidney Int. 2000;58(2):491–9.PubMedCrossRef Gjertson DW, Cecka JM. Living unrelated donor kidney transplantation. Kidney Int. 2000;58(2):491–9.PubMedCrossRef
4.
go back to reference Chkhotua AB, et al. Kidney transplantation from living-unrelated donors: comparison of outcome with living-related and cadaveric transplants under current immunosuppressive protocols. Urology. 2003;62(6):1002–6.PubMedCrossRef Chkhotua AB, et al. Kidney transplantation from living-unrelated donors: comparison of outcome with living-related and cadaveric transplants under current immunosuppressive protocols. Urology. 2003;62(6):1002–6.PubMedCrossRef
5.
go back to reference Sapir-Pichhadze R, Young A, Joseph Kim S. Living donor age and kidney transplant outcomes: an assessment of risk across the age continuum. Transpl Int. 2013;26(5):493–501.PubMedCrossRef Sapir-Pichhadze R, Young A, Joseph Kim S. Living donor age and kidney transplant outcomes: an assessment of risk across the age continuum. Transpl Int. 2013;26(5):493–501.PubMedCrossRef
6.
go back to reference Le Dinh H, et al. Delayed graft function does not harm the future of donation-after-cardiac death in kidney transplantation. Transplant Proc. 2012;44(9):2795–802.PubMedCrossRef Le Dinh H, et al. Delayed graft function does not harm the future of donation-after-cardiac death in kidney transplantation. Transplant Proc. 2012;44(9):2795–802.PubMedCrossRef
7.
go back to reference Schuurs TA, et al. Time-dependent changes in donor brain death related processes. Am J Transplant. 2006;6(12):2903–11.PubMedCrossRef Schuurs TA, et al. Time-dependent changes in donor brain death related processes. Am J Transplant. 2006;6(12):2903–11.PubMedCrossRef
8.
go back to reference Nijboer WN, et al. How important is the duration of the brain death period for the outcome in kidney transplantation? Transpl Int. 2011;24(1):14–20.PubMedCrossRef Nijboer WN, et al. How important is the duration of the brain death period for the outcome in kidney transplantation? Transpl Int. 2011;24(1):14–20.PubMedCrossRef
9.
go back to reference Nagaraja P, et al. Influence of delayed graft function and acute rejection on outcomes after kidney transplantation from donors after cardiac death. Transplantation. 2012;94(12):1218–23.PubMedCrossRef Nagaraja P, et al. Influence of delayed graft function and acute rejection on outcomes after kidney transplantation from donors after cardiac death. Transplantation. 2012;94(12):1218–23.PubMedCrossRef
10.
go back to reference Wadei HM, et al. Comparison of kidney function between donation after cardiac death and donation after brain death kidney transplantation. Transplantation. 2013;96(3):274–81.PubMedCrossRef Wadei HM, et al. Comparison of kidney function between donation after cardiac death and donation after brain death kidney transplantation. Transplantation. 2013;96(3):274–81.PubMedCrossRef
12.
go back to reference Pascual J, Zamora J, Pirsch JD. A systematic review of kidney transplantation from expanded criteria donors. Am J Kidney Dis. 2008;52(3):553–86.PubMedCrossRef Pascual J, Zamora J, Pirsch JD. A systematic review of kidney transplantation from expanded criteria donors. Am J Kidney Dis. 2008;52(3):553–86.PubMedCrossRef
13.
go back to reference Martinez-Vaquera S, et al. Outcomes in renal transplantation with expanded-criteria donors. Transplant Proc. 2013;45(10):3595–8.PubMedCrossRef Martinez-Vaquera S, et al. Outcomes in renal transplantation with expanded-criteria donors. Transplant Proc. 2013;45(10):3595–8.PubMedCrossRef
14.
go back to reference Balaz P, et al. Identification of expanded-criteria donor kidney grafts at lower risk of delayed graft function. Transplantation. 2013;96(7):633–8.PubMedCrossRef Balaz P, et al. Identification of expanded-criteria donor kidney grafts at lower risk of delayed graft function. Transplantation. 2013;96(7):633–8.PubMedCrossRef
15.
