Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2023

Open Access 01-12-2023 | Breast Cancer | Research

Hyperglycemia induces PFKFB3 overexpression and promotes malignant phenotype of breast cancer through RAS/MAPK activation

Authors: Xiao Cheng, Xiupeng Jia, Chunnian Wang, Shangyan Zhou, Jiayi Chen, Lei Chen, Jinping Chen

Published in: World Journal of Surgical Oncology | Issue 1/2023

Login to get access

Abstract

Background

Breast cancer is the most common tumor in women worldwide. Diabetes mellitus is a global chronic metabolic disease with increasing incidence. Diabetes mellitus has been reported to positively regulate the development of many tumors. However, the specific mechanism of hyperglycemic environment regulating breast cancer remains unclear. PFKFB3 (6-phosphofructose-2-kinase/fructose-2, 6-bisphosphatase 3) is a key regulatory factor of the glycolysis process in diabetes mellitus, as well as a promoter of breast cancer. So, we want to explore the potential link between PFKFB3 and the poor prognosis of breast cancer patients with hyperglycemia in this study.

Methods

Cell culture was utilized to construct different-glucose breast cancer cell lines. Immunohistochemistry was adopted to analyze the protein level of PFKFB3 in benign breast tissues, invasive ductal carcinoma with diabetes and invasive ductal carcinoma without diabetes. The Kaplan–Meier plotter database and GEO database (GSE61304) was adopted to analyze the survival of breast cancer patients with different PFKFB3 expression. Western blot was adopted to analyze the protein level of PFKFB3, epithelial–mesenchymal transition (EMT)-related protein and extracellular regulated protein kinases (ERK) in breast cancer cells. Gene Set Cancer Analysis (GSCA) was utilized to investigate the potential downstream signaling pathways of PFKFB3. TargetScan and OncomiR were utilized to explore the potential mechanism of PFKFB3 overexpression by hyperglycemia. Transfections (including siRNAs and miRNA transfection premiers) was utilized to restrain or mimic the expression of the corresponding RNA. Cell functional assays (including cell counting, MTT, colony formation, wound-healing, and cell migration assays) were utilized to explore the proliferation and migration of breast cancer cells.

Results

In this study, we demonstrated that the expression of PFKFB3 in breast cancer complicated with hyperglycemia was higher than that in breast cancer with euglycemia through cell experiment in vitro and histological experiment. PFKFB3 overexpression decreased the survival period of breast cancer patients and was correlated with a number of clinicopathological parameters of breast cancer complicated with diabetes. PFKFB3 promoted the proliferation and migration of breast cancer in a hyperglycemic environment and might be regulated by miR-26. In addition, PFKFB3 stimulated epithelial-mesenchymal transition of breast cancer in a hyperglycemic environment. In terms of downstream mechanism exploration, we predicted and verified the cancer-promoting effect of PFKFB3 in breast cancer complicated with hyperglycemia through RAS/MAPK pathway.

