Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2018

Open Access 01-12-2018 | Research

Circulating osteopontin and its association with liver fat content in non-obese women with polycystic ovary syndrome: a case control study

Authors: Yuying Wang, Wei Zhou, Chunhua Wu, Yi Zhang, Tzuchun Lin, Yun Sun, Wei Liu, Tao Tao

Published in: Reproductive Biology and Endocrinology | Issue 1/2018

Login to get access

Abstract

Background

Osteopontin (OPN) plays an important role in inflammatory processes and insulin resistance. Polycystic ovary syndrome (PCOS) is a reproductive metabolic disease associated with insulin resistance and metabolic abnormalities, including high levels of liver fat content (LFC). The objective of this study was to explore whether circulating OPN independently contributes to elevated LFC in non-obese PCOS patients.

Methods

This study included 61 non-obese PCOS patients and 56 age-matched healthy women from Shanghai, China. After an overnight fast, all participants underwent anthropometric measurements, oral glucose tolerance tests, lipid profile and sex hormone measurements. Quantitative measurement of LFC by ultrasonography was performed. OPN concentrations were measured using ELISA. An independent samples t-test and the Mann-Whitney U test were performed to compare variables between the two groups; one-way ANOVA and Kruskal-Wallis test were performed to compare four subgroups of patients. Correlations were determined by Spearman’s correlation tests. Stepwise multiple linear regression analyses were performed to assess for independent contributors. A receiver operating characteristic curve with the maximum Youden index was calculated for the optimal cut-off value.

Results

In non-obese PCOS women, circulating OPN levels were increased in the subgroups with a higher body mass index (BMI) and free androgen index (FAI), and the LFC levels were increased in the elevated OPN subgroups. Moreover, increased OPN was associated with increased FAI and LFC in PCOS women, and the association between OPN and LFC was independent of triglyceride, HOMA-IR and FAI after adjusting for PCOS status in all participants. OPN combined with FAI and hsCRP may better predict NAFLD than WHR in this study cohort. However, there was no significant difference in circulating OPN levels between non-obese PCOS and normal control women.