go back to reference Domagala P, et al. Assessment of kidneys procured from expanded criteria donors before transplantation. Transplant Proc. 2009;41(8):2966–9.PubMedCrossRef Domagala P, et al. Assessment of kidneys procured from expanded criteria donors before transplantation. Transplant Proc. 2009;41(8):2966–9.PubMedCrossRef
16.
go back to reference Johnson KJ, Weinberg JM. Postischemic renal injury due to oxygen radicals. Curr Opin Nephrol Hypertens. 1993;2(4):625–35.PubMedCrossRef Johnson KJ, Weinberg JM. Postischemic renal injury due to oxygen radicals. Curr Opin Nephrol Hypertens. 1993;2(4):625–35.PubMedCrossRef
17.
go back to reference Kusch A, et al. Novel signalling mechanisms and targets in renal ischaemia and reperfusion injury. Acta Physiol (Oxf). 2013;208(1):25–40.CrossRef Kusch A, et al. Novel signalling mechanisms and targets in renal ischaemia and reperfusion injury. Acta Physiol (Oxf). 2013;208(1):25–40.CrossRef
18.
go back to reference Jang HR, et al. The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med (Berl). 2009;87(9):859–64.CrossRef Jang HR, et al. The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med (Berl). 2009;87(9):859–64.CrossRef
19.
go back to reference Perico N, et al. Delayed graft function in kidney transplantation. Lancet. 2004;364(9447):1814–27.PubMedCrossRef Perico N, et al. Delayed graft function in kidney transplantation. Lancet. 2004;364(9447):1814–27.PubMedCrossRef
21.
go back to reference Kosieradzki M, Rowinski W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc. 2008;40(10):3279–88.PubMedCrossRef Kosieradzki M, Rowinski W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc. 2008;40(10):3279–88.PubMedCrossRef
22.
go back to reference Ali S, Sheerin NS. Biomarkers of acute injury: predicting the long-term outcome after transplantation. Kidney Int. 2013;84(6):1072–4.PubMedCrossRef Ali S, Sheerin NS. Biomarkers of acute injury: predicting the long-term outcome after transplantation. Kidney Int. 2013;84(6):1072–4.PubMedCrossRef
23.
go back to reference Devarajan P, et al. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80(4):365–76.PubMedCrossRef Devarajan P, et al. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80(4):365–76.PubMedCrossRef
25.
go back to reference van der Vliet JA, Warle MC. The need to reduce cold ischemia time in kidney transplantation. Curr Opin Organ Transplant. 2013;18(2):174–8.PubMedCrossRef van der Vliet JA, Warle MC. The need to reduce cold ischemia time in kidney transplantation. Curr Opin Organ Transplant. 2013;18(2):174–8.PubMedCrossRef
27.
go back to reference Castaneda MP, et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation. 2003;76(1):50–4.PubMedCrossRef Castaneda MP, et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation. 2003;76(1):50–4.PubMedCrossRef
29.
go back to reference Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J. 2013;449(1):1–10.PubMedCentralPubMedCrossRef Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J. 2013;449(1):1–10.PubMedCentralPubMedCrossRef
30.
go back to reference Mitchell JR, et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell. 2010;9(1):40–53.PubMedCentralPubMedCrossRef Mitchell JR, et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell. 2010;9(1):40–53.PubMedCentralPubMedCrossRef
31.
go back to reference Verweij M, et al. Glucose supplementation does not interfere with fasting-induced protection against renal ischemia/reperfusion injury in mice. Transplantation. 2011;92(7):752–8.PubMedCrossRef Verweij M, et al. Glucose supplementation does not interfere with fasting-induced protection against renal ischemia/reperfusion injury in mice. Transplantation. 2011;92(7):752–8.PubMedCrossRef
32.
33.