Conclusions

In conclusion, PFKFB3 could be overexpressed by hyperglycemia and might be a potential therapeutic target for breast cancer complicated with diabetes.
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRef
2.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
3.
go back to reference Wang L, Yu X, Wang C, Pan S, Liang B, Zhang Y, et al. The anti-ErbB2 antibody H2–18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer. Oncotarget. 2017;8(32):52877–88.PubMedCrossRefPubMedCentral Wang L, Yu X, Wang C, Pan S, Liang B, Zhang Y, et al. The anti-ErbB2 antibody H2–18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer. Oncotarget. 2017;8(32):52877–88.PubMedCrossRefPubMedCentral
4.
6.
go back to reference Wang W, He Q, Yan W, Sun J, Chen Z, Liu Z, et al. High glucose enhances the metastatic potential of tongue squamous cell carcinoma via the PKM2 pathway. Oncotarget. 2017;8(67):111770–9.PubMedCrossRefPubMedCentral Wang W, He Q, Yan W, Sun J, Chen Z, Liu Z, et al. High glucose enhances the metastatic potential of tongue squamous cell carcinoma via the PKM2 pathway. Oncotarget. 2017;8(67):111770–9.PubMedCrossRefPubMedCentral
7.
go back to reference Li X, Fang H, Zhang D, Xia L, Wang X, Yang J, et al. Long-term survival analysis of patients with stage IIIB-IV non-small cell lung cancer complicated by type 2 diabetes mellitus: a retrospective propensity score matching analysis. Thorac Cancer. 2022;13(23):3268–73.PubMedCrossRefPubMedCentral Li X, Fang H, Zhang D, Xia L, Wang X, Yang J, et al. Long-term survival analysis of patients with stage IIIB-IV non-small cell lung cancer complicated by type 2 diabetes mellitus: a retrospective propensity score matching analysis. Thorac Cancer. 2022;13(23):3268–73.PubMedCrossRefPubMedCentral
8.
go back to reference Li W, Liu H, Qian W, Cheng L, Yan B, Han L, et al. Hyperglycemia aggravates microenvironment hypoxia and promotes the metastatic ability of pancreatic cancer. Comput Struct Biotechnol J. 2018;16:479–87.PubMedCrossRefPubMedCentral Li W, Liu H, Qian W, Cheng L, Yan B, Han L, et al. Hyperglycemia aggravates microenvironment hypoxia and promotes the metastatic ability of pancreatic cancer. Comput Struct Biotechnol J. 2018;16:479–87.PubMedCrossRefPubMedCentral
9.
go back to reference Xu X, Chen B, Zhu S, Zhang J, He X, Cao G, et al. Hyperglycemia promotes Snail-induced epithelial-mesenchymal transition of gastric cancer via activating ENO1 expression. Cancer Cell Int. 2019;19:344.PubMedCrossRefPubMedCentral Xu X, Chen B, Zhu S, Zhang J, He X, Cao G, et al. Hyperglycemia promotes Snail-induced epithelial-mesenchymal transition of gastric cancer via activating ENO1 expression. Cancer Cell Int. 2019;19:344.PubMedCrossRefPubMedCentral
10.
go back to reference Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care. 2012;35(9):1835–44.PubMedCrossRefPubMedCentral Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care. 2012;35(9):1835–44.PubMedCrossRefPubMedCentral
11.
go back to reference Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121(4):856–62.PubMedCrossRef Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121(4):856–62.PubMedCrossRef
12.
go back to reference Liao S, Li J, Wei W, Wang L, Zhang Y, Li J, et al. Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev. 2011;12(4):1061–5.PubMed Liao S, Li J, Wei W, Wang L, Zhang Y, Li J, et al. Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev. 2011;12(4):1061–5.PubMed
13.
go back to reference Boyle P, Boniol M, Koechlin A, Robertson C, Valentini F, Coppens K, et al. Diabetes and breast cancer risk: a meta-analysis. Br J Cancer. 2012;107(9):1608–17.PubMedCrossRefPubMedCentral Boyle P, Boniol M, Koechlin A, Robertson C, Valentini F, Coppens K, et al. Diabetes and breast cancer risk: a meta-analysis. Br J Cancer. 2012;107(9):1608–17.PubMedCrossRefPubMedCentral
14.
go back to reference Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, Green MF, et al. Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol. 2015;35(Suppl):S129–50.PubMedCrossRef Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, Green MF, et al. Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol. 2015;35(Suppl):S129–50.PubMedCrossRef
16.
