Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2015

Open Access 01-12-2015 | Research

Interleukin-6 and pro inflammatory status in the breast tumor microenvironment

Authors: Alessandro Sanguinetti, Donatella Santini, Massimiliano Bonafè, Mario Taffurelli, Nicola Avenia

Published in: World Journal of Surgical Oncology | Issue 1/2015

Login to get access

Abstract

Background

Greater than 50,000 new cases of breast cancer cases were diagnosed in Italy during 2013, with nearly 15,000 women succumbing to the disease. These epidemiological statistics highlight the overwhelming clinical dilemma of breast cancer and emphasize the need for novel therapeutic targets and prevention strategies. Countless studies in the fields of mammary gland development and breast cancer have led to an appreciation of a breast tumor microenvironment that actively contributes to the heterogeneous nature of breast cancer.

Methods

The current review will focus on the impact of IL-6 and in the breast tumor microenvironment. Excessive IL-6 has been demonstrated in primary breast tumors and breast cancer patient sera and is associated with poor clinical outcomes in breast cancer. These clinical associations are corroborated by emerging preclinical data revealing that IL-6 is a potent growth factor and promotes an epithelial-mesenchyme (EMT) phenotype in breast cancer cells to indicate that IL-6 in the breast tumor microenvironment is clinically relevant.

Results

High serum levels of interleukin-6 correlate with poor outcome in breast cancer patients. However, few data are yet available on the relationship between IL-6 and stem/progenitor cells, which may fuel the genesis of breast cancer in vivo. Mammospheres (MS) from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. IL-6 mRNA is detectable only in basal-like breast carcinoma tissues; our results reveal that IL-6 triggers a Notch-3-dependent upregulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and Michigan Cancer Foundation-7 (MCF-7)-derived spheroids. IL-6 induces a Notch-3-dependent upregulation of the carbonic anhydrase IX gene and promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS.

Conclusions

In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3-expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.
Literature
1.
go back to reference Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41:2502–12.CrossRefPubMed Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41:2502–12.CrossRefPubMed
2.
go back to reference Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol. 2006;80:227–36.CrossRefPubMed Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol. 2006;80:227–36.CrossRefPubMed
3.
go back to reference Knupfer H, Preiss R. Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Treat. 2007;102:129–35.CrossRefPubMed Knupfer H, Preiss R. Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Treat. 2007;102:129–35.CrossRefPubMed
4.
go back to reference Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A, Blay JY. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer. 2003;88:1721–6.CrossRefPubMedCentralPubMed Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A, Blay JY. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer. 2003;88:1721–6.CrossRefPubMedCentralPubMed
5.
go back to reference Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, et al. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 2001;61:8851–8.PubMed Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, et al. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 2001;61:8851–8.PubMed
6.
go back to reference Sehgal PB, Tamm I. Interleukin-6 enhances motility of breast carcinoma cells. EXS. 1991;59:178–93.PubMed Sehgal PB, Tamm I. Interleukin-6 enhances motility of breast carcinoma cells. EXS. 1991;59:178–93.PubMed
7.
go back to reference Selander KS, Li L, Watson L, Merrel M, Dahmen H, Heinrich PC, et al. Inhibition of gp130 signaling in breast cancer blocks constitutive activation of Stat3 and inhibits in vivo malignancy. Cancer Res. 2004;64:6924–33.CrossRefPubMed Selander KS, Li L, Watson L, Merrel M, Dahmen H, Heinrich PC, et al. Inhibition of gp130 signaling in breast cancer blocks constitutive activation of Stat3 and inhibits in vivo malignancy. Cancer Res. 2004;64:6924–33.CrossRefPubMed
8.
go back to reference Dontu G, Liu S, Wicha MS. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev. 2005;1:207–13.CrossRefPubMed Dontu G, Liu S, Wicha MS. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev. 2005;1:207–13.CrossRefPubMed
9.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11. 99.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11. 99.CrossRefPubMed
10.
go back to reference Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168:973–90.CrossRefPubMedCentralPubMed Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168:973–90.CrossRefPubMedCentralPubMed
11.
go back to reference Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65:8530–7.CrossRefPubMed Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65:8530–7.CrossRefPubMed
12.
go back to reference Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66:1517–25.CrossRefPubMed Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66:1517–25.CrossRefPubMed
13.
go back to reference Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Quiron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.CrossRefPubMed Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Quiron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.CrossRefPubMed
14.
go back to reference Boecker W, Buerger H. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif. 2003;36:73–84.CrossRefPubMed Boecker W, Buerger H. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif. 2003;36:73–84.CrossRefPubMed
15.
go back to reference Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 Suppl 1:59–72.CrossRefPubMed Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 Suppl 1:59–72.CrossRefPubMed
16.
go back to reference Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 2007;99:616–27.CrossRefPubMed Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 2007;99:616–27.CrossRefPubMed
17.
go back to reference Ponti D, Costa A, Zaffaroni, Pratesi G, Pilotti S, Pierotti MA, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.CrossRefPubMed Ponti D, Costa A, Zaffaroni, Pratesi G, Pilotti S, Pierotti MA, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.CrossRefPubMed
18.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedCentralPubMed Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedCentralPubMed
19.
go back to reference Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9:617–28.CrossRefPubMed Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9:617–28.CrossRefPubMed
20.
go back to reference Papi A, Guarnieri T, Storci G, Santini D, Ceccarelli C, Taffurelli M, et al. Nuclear receptors agonists exert opposing effects on the inflammation dependent survival of breast cancer stem cells. Cell Death Differ. 2012;19(7):1–12. doi:10.1038/cdd.2011.207.CrossRef Papi A, Guarnieri T, Storci G, Santini D, Ceccarelli C, Taffurelli M, et al. Nuclear receptors agonists exert opposing effects on the inflammation dependent survival of breast cancer stem cells. Cell Death Differ. 2012;19(7):1–12. doi:10.1038/cdd.2011.207.CrossRef
21.
go back to reference Papi A, Storci G, Guarnieri T, De Carolis S, Bertoni S, Nicola Avenia SA, et al. Peroxisome proliferator activated receptor-α/hypoxia inducible factor-1α interplay sustains carbonic anhydrase IX and apoliprotein E expression in breast cancer stem cells. PLoS One. 2013;8:1–14. ISSN:1932–6203, doi:10.1371.CrossRef Papi A, Storci G, Guarnieri T, De Carolis S, Bertoni S, Nicola Avenia SA, et al. Peroxisome proliferator activated receptor-α/hypoxia inducible factor-1α interplay sustains carbonic anhydrase IX and apoliprotein E expression in breast cancer stem cells. PLoS One. 2013;8:1–14. ISSN:1932–6203, doi:10.1371.CrossRef
Metadata
Title
Interleukin-6 and pro inflammatory status in the breast tumor microenvironment
Authors
Alessandro Sanguinetti
Donatella Santini
Massimiliano Bonafè
Mario Taffurelli
Nicola Avenia
Publication date
01-12-2015
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2015
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-015-0529-2

Other articles of this Issue 1/2015

World Journal of Surgical Oncology 1/2015 Go to the issue