34.
go back to reference Min KJ, Tatar M. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev. 2006;127(7):643–6.PubMedCrossRef Min KJ, Tatar M. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev. 2006;127(7):643–6.PubMedCrossRef
35.
go back to reference Nygren J. The metabolic effects of fasting and surgery. Best Pract Res Clin Anaesthesiol. 2006;20(3):429–38.PubMedCrossRef Nygren J. The metabolic effects of fasting and surgery. Best Pract Res Clin Anaesthesiol. 2006;20(3):429–38.PubMedCrossRef
36.
go back to reference Stuart PC. The evidence base behind modern fasting guidelines. Best Pract Res Clin Anaesthesiol. 2006;20(3):457–69.PubMedCrossRef Stuart PC. The evidence base behind modern fasting guidelines. Best Pract Res Clin Anaesthesiol. 2006;20(3):457–69.PubMedCrossRef
37.
go back to reference Redman LM, et al. Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab. 2007;92(3):865–72.PubMedCentralPubMedCrossRef Redman LM, et al. Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab. 2007;92(3):865–72.PubMedCentralPubMedCrossRef
38.
go back to reference Rochon J, et al. Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. J Gerontol A Biol Sci Med Sci. 2011;66(1):97–108.PubMedCrossRef Rochon J, et al. Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. J Gerontol A Biol Sci Med Sci. 2011;66(1):97–108.PubMedCrossRef
39.
go back to reference van Ginhoven TM, et al. Pre-operative dietary restriction is feasible in live-kidney donors. Clin Transplant. 2011;25(3):486–94.PubMedCrossRef van Ginhoven TM, et al. Pre-operative dietary restriction is feasible in live-kidney donors. Clin Transplant. 2011;25(3):486–94.PubMedCrossRef
40.
go back to reference Hoeger S, et al. UW is superior compared with HTK after prolonged preservation of renal grafts. J Surg Res. 2011;170(1):e149–57.PubMedCrossRef Hoeger S, et al. UW is superior compared with HTK after prolonged preservation of renal grafts. J Surg Res. 2011;170(1):e149–57.PubMedCrossRef
41.
go back to reference Straatsburg IH, et al. Evaluation of rat liver apoptotic and necrotic cell death after cold storage using UW, HTK, and Celsior. Transplantation. 2002;74(4):458–64.PubMedCrossRef Straatsburg IH, et al. Evaluation of rat liver apoptotic and necrotic cell death after cold storage using UW, HTK, and Celsior. Transplantation. 2002;74(4):458–64.PubMedCrossRef
42.
go back to reference Stubenitsky BM, et al. Regeneration of ATP in kidney slices after warm ischemia and hypothermic preservation. Transpl Int. 1995;8(4):293–7.PubMedCrossRef Stubenitsky BM, et al. Regeneration of ATP in kidney slices after warm ischemia and hypothermic preservation. Transpl Int. 1995;8(4):293–7.PubMedCrossRef
43.
go back to reference Chatauret N, Thuillier R, Hauet T. Preservation strategies to reduce ischemic injury in kidney transplantation: pharmacological and genetic approaches. Curr Opin Organ Transplant. 2011;16(2):180–7.PubMedCrossRef Chatauret N, Thuillier R, Hauet T. Preservation strategies to reduce ischemic injury in kidney transplantation: pharmacological and genetic approaches. Curr Opin Organ Transplant. 2011;16(2):180–7.PubMedCrossRef
44.
go back to reference Moers C, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009;360(1):7–19.PubMedCrossRef Moers C, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009;360(1):7–19.PubMedCrossRef
45.
go back to reference Burgos Revilla FJ, et al. Machine perfusion: initial results in an expanded criteria donor kidney transplant program. Transplant Proc. 2015;47(1):19–22.PubMedCrossRef Burgos Revilla FJ, et al. Machine perfusion: initial results in an expanded criteria donor kidney transplant program. Transplant Proc. 2015;47(1):19–22.PubMedCrossRef
46.
go back to reference Jochmans I, et al. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transpl Int. 2015;28(6):665–76.PubMedCrossRef Jochmans I, et al. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transpl Int. 2015;28(6):665–76.PubMedCrossRef
47.
go back to reference Nicholson ML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant. 2013;13(5):1246–52.PubMedCrossRef Nicholson ML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant. 2013;13(5):1246–52.PubMedCrossRef
48.