go back to reference Bartrons R, Simon-Molas H, Rodriguez-Garcia A, Castano E, Navarro-Sabate A, Manzano A, et al. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol. 2018;8:331.PubMedCrossRefPubMedCentral Bartrons R, Simon-Molas H, Rodriguez-Garcia A, Castano E, Navarro-Sabate A, Manzano A, et al. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol. 2018;8:331.PubMedCrossRefPubMedCentral
17.
go back to reference Novellasdemunt L, Obach M, Millan-Arino L, Manzano A, Ventura F, Rosa JL, et al. Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J. 2012;442(2):345–56.PubMedCrossRef Novellasdemunt L, Obach M, Millan-Arino L, Manzano A, Ventura F, Rosa JL, et al. Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J. 2012;442(2):345–56.PubMedCrossRef
18.
go back to reference Bobarykina AY, Minchenko DO, Opentanova IL, Moenner M, Caro J, Esumi H, et al. Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochim Pol. 2006;53(4):789–99.PubMedCrossRef Bobarykina AY, Minchenko DO, Opentanova IL, Moenner M, Caro J, Esumi H, et al. Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochim Pol. 2006;53(4):789–99.PubMedCrossRef
19.
go back to reference Riera L, Manzano A, Navarro-Sabate A, Perales JC, Bartrons R. Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells. Biochim Biophys Acta. 2002;1589(2):89–92.PubMedCrossRef Riera L, Manzano A, Navarro-Sabate A, Perales JC, Bartrons R. Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells. Biochim Biophys Acta. 2002;1589(2):89–92.PubMedCrossRef
20.
go back to reference Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(-) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–35.PubMedCrossRefPubMedCentral Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(-) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–35.PubMedCrossRefPubMedCentral
21.
go back to reference Wei L, Zhang L, Yang L, Wang X, Zhao C, Zhao D. Protective effect of mesenchymal stem cells on isolated islets survival and against hypoxia associated with the HIF-1alpha/PFKFB3 pathway. Cell Transplant. 2022;31:9636897211073128.PubMedCrossRef Wei L, Zhang L, Yang L, Wang X, Zhao C, Zhao D. Protective effect of mesenchymal stem cells on isolated islets survival and against hypoxia associated with the HIF-1alpha/PFKFB3 pathway. Cell Transplant. 2022;31:9636897211073128.PubMedCrossRef
22.
go back to reference Imbert-Fernandez Y, Clem BF, O’Neal J, Kerr DA, Spaulding R, Lanceta L, et al. Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). J Biol Chem. 2014;289(13):9440–8.PubMedCrossRefPubMedCentral Imbert-Fernandez Y, Clem BF, O’Neal J, Kerr DA, Spaulding R, Lanceta L, et al. Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). J Biol Chem. 2014;289(13):9440–8.PubMedCrossRefPubMedCentral
23.
go back to reference Novellasdemunt L, Bultot L, Manzano A, Ventura F, Rosa JL, Vertommen D, et al. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J. 2013;452(3):531–43.PubMedCrossRef Novellasdemunt L, Bultot L, Manzano A, Ventura F, Rosa JL, Vertommen D, et al. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J. 2013;452(3):531–43.PubMedCrossRef
24.
go back to reference Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A. 1999;96(6):3047–52.PubMedCrossRefPubMedCentral Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A. 1999;96(6):3047–52.PubMedCrossRefPubMedCentral
25.
go back to reference Cavalier MC, Kim SG, Neau D, Lee YH. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: transition state and the C-terminal function. Proteins. 2012;80(4):1143–53.PubMedCrossRefPubMedCentral Cavalier MC, Kim SG, Neau D, Lee YH. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: transition state and the C-terminal function. Proteins. 2012;80(4):1143–53.PubMedCrossRefPubMedCentral
26.
go back to reference Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S, et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem. 2011;286(22):19247–58.PubMedCrossRefPubMedCentral Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S, et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem. 2011;286(22):19247–58.PubMedCrossRefPubMedCentral
27.