Conclusions

Increased OPN levels may be related to FAI and elevated LFC in non-obese women with PCOS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, Spina GG, et al. A survey of the polycystic ovary syndrome in the Greek island of lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab. 1999;84(11):4006.CrossRefPubMed Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, Spina GG, et al. A survey of the polycystic ovary syndrome in the Greek island of lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab. 1999;84(11):4006.CrossRefPubMed
2.
go back to reference Hahn S, Tan S, Sack S, Kimmig R, Quadbeck B, Mann K, et al. Prevalence of the metabolic syndrome in German women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2007;115:130–5.CrossRefPubMed Hahn S, Tan S, Sack S, Kimmig R, Quadbeck B, Mann K, et al. Prevalence of the metabolic syndrome in German women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2007;115:130–5.CrossRefPubMed
3.
go back to reference Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98:4565–92.CrossRefPubMedPubMedCentral Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98:4565–92.CrossRefPubMedPubMedCentral
5.
go back to reference Uchil D, Pipalia D, Chawla M, Patel R, Maniar S. Narayani, et al. non-alcoholic fatty liver disease (NAFLD)--the hepatic component of metabolic syndrome. J Assoc Physicians India. 2009;57:201–4.PubMed Uchil D, Pipalia D, Chawla M, Patel R, Maniar S. Narayani, et al. non-alcoholic fatty liver disease (NAFLD)--the hepatic component of metabolic syndrome. J Assoc Physicians India. 2009;57:201–4.PubMed
6.
go back to reference Qu Z, Zhu Y, Jiang J, Shi Y, Chen Z. The clinical characteristics and etiological study of nonalcoholic fatty liver disease in Chinese women with PCOS. Iran J Reprod Med. 2013;11:725–32.PubMedPubMedCentral Qu Z, Zhu Y, Jiang J, Shi Y, Chen Z. The clinical characteristics and etiological study of nonalcoholic fatty liver disease in Chinese women with PCOS. Iran J Reprod Med. 2013;11:725–32.PubMedPubMedCentral
7.
go back to reference Cerda C, Perez-Ayuso RM, Riquelme A, Soza A, Villaseca P, Sir-Petermann T, et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. J Hepatol. 2007;47:412–7.CrossRefPubMed Cerda C, Perez-Ayuso RM, Riquelme A, Soza A, Villaseca P, Sir-Petermann T, et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. J Hepatol. 2007;47:412–7.CrossRefPubMed
8.
go back to reference Gambarin-Gelwan M, Kinkhabwala SV, Schiano TD, Bodian C, Yeh HC, Futterweit W. Prevalence of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Clin Gastroenterol Hepatol. 2007;5:496–501.CrossRefPubMed Gambarin-Gelwan M, Kinkhabwala SV, Schiano TD, Bodian C, Yeh HC, Futterweit W. Prevalence of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Clin Gastroenterol Hepatol. 2007;5:496–501.CrossRefPubMed
9.
go back to reference Karoli R, Fatima J, Chandra A, Gupta U, Islam FU, Singh G. Prevalence of hepatic steatosis in women with polycystic ovary syndrome. J Hum Reprod Sci. 2013;6:9–14.CrossRefPubMedPubMedCentral Karoli R, Fatima J, Chandra A, Gupta U, Islam FU, Singh G. Prevalence of hepatic steatosis in women with polycystic ovary syndrome. J Hum Reprod Sci. 2013;6:9–14.CrossRefPubMedPubMedCentral
10.
go back to reference Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181–205.CrossRefPubMed Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181–205.CrossRefPubMed
11.
go back to reference McPherson S, Jonsson JR, Cowin GJ, O'Rourke P, Clouston AD, Volp A, et al. Magnetic resonance imaging and spectroscopy accurately estimate the severity of steatosis provided the stage of fibrosis is considered. J Hepatol. 2009;51:389–97.CrossRefPubMed McPherson S, Jonsson JR, Cowin GJ, O'Rourke P, Clouston AD, Volp A, et al. Magnetic resonance imaging and spectroscopy accurately estimate the severity of steatosis provided the stage of fibrosis is considered. J Hepatol. 2009;51:389–97.CrossRefPubMed
12.
go back to reference Marchesini G, Day CP, Dufour JF, Canbay A, Nobili V, Ratziu V, et al. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402. Marchesini G, Day CP, Dufour JF, Canbay A, Nobili V, Ratziu V, et al. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402.
13.
go back to reference Kuhn JP, Hernando D, Mensel B, Kruger PC, Ittermann T, Mayerle J, et al. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging. 2014;39:1494–501.CrossRefPubMed Kuhn JP, Hernando D, Mensel B, Kruger PC, Ittermann T, Mayerle J, et al. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging. 2014;39:1494–501.CrossRefPubMed
14.
go back to reference Xia MF, Bian H, Yan HM, Lin HD, Chang XX, Li XM, et al. Assessment of liver fat content using quantitative ultrasonography to evaluate risks for metabolic diseases. Obesity (Silver Spring). 2015;23:1929–37.CrossRef Xia MF, Bian H, Yan HM, Lin HD, Chang XX, Li XM, et al. Assessment of liver fat content using quantitative ultrasonography to evaluate risks for metabolic diseases. Obesity (Silver Spring). 2015;23:1929–37.CrossRef
15.
go back to reference Webb M, Yeshua H, Zelber-Sagi S, Santo E, Brazowski E, Halpern Z, et al. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis. AJR Am J Roentgenol. 2009;192:909–14.CrossRefPubMed Webb M, Yeshua H, Zelber-Sagi S, Santo E, Brazowski E, Halpern Z, et al. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis. AJR Am J Roentgenol. 2009;192:909–14.CrossRefPubMed
16.
go back to reference Mancini M, Prinster A, Annuzzi G, Liuzzi R, Giacco R, Medagli C, et al. Sonographic hepatic-renal ratio as indicator of hepatic steatosis: comparison with H-1 magnetic resonance spectroscopy. Metabolism. 2009;58:1724–30.CrossRefPubMed Mancini M, Prinster A, Annuzzi G, Liuzzi R, Giacco R, Medagli C, et al. Sonographic hepatic-renal ratio as indicator of hepatic steatosis: comparison with H-1 magnetic resonance spectroscopy. Metabolism. 2009;58:1724–30.CrossRefPubMed
17.
go back to reference Xia MF, Yan HM, He WY, Li XM, Li CL, Yao XZ, et al. Standardized ultrasound hepatic/renal ratio and hepatic attenuation rate to quantify liver fat content: an improvement method. Obesity (Silver Spring). 2012;20:444–52.CrossRef Xia MF, Yan HM, He WY, Li XM, Li CL, Yao XZ, et al. Standardized ultrasound hepatic/renal ratio and hepatic attenuation rate to quantify liver fat content: an improvement method. Obesity (Silver Spring). 2012;20:444–52.CrossRef