go back to reference Deng R, et al. Machine perfusion versus cold storage of kidneys derived from donation after cardiac death: a meta-analysis. PLoS One. 2013;8(3):e56368.PubMedCentralPubMedCrossRef Deng R, et al. Machine perfusion versus cold storage of kidneys derived from donation after cardiac death: a meta-analysis. PLoS One. 2013;8(3):e56368.PubMedCentralPubMedCrossRef
49.
go back to reference Hosgood SA, van Heurn E, Nicholson ML. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int. 2015;28(6):657–64.PubMedCrossRef Hosgood SA, van Heurn E, Nicholson ML. Normothermic machine perfusion of the kidney: better conditioning and repair? Transpl Int. 2015;28(6):657–64.PubMedCrossRef
50.
go back to reference Kierulf-Lassen C, et al. Molecular Mechanisms of Renal Ischemic Conditioning Strategies. Eur Surg Res. 2015;55(3):151–83.PubMedCrossRef Kierulf-Lassen C, et al. Molecular Mechanisms of Renal Ischemic Conditioning Strategies. Eur Surg Res. 2015;55(3):151–83.PubMedCrossRef
51.
go back to reference Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.PubMedCrossRef Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.PubMedCrossRef
52.
go back to reference Candilio L, Malik A, Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning. J Cardiovasc Med (Hagerstown). 2013;14(3):193–205.CrossRef Candilio L, Malik A, Hausenloy DJ. Protection of organs other than the heart by remote ischemic conditioning. J Cardiovasc Med (Hagerstown). 2013;14(3):193–205.CrossRef
54.
go back to reference Riksen NP, Hausenloy DJ, Yellon DM. Erythropoietin: ready for prime-time cardioprotection. Trends Pharmacol Sci. 2008;29(5):258–67.PubMedCrossRef Riksen NP, Hausenloy DJ, Yellon DM. Erythropoietin: ready for prime-time cardioprotection. Trends Pharmacol Sci. 2008;29(5):258–67.PubMedCrossRef
55.
go back to reference Hausenloy DJ, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–9.PubMedCrossRef Hausenloy DJ, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–9.PubMedCrossRef
56.
go back to reference Jiang H, et al. Protective effects of three remote ischemic conditioning procedures against renal ischemic/reperfusion injury in rat kidneys: a comparative study. Ir J Med Sci. 2014;184(3):647–53.PubMedCentralPubMedCrossRef Jiang H, et al. Protective effects of three remote ischemic conditioning procedures against renal ischemic/reperfusion injury in rat kidneys: a comparative study. Ir J Med Sci. 2014;184(3):647–53.PubMedCentralPubMedCrossRef
57.
go back to reference Bedir S, et al. Ineffectiveness of Remote Ischemic Renal Preconditioning in a Porcine Solitary-Kidney Model. J Endourol. 2015;29(5):590–4.PubMedCrossRef Bedir S, et al. Ineffectiveness of Remote Ischemic Renal Preconditioning in a Porcine Solitary-Kidney Model. J Endourol. 2015;29(5):590–4.PubMedCrossRef
58.
go back to reference Wu J, et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. J Surg Res. 2014;188(1):303–8.PubMedCrossRef Wu J, et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. J Surg Res. 2014;188(1):303–8.PubMedCrossRef
59.
go back to reference Krogstrup NV, et al. Remote ischaemic conditioning on recipients of deceased renal transplants, effect on immediate and extended kidney graft function: a multicentre, randomised controlled trial protocol (CONTEXT). BMJ Open. 2015;5(8):e007941.PubMedCentralPubMedCrossRef Krogstrup NV, et al. Remote ischaemic conditioning on recipients of deceased renal transplants, effect on immediate and extended kidney graft function: a multicentre, randomised controlled trial protocol (CONTEXT). BMJ Open. 2015;5(8):e007941.PubMedCentralPubMedCrossRef
60.
go back to reference Zhao ZQ, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.PubMedCrossRef Zhao ZQ, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.PubMedCrossRef
61.