go back to reference Lu C, Qiao P, Sun Y, Ren C, Yu Z. Positive regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast cancer. Clin Transl Med. 2021;11(4):e400.PubMedCrossRefPubMedCentral Lu C, Qiao P, Sun Y, Ren C, Yu Z. Positive regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast cancer. Clin Transl Med. 2021;11(4):e400.PubMedCrossRefPubMedCentral
28.
go back to reference He B, Pan H, Zheng F, Chen S, Bie Q, Cao J, et al. Long noncoding RNA LINC00930 promotes PFKFB3-mediated tumor glycolysis and cell proliferation in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2022;41(1):77.PubMedCrossRefPubMedCentral He B, Pan H, Zheng F, Chen S, Bie Q, Cao J, et al. Long noncoding RNA LINC00930 promotes PFKFB3-mediated tumor glycolysis and cell proliferation in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2022;41(1):77.PubMedCrossRefPubMedCentral
29.
go back to reference Ding K, Tan S, Huang X, Wang X, Li X, Fan R, et al. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J Biol Chem. 2018;293(11):3949–64.PubMedCrossRefPubMedCentral Ding K, Tan S, Huang X, Wang X, Li X, Fan R, et al. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J Biol Chem. 2018;293(11):3949–64.PubMedCrossRefPubMedCentral
30.
go back to reference Cheng X, Wang X, Wu Z, Tan S, Zhu T, Ding K. CORO1C expression is associated with poor survival rates in gastric cancer and promotes metastasis in vitro. FEBS Open Bio. 2019;9(6):1097–108.PubMedCrossRefPubMedCentral Cheng X, Wang X, Wu Z, Tan S, Zhu T, Ding K. CORO1C expression is associated with poor survival rates in gastric cancer and promotes metastasis in vitro. FEBS Open Bio. 2019;9(6):1097–108.PubMedCrossRefPubMedCentral
31.
go back to reference Ogle GD, James S, Dabelea D, Pihoker C, Svennson J, Maniam J, et al. Global estimates of incidence of type 1 diabetes in children and adolescents: results from the International Diabetes Federation Atlas, 10th edition. Diabetes Res Clin Pract. 2022;183:109083.PubMedCrossRef Ogle GD, James S, Dabelea D, Pihoker C, Svennson J, Maniam J, et al. Global estimates of incidence of type 1 diabetes in children and adolescents: results from the International Diabetes Federation Atlas, 10th edition. Diabetes Res Clin Pract. 2022;183:109083.PubMedCrossRef
32.
go back to reference Garcia-Esquinas E, Guino E, Castano-Vinyals G, Perez-Gomez B, Llorca J, Altzibar JM, et al. Association of diabetes and diabetes treatment with incidence of breast cancer. Acta Diabetol. 2016;53(1):99–107.PubMedCrossRef Garcia-Esquinas E, Guino E, Castano-Vinyals G, Perez-Gomez B, Llorca J, Altzibar JM, et al. Association of diabetes and diabetes treatment with incidence of breast cancer. Acta Diabetol. 2016;53(1):99–107.PubMedCrossRef
33.
go back to reference Zhao XB, Ren GS. Diabetes mellitus and prognosis in women with breast cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95(49):e5602.PubMedCrossRef Zhao XB, Ren GS. Diabetes mellitus and prognosis in women with breast cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95(49):e5602.PubMedCrossRef
34.
go back to reference Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–46.PubMedCrossRef Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–46.PubMedCrossRef
36.
go back to reference Claus TH, El-Maghrabi MR, Regen DM, Stewart HB, McGrane M, Kountz PD, et al. The role of fructose 2,6-bisphosphate in the regulation of carbohydrate metabolism. Curr Top Cell Regul. 1984;23:57–86.PubMedCrossRef Claus TH, El-Maghrabi MR, Regen DM, Stewart HB, McGrane M, Kountz PD, et al. The role of fructose 2,6-bisphosphate in the regulation of carbohydrate metabolism. Curr Top Cell Regul. 1984;23:57–86.PubMedCrossRef
37.
go back to reference Van Schaftingen E. Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol. 1987;59:315–95.PubMed Van Schaftingen E. Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol. 1987;59:315–95.PubMed
38.
go back to reference Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 2004;381(Pt 3):561–79.PubMedCrossRefPubMedCentral Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 2004;381(Pt 3):561–79.PubMedCrossRefPubMedCentral
39.
go back to reference Hu M, Bao R, Lin M, Han XR, Ai YJ, Gao Y, et al. ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3. Oncogene. 2022;41(40):4547–59.PubMedCrossRef Hu M, Bao R, Lin M, Han XR, Ai YJ, Gao Y, et al. ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3. Oncogene. 2022;41(40):4547–59.PubMedCrossRef