18.
go back to reference Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 2000;287:860–4.CrossRefPubMed Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 2000;287:860–4.CrossRefPubMed
19.
go back to reference Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest. 2007;117:2877–88.CrossRefPubMedPubMedCentral Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest. 2007;117:2877–88.CrossRefPubMedPubMedCentral
20.
go back to reference Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, et al. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology. 2011;152:2219–27.CrossRefPubMed Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, et al. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology. 2011;152:2219–27.CrossRefPubMed
21.
go back to reference Kiefer FW, Zeyda M, Gollinger K, Pfau B, Neuhofer A, Weichhart T, et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes. 2010;59:935–46.CrossRefPubMedPubMedCentral Kiefer FW, Zeyda M, Gollinger K, Pfau B, Neuhofer A, Weichhart T, et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes. 2010;59:935–46.CrossRefPubMedPubMedCentral
22.
go back to reference Gomez-Ambrosi J, Catalan V, Ramirez B, Rodriguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocr Metab. 2007;92:3719–27.CrossRefPubMed Gomez-Ambrosi J, Catalan V, Ramirez B, Rodriguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocr Metab. 2007;92:3719–27.CrossRefPubMed
23.
go back to reference Kuwabara Y, Katayama A, Tomiyama R, Piao H, Kurihara S, Ono S, et al. Gonadotropin regulation and role of ovarian osteopontin in the periovulatory period. J Endocrinol. 2015;224:49–59.CrossRefPubMed Kuwabara Y, Katayama A, Tomiyama R, Piao H, Kurihara S, Ono S, et al. Gonadotropin regulation and role of ovarian osteopontin in the periovulatory period. J Endocrinol. 2015;224:49–59.CrossRefPubMed
24.
go back to reference Patouraux S, Bonnafous S, Voican CS, Anty R, Saint-Paul MC, Rosenthal-Allieri MA, et al. The osteopontin level in liver, adipose tissue and serum is correlated with fibrosis in patients with alcoholic liver disease. PLoS One. 2012;7:e35612.CrossRefPubMedPubMedCentral Patouraux S, Bonnafous S, Voican CS, Anty R, Saint-Paul MC, Rosenthal-Allieri MA, et al. The osteopontin level in liver, adipose tissue and serum is correlated with fibrosis in patients with alcoholic liver disease. PLoS One. 2012;7:e35612.CrossRefPubMedPubMedCentral
25.
go back to reference Kiefer FW, Neschen S, Pfau B, Legerer B, Neuhofer A, Kahle M, et al. Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia. 2011;54:2132–42.CrossRefPubMedPubMedCentral Kiefer FW, Neschen S, Pfau B, Legerer B, Neuhofer A, Kahle M, et al. Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia. 2011;54:2132–42.CrossRefPubMedPubMedCentral
26.
go back to reference Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15:83–96. Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15:83–96.
27.
go back to reference Lane DE. Polycystic ovary syndrome and its differential diagnosis. Obstet Gynecol Surv. 2006;61:125–35.CrossRefPubMed Lane DE. Polycystic ovary syndrome and its differential diagnosis. Obstet Gynecol Surv. 2006;61:125–35.CrossRefPubMed
28.
go back to reference Carter GD, Holland SM, Alaghbandzadeh J, Rayman G, Dorringtonward P. Wise PH. Investigation of hirsutism - testosterone is not enough. Ann Clin Biochem. 1983;20:262–3.CrossRefPubMed Carter GD, Holland SM, Alaghbandzadeh J, Rayman G, Dorringtonward P. Wise PH. Investigation of hirsutism - testosterone is not enough. Ann Clin Biochem. 1983;20:262–3.CrossRefPubMed
29.
go back to reference Jones H, Sprung VS, Pugh CJA, Daousi C, Irwin A, Aziz N, et al. Polycystic ovary syndrome with Hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to Nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. J Clin Endocr Metab. 2012;97:3709–16.CrossRefPubMed Jones H, Sprung VS, Pugh CJA, Daousi C, Irwin A, Aziz N, et al. Polycystic ovary syndrome with Hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to Nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. J Clin Endocr Metab. 2012;97:3709–16.CrossRefPubMed
30.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed
31.
go back to reference Seltzer HS, Allen EW, Herron AL Jr, Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest. 1967;46:323–35.CrossRefPubMedPubMedCentral Seltzer HS, Allen EW, Herron AL Jr, Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest. 1967;46:323–35.CrossRefPubMedPubMedCentral
32.
go back to reference Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.CrossRefPubMed Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.CrossRefPubMed
33.
go back to reference Saklamaz A, Calan M, Yilmaz O, Kume T, Temur M, Yildiz N, et al. Polycystic ovary syndrome is associated with increased osteopontin levels. Eur J Endocrinol. 2016;174:415–23.CrossRefPubMed Saklamaz A, Calan M, Yilmaz O, Kume T, Temur M, Yildiz N, et al. Polycystic ovary syndrome is associated with increased osteopontin levels. Eur J Endocrinol. 2016;174:415–23.CrossRefPubMed
34.
35.
go back to reference Sreekanthreddy P, Srinivasan H, Kumar DM, Nijaguna MB, Sridevi S, Vrinda M, et al. Identification of potential serum biomarkers of glioblastoma: serum osteopontin levels correlate with poor prognosis. Cancer Epidemiol Biomark Prev. 2010;19:1409–22.CrossRef Sreekanthreddy P, Srinivasan H, Kumar DM, Nijaguna MB, Sridevi S, Vrinda M, et al. Identification of potential serum biomarkers of glioblastoma: serum osteopontin levels correlate with poor prognosis. Cancer Epidemiol Biomark Prev. 2010;19:1409–22.CrossRef
Metadata
Title
Circulating osteopontin and its association with liver fat content in non-obese women with polycystic ovary syndrome: a case control study
Authors
Yuying Wang
Wei Zhou
Chunhua Wu
Yi Zhang
Tzuchun Lin
Yun Sun
Wei Liu
Tao Tao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2018
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-018-0331-4

Other articles of this Issue 1/2018

Reproductive Biology and Endocrinology 1/2018 Go to the issue