go back to reference Mykytenko J, et al. Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol. 2007;102(1):90–100.PubMedCrossRef Mykytenko J, et al. Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol. 2007;102(1):90–100.PubMedCrossRef
62.
go back to reference Hausenloy DJ, Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol. 2011;8(11):619–29.PubMedCrossRef Hausenloy DJ, Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol. 2011;8(11):619–29.PubMedCrossRef
63.
go back to reference van den Akker EK, et al. Protection against renal ischemia-reperfusion injury by ischemic postconditioning. Transplantation. 2013;95(11):1299–305.PubMedCrossRef van den Akker EK, et al. Protection against renal ischemia-reperfusion injury by ischemic postconditioning. Transplantation. 2013;95(11):1299–305.PubMedCrossRef
64.
go back to reference Eldaif SM, et al. Attenuation of renal ischemia-reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transpl Int. 2010;23(2):217–26.PubMedCrossRef Eldaif SM, et al. Attenuation of renal ischemia-reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transpl Int. 2010;23(2):217–26.PubMedCrossRef
65.
go back to reference Jiang B, et al. Ischemic postconditioning attenuates renal ischemic/reperfusion injury in mongrel dogs. Urology. 2010;76(6):1519 e1.PubMedCrossRef Jiang B, et al. Ischemic postconditioning attenuates renal ischemic/reperfusion injury in mongrel dogs. Urology. 2010;76(6):1519 e1.PubMedCrossRef
66.
go back to reference Miklos Z, et al. Ischaemic postconditioning reduces serum and tubular TNF-alpha expression in ischaemic-reperfused kidney in healthy rats. Clin Hemorheol Microcirc. 2012;50(3):167–78.PubMed Miklos Z, et al. Ischaemic postconditioning reduces serum and tubular TNF-alpha expression in ischaemic-reperfused kidney in healthy rats. Clin Hemorheol Microcirc. 2012;50(3):167–78.PubMed
67.
go back to reference Weng X, et al. Ischemic postconditioning inhibits the renal fibrosis induced by ischemia-reperfusion injury in rats. Urology. 2012;80(2):484 e1.PubMedCrossRef Weng X, et al. Ischemic postconditioning inhibits the renal fibrosis induced by ischemia-reperfusion injury in rats. Urology. 2012;80(2):484 e1.PubMedCrossRef
68.
go back to reference Kadkhodaee M, et al. First report of the protective effects of remote per- and postconditioning on ischemia/reperfusion-induced renal injury. Transplantation. 2011;92(10):e55.PubMedCrossRef Kadkhodaee M, et al. First report of the protective effects of remote per- and postconditioning on ischemia/reperfusion-induced renal injury. Transplantation. 2011;92(10):e55.PubMedCrossRef
69.
go back to reference van den Akker EK, et al. Ischemic postconditioning in human DCD kidney transplantation is feasible and appears safe. Transpl Int. 2014;27(2):226–34.PubMedCrossRef van den Akker EK, et al. Ischemic postconditioning in human DCD kidney transplantation is feasible and appears safe. Transpl Int. 2014;27(2):226–34.PubMedCrossRef
70.
go back to reference Masoud MS, et al. Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med. 2012;10:243.PubMedCentralPubMedCrossRef Masoud MS, et al. Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med. 2012;10:243.PubMedCentralPubMedCrossRef
71.
go back to reference Chen YT, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2011;9:51.PubMedCentralPubMedCrossRef Chen YT, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2011;9:51.PubMedCentralPubMedCrossRef
72.
go back to reference Zhuo W, et al. Mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal dysfunction by improving the antioxidant/oxidant balance in the ischemic kidney. Urol Int. 2011;86(2):191–6.PubMedCrossRef Zhuo W, et al. Mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal dysfunction by improving the antioxidant/oxidant balance in the ischemic kidney. Urol Int. 2011;86(2):191–6.PubMedCrossRef
73.
go back to reference Zhuo W, et al. Efficiency of endovenous versus arterial administration of mesenchymal stem cells for ischemia-reperfusion-induced renal dysfunction in rats. Transplant Proc. 2013;45(2):503–10.PubMedCrossRef Zhuo W, et al. Efficiency of endovenous versus arterial administration of mesenchymal stem cells for ischemia-reperfusion-induced renal dysfunction in rats. Transplant Proc. 2013;45(2):503–10.PubMedCrossRef
74.