40.
go back to reference Shi WK, Zhu XD, Wang CH, Zhang YY, Cai H, Li XL, et al. PFKFB3 blockade inhibits hepatocellular carcinoma growth by impairing DNA repair through AKT. Cell Death Dis. 2018;9(4):428.PubMedCrossRefPubMedCentral Shi WK, Zhu XD, Wang CH, Zhang YY, Cai H, Li XL, et al. PFKFB3 blockade inhibits hepatocellular carcinoma growth by impairing DNA repair through AKT. Cell Death Dis. 2018;9(4):428.PubMedCrossRefPubMedCentral
41.
go back to reference Du JY, Wang LF, Wang Q, Yu LD. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep. 2015;33(4):1890–8.PubMedCrossRef Du JY, Wang LF, Wang Q, Yu LD. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep. 2015;33(4):1890–8.PubMedCrossRef
42.
go back to reference He X, Cheng X, Ding J, Xiong M, Chen B, Cao G. Hyperglycemia induces miR-26-5p down-regulation to overexpress PFKFB3 and accelerate epithelial-mesenchymal transition in gastric cancer. Bioengineered. 2022;13(2):2902–17.PubMedCrossRefPubMedCentral He X, Cheng X, Ding J, Xiong M, Chen B, Cao G. Hyperglycemia induces miR-26-5p down-regulation to overexpress PFKFB3 and accelerate epithelial-mesenchymal transition in gastric cancer. Bioengineered. 2022;13(2):2902–17.PubMedCrossRefPubMedCentral
43.
go back to reference Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6(11):827–37.PubMedCrossRef Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6(11):827–37.PubMedCrossRef
44.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.PubMedCrossRef Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.PubMedCrossRef
45.
go back to reference Herrero A, Pinto A, Colon-Bolea P, Casar B, Jones M, Agudo-Ibanez L, et al. Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell. 2015;28(2):170–82.PubMedCrossRef Herrero A, Pinto A, Colon-Bolea P, Casar B, Jones M, Agudo-Ibanez L, et al. Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell. 2015;28(2):170–82.PubMedCrossRef
46.
go back to reference Bartholomeusz C, Gonzalez-Angulo AM, Liu P, Hayashi N, Lluch A, Ferrer-Lozano J, et al. High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients. Oncologist. 2012;17(6):766–74.PubMedCrossRefPubMedCentral Bartholomeusz C, Gonzalez-Angulo AM, Liu P, Hayashi N, Lluch A, Ferrer-Lozano J, et al. High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients. Oncologist. 2012;17(6):766–74.PubMedCrossRefPubMedCentral
47.
go back to reference McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263–84.PubMedCrossRef McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263–84.PubMedCrossRef
48.
go back to reference He X, Gao F, Hou J, Li T, Tan J, Wang C, et al. Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus. J Biol Chem. 2021;297(2):101002.PubMedCrossRefPubMedCentral He X, Gao F, Hou J, Li T, Tan J, Wang C, et al. Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus. J Biol Chem. 2021;297(2):101002.PubMedCrossRefPubMedCentral
49.
go back to reference Durrani IA, Bhatti A, John P. The prognostic outcome of “type 2 diabetes mellitus and breast cancer” association pivots on hypoxia-hyperglycemia axis. Cancer Cell Int. 2021;21(1):351.PubMedCrossRefPubMedCentral Durrani IA, Bhatti A, John P. The prognostic outcome of “type 2 diabetes mellitus and breast cancer” association pivots on hypoxia-hyperglycemia axis. Cancer Cell Int. 2021;21(1):351.PubMedCrossRefPubMedCentral
50.
go back to reference Gallagher EJ, LeRoith D. Epidemiology and molecular mechanisms tying obesity, diabetes, and the metabolic syndrome with cancer. Diabetes Care. 2013;36 Suppl 2(Suppl 2):S233-9.PubMedCrossRef Gallagher EJ, LeRoith D. Epidemiology and molecular mechanisms tying obesity, diabetes, and the metabolic syndrome with cancer. Diabetes Care. 2013;36 Suppl 2(Suppl 2):S233-9.PubMedCrossRef
Metadata
Title
Hyperglycemia induces PFKFB3 overexpression and promotes malignant phenotype of breast cancer through RAS/MAPK activation
Authors
Xiao Cheng
Xiupeng Jia
Chunnian Wang
Shangyan Zhou
Jiayi Chen
Lei Chen
Jinping Chen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2023
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-023-02990-2

Other articles of this Issue 1/2023

World Journal of Surgical Oncology 1/2023 Go to the issue