go back to reference Cao H, et al. Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett. 2010;32(5):725–32.PubMedCrossRef Cao H, et al. Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett. 2010;32(5):725–32.PubMedCrossRef
75.
go back to reference Semedo P, et al. Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. Int Immunopharmacol. 2009;9(6):677–82.PubMedCrossRef Semedo P, et al. Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. Int Immunopharmacol. 2009;9(6):677–82.PubMedCrossRef
76.
go back to reference Behr L, et al. Evaluation of the effect of autologous mesenchymal stem cell injection in a large-animal model of bilateral kidney ischaemia reperfusion injury. Cell Prolif. 2009;42(3):284–97.PubMedCrossRef Behr L, et al. Evaluation of the effect of autologous mesenchymal stem cell injection in a large-animal model of bilateral kidney ischaemia reperfusion injury. Cell Prolif. 2009;42(3):284–97.PubMedCrossRef
77.
go back to reference Behr L, et al. Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney. Nephron Physiol. 2007;107(3):65–76.CrossRef Behr L, et al. Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney. Nephron Physiol. 2007;107(3):65–76.CrossRef
78.
go back to reference Hoogduijn MJ, et al. Mesenchymal stem cells induce an inflammatory response after intravenous infusion. Stem Cells Dev. 2013;22(21):2825–35.PubMedCrossRef Hoogduijn MJ, et al. Mesenchymal stem cells induce an inflammatory response after intravenous infusion. Stem Cells Dev. 2013;22(21):2825–35.PubMedCrossRef
79.
go back to reference Burst VR, et al. Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol. 2010;114(3):e107–16.PubMedCrossRef Burst VR, et al. Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol. 2010;114(3):e107–16.PubMedCrossRef
80.
go back to reference Luo J, et al. Mesenchymal-like progenitors derived from human embryonic stem cells promote recovery from acute kidney injury via paracrine actions. Cytotherapy. 2013;15(6):649–62.PubMedCrossRef Luo J, et al. Mesenchymal-like progenitors derived from human embryonic stem cells promote recovery from acute kidney injury via paracrine actions. Cytotherapy. 2013;15(6):649–62.PubMedCrossRef
81.
go back to reference Murry CE, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664–8.PubMedCrossRef Murry CE, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664–8.PubMedCrossRef
82.
go back to reference Balsam LB, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428(6983):668–73.PubMedCrossRef Balsam LB, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428(6983):668–73.PubMedCrossRef
83.
go back to reference Perico N, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011;6(2):412–22.PubMedCentralPubMedCrossRef Perico N, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011;6(2):412–22.PubMedCentralPubMedCrossRef
84.
go back to reference Reinders ME, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013;2(2):107–11.PubMedCentralPubMedCrossRef Reinders ME, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013;2(2):107–11.PubMedCentralPubMedCrossRef
85.
go back to reference Peng Y, et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation. 2013;95(1):161–8.PubMedCrossRef Peng Y, et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation. 2013;95(1):161–8.PubMedCrossRef
86.
go back to reference Luk F, et al. Efficacy of immunotherapy with mesenchymal stem cells in man: a systematic review. Expert Rev Clin Immunol. 2015;11(5):617–36.PubMedCrossRef Luk F, et al. Efficacy of immunotherapy with mesenchymal stem cells in man: a systematic review. Expert Rev Clin Immunol. 2015;11(5):617–36.PubMedCrossRef
87.
go back to reference Brunstein CG, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.PubMedCentralPubMedCrossRef Brunstein CG, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.PubMedCentralPubMedCrossRef
89.
90.
go back to reference Dijke IE, et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am J Transplant. 2015;16(1):58–71.PubMedCrossRef Dijke IE, et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am J Transplant. 2015;16(1):58–71.PubMedCrossRef
91.
92.
go back to reference Attallah N, et al. The potential role of statins in contrast nephropathy. Clin Nephrol. 2004;62(4):273–8.PubMedCrossRef Attallah N, et al. The potential role of statins in contrast nephropathy. Clin Nephrol. 2004;62(4):273–8.PubMedCrossRef
93.
go back to reference Khanal S, et al. Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions. Am J Med. 2005;118(8):843–9.PubMedCrossRef Khanal S, et al. Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions. Am J Med. 2005;118(8):843–9.PubMedCrossRef
94.
go back to reference Jo SH, et al. Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial—a randomized controlled study. Am Heart J. 2008;155(3):499 e1-8.PubMedCrossRef Jo SH, et al. Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial—a randomized controlled study. Am Heart J. 2008;155(3):499 e1-8.PubMedCrossRef
95.
go back to reference Philips B, MacPhee I. Do statins prevent acute kidney injury? Expert Opin Drug Saf. 2015;14(10):1547–61.PubMedCrossRef Philips B, MacPhee I. Do statins prevent acute kidney injury? Expert Opin Drug Saf. 2015;14(10):1547–61.PubMedCrossRef
96.
go back to reference Ishii Y, et al. Renoprotective effect of erythropoietin against ischaemia-reperfusion injury in a non-human primate model. Nephrol Dial Transplant. 2011;26(4):1157–62.PubMedCrossRef Ishii Y, et al. Renoprotective effect of erythropoietin against ischaemia-reperfusion injury in a non-human primate model. Nephrol Dial Transplant. 2011;26(4):1157–62.PubMedCrossRef
97.
go back to reference Zhang J, et al. Erythropoietin pretreatment ameliorates renal ischaemia-reperfusion injury by activating PI3K/Akt signalling. Nephrology (Carlton). 2015;20(4):266–72.CrossRef Zhang J, et al. Erythropoietin pretreatment ameliorates renal ischaemia-reperfusion injury by activating PI3K/Akt signalling. Nephrology (Carlton). 2015;20(4):266–72.CrossRef
98.
go back to reference Song YR, et al. Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol. 2009;30(3):253–60.PubMedCrossRef Song YR, et al. Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol. 2009;30(3):253–60.PubMedCrossRef
99.
go back to reference Xin H, et al. Effect of high-dose erythropoietin on graft function after kidney transplantation: a meta-analysis of randomized controlled trials. Biomed Pharmacother. 2015;69:29–33.PubMedCrossRef Xin H, et al. Effect of high-dose erythropoietin on graft function after kidney transplantation: a meta-analysis of randomized controlled trials. Biomed Pharmacother. 2015;69:29–33.PubMedCrossRef
100.
go back to reference Vlachopanos G, Kassimatis TI, Agrafiotis A. Perioperative administration of high-dose recombinant human erythropoietin for delayed graft function prevention in kidney transplantation: a meta-analysis. Transpl Int. 2015;28(3):330–40.PubMedCrossRef Vlachopanos G, Kassimatis TI, Agrafiotis A. Perioperative administration of high-dose recombinant human erythropoietin for delayed graft function prevention in kidney transplantation: a meta-analysis. Transpl Int. 2015;28(3):330–40.PubMedCrossRef
101.
go back to reference Brines M, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci USA. 2008;105(31):10925–30.PubMedCentralPubMedCrossRef Brines M, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci USA. 2008;105(31):10925–30.PubMedCentralPubMedCrossRef
102.
go back to reference Yang C, et al. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta. 2014;1842(11):2306–17.PubMedCrossRef Yang C, et al. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim Biophys Acta. 2014;1842(11):2306–17.PubMedCrossRef
103.
go back to reference Yang C. Cyclic helix B peptide in preservation solution and autologous blood perfusate ameliorates ichemia-reperfusion injury in isolated porcine kidneys. Transplantation Direct. 2015;1(2):1–9.CrossRef Yang C. Cyclic helix B peptide in preservation solution and autologous blood perfusate ameliorates ichemia-reperfusion injury in isolated porcine kidneys. Transplantation Direct. 2015;1(2):1–9.CrossRef
104.
105.
106.
go back to reference Sui W, et al. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl Immunol. 2008;19(1):81–5.PubMedCrossRef Sui W, et al. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl Immunol. 2008;19(1):81–5.PubMedCrossRef
107.
108.
109.
go back to reference van den Akker EK, et al. MicroRNAs in kidney transplantation: living up to their expectations? J Transplant. 2015;2015:354826.PubMedCentralPubMed van den Akker EK, et al. MicroRNAs in kidney transplantation: living up to their expectations? J Transplant. 2015;2015:354826.PubMedCentralPubMed
110.
go back to reference Rowinski W, Paczek L. Transplantation ethics: are we approaching the crossroads? Transplant Proc. 2012;44(7):2171–2.PubMedCrossRef Rowinski W, Paczek L. Transplantation ethics: are we approaching the crossroads? Transplant Proc. 2012;44(7):2171–2.PubMedCrossRef
112.
go back to reference Sachdeva M, et al. Obesity as a barrier to living kidney donation: a center-based analysis. Clin Transplant. 2013;27(6):882–7.PubMedCrossRef Sachdeva M, et al. Obesity as a barrier to living kidney donation: a center-based analysis. Clin Transplant. 2013;27(6):882–7.PubMedCrossRef
113.
go back to reference Hourmant M, Lerat L, Karam G. Donation from old living donors: how safe is it? Nephrol Dial Transplant. 2013;28(8):2010–4.PubMedCrossRef Hourmant M, Lerat L, Karam G. Donation from old living donors: how safe is it? Nephrol Dial Transplant. 2013;28(8):2010–4.PubMedCrossRef
114.
go back to reference Chapman JR, Nankivell BJ. Nephrotoxicity of ciclosporin A: short-term gain, long-term pain? Nephrol Dial Transplant. 2006;21(8):2060–3.PubMedCrossRef Chapman JR, Nankivell BJ. Nephrotoxicity of ciclosporin A: short-term gain, long-term pain? Nephrol Dial Transplant. 2006;21(8):2060–3.PubMedCrossRef
115.
go back to reference Nankivell BJ, et al. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349(24):2326–33.PubMedCrossRef Nankivell BJ, et al. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349(24):2326–33.PubMedCrossRef
116.
go back to reference Nankivell BJ, et al. Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation. 2004;78(4):557–65.PubMedCrossRef Nankivell BJ, et al. Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation. 2004;78(4):557–65.PubMedCrossRef
117.
go back to reference Budde K, et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet. 2011;377(9768):837–47.PubMedCrossRef Budde K, et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet. 2011;377(9768):837–47.PubMedCrossRef
118.
go back to reference Ponticelli C. Herpes viruses and tumours in kidney transplant recipients. The role of immunosuppression. Nephrol Dial Transplant. 2011;26(6):1769–75.PubMedCrossRef Ponticelli C. Herpes viruses and tumours in kidney transplant recipients. The role of immunosuppression. Nephrol Dial Transplant. 2011;26(6):1769–75.PubMedCrossRef
119.
go back to reference Carroll RP, et al. Incidence and prediction of nonmelanoma skin cancer post-renal transplantation: a prospective study in Queensland, Australia. Am J Kidney Dis. 2003;41(3):676–83.PubMedCrossRef Carroll RP, et al. Incidence and prediction of nonmelanoma skin cancer post-renal transplantation: a prospective study in Queensland, Australia. Am J Kidney Dis. 2003;41(3):676–83.PubMedCrossRef
120.
go back to reference ter Riet G, et al. Publication bias in laboratory animal research: a survey on magnitude, drivers, consequences and potential solutions. PLoS One. 2012;7(9):e43404.PubMedCentralPubMedCrossRef ter Riet G, et al. Publication bias in laboratory animal research: a survey on magnitude, drivers, consequences and potential solutions. PLoS One. 2012;7(9):e43404.PubMedCentralPubMedCrossRef
Metadata
Title
Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation?
Authors
T. C. Saat
E. K. van den Akker
J. N. M. IJzermans
F. J. M. F. Dor
R. W. F. de Bruin
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2016
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0767-2

Other articles of this Issue 1/2016

Journal of Translational Medicine 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.