Skip to main content
Top
Published in: Molecular Cancer 1/2023

Open Access 01-12-2023 | Biomarkers | Review

Expression of mTOR in normal and pathological conditions

Authors: A Marques-Ramos, R Cervantes

Published in: Molecular Cancer | Issue 1/2023

Login to get access

Abstract

The mechanistic/mammalian target of rapamycin (mTOR), a protein discovered in 1991, integrates a complex pathway with a key role in maintaining cellular homeostasis. By comprising two functionally distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, it is a central cellular hub that integrates intra- and extracellular signals of energy, nutrient, and hormone availability, modulating the molecular responses to acquire a homeostatic state through the regulation of anabolic and catabolic processes. Accordingly, dysregulation of mTOR pathway has been implicated in a variety of human diseases. While major advances have been made regarding the regulators and effectors of mTOR signaling pathway, insights into the regulation of mTOR gene expression are beginning to emerge. Here, we present the current available data regarding the mTOR expression regulation at the level of transcription, translation and mRNA stability and systematize the current knowledge about the fluctuations of mTOR expression observed in several diseases, both cancerous and non-cancerous. In addition, we discuss whether mTOR expression changes can be used as a biomarker for diagnosis, disease progression, prognosis and/or response to therapeutics. We believe that our study will contribute for the implementation of new disease biomarkers based on mTOR as it gives an exhaustive perspective about the regulation of mTOR gene expression in both normal and pathological conditions.
Literature
1.
go back to reference Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar;168(6):960–76. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar;168(6):960–76.
2.
go back to reference Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell. 2012 Apr;149(2):274–93. Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell. 2012 Apr;149(2):274–93.
3.
go back to reference Xie X, Hu H, Tong X, Li L, Liu X, Chen M, et al. The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat Cell Biol. 2018 Mar;20(3):320–31. Xie X, Hu H, Tong X, Li L, Liu X, Chen M, et al. The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat Cell Biol. 2018 Mar;20(3):320–31.
4.
go back to reference Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011 Jul 15;10(14):2305–16. Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011 Jul 15;10(14):2305–16.
5.
go back to reference Tsai K, Tullis B, Jensen T, Graff T, Reynolds P, Arroyo J. Differential expression of mTOR related molecules in the placenta from gestational diabetes mellitus (GDM), intrauterine growth restriction (IUGR) and preeclampsia patients. Reprod Biol. 2021 Jun;21(2):100503. Tsai K, Tullis B, Jensen T, Graff T, Reynolds P, Arroyo J. Differential expression of mTOR related molecules in the placenta from gestational diabetes mellitus (GDM), intrauterine growth restriction (IUGR) and preeclampsia patients. Reprod Biol. 2021 Jun;21(2):100503.
6.
go back to reference Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in type 2 diabetes Mellitus and Diabetes Complications. Curr Drug Targets. 2022 May;23(7):692–710. Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in type 2 diabetes Mellitus and Diabetes Complications. Curr Drug Targets. 2022 May;23(7):692–710.
7.
go back to reference Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med. 2021 Jun;169:382–96. Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med. 2021 Jun;169:382–96.
8.
go back to reference Iwata S, Zhang M, Hajime M, Ohkubo N, Sonomoto K, Torimoto K et al. Pathological role of activated mTOR in CXCR3 + memory B cells of rheumatoid arthritis. Rheumatol 2021 Nov 3;60(11):5452–62. Iwata S, Zhang M, Hajime M, Ohkubo N, Sonomoto K, Torimoto K et al. Pathological role of activated mTOR in CXCR3 + memory B cells of rheumatoid arthritis. Rheumatol 2021 Nov 3;60(11):5452–62.
9.
go back to reference Kahraman DC, Kahraman T, Cetin-Atalay R. Targeting PI3K/Akt/mTOR Pathway Identifies Differential Expression and Functional Role of IL8 in Liver Cancer Stem Cell Enrichment. Mol Cancer Ther. 2019 Nov 1;18(11):2146–57. Kahraman DC, Kahraman T, Cetin-Atalay R. Targeting PI3K/Akt/mTOR Pathway Identifies Differential Expression and Functional Role of IL8 in Liver Cancer Stem Cell Enrichment. Mol Cancer Ther. 2019 Nov 1;18(11):2146–57.
10.
go back to reference Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018 Dec;18(12):744–57. Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018 Dec;18(12):744–57.
11.
go back to reference Blenis J. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease. Cell. 2017 Sep;171(1):10–3. Blenis J. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease. Cell. 2017 Sep;171(1):10–3.
12.
go back to reference Li D, Li X, Cao W, Qi Y, Yang X. Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 2014 Jun;116(5):723–9. Li D, Li X, Cao W, Qi Y, Yang X. Antagonism of microRNA-99a promotes cell invasion and down-regulates E-cadherin expression in pancreatic cancer cells by regulating mammalian target of rapamycin. Acta Histochem. 2014 Jun;116(5):723–9.
13.
go back to reference Douros J, Suffness M. New antitumor substances of natural origin. Cancer Treat Rev. 1981 Mar;8(1):63–87. Douros J, Suffness M. New antitumor substances of natural origin. Cancer Treat Rev. 1981 Mar;8(1):63–87.
14.
go back to reference Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991 Aug;23(5022):905–9. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991 Aug;23(5022):905–9.
15.
go back to reference Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000 Nov;1(21):2689–94. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000 Nov;1(21):2689–94.
16.
go back to reference Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000 Nov;1(21):2712–24. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000 Nov;1(21):2712–24.
17.
go back to reference Long X, Spycher C, Han ZS, Rose AM, Müller F, Avruch J. TOR Deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol. 2002 Sep;12(17):1448–61. Long X, Spycher C, Han ZS, Rose AM, Müller F, Avruch J. TOR Deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol. 2002 Sep;12(17):1448–61.
18.
go back to reference Cruz MC, Cavallo LM, Görlach JM, Cox G, Perfect JR, Cardenas ME, et al. Rapamycin Antifungal Action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol. 1999 Jun;19(6):4101–12. Cruz MC, Cavallo LM, Görlach JM, Cox G, Perfect JR, Cardenas ME, et al. Rapamycin Antifungal Action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol. 1999 Jun;19(6):4101–12.
19.
go back to reference Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci 2002 Apr 30;99(9):6422–7. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci 2002 Apr 30;99(9):6422–7.
20.
go back to reference Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004 Aug 15;18(16):1926–45. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004 Aug 15;18(16):1926–45.
21.
go back to reference Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995 Feb 3;270(5):2320–6. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995 Feb 3;270(5):2320–6.
22.
go back to reference Brown EJ, Albers MW, Bum Shin T, ichikawa K, Keith CT, Lane WS et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nat 1994 Jun 30;369(6483):756–8. Brown EJ, Albers MW, Bum Shin T, ichikawa K, Keith CT, Lane WS et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nat 1994 Jun 30;369(6483):756–8.
23.
go back to reference Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci U S A. 1994 May;10(10):4441–5. Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci U S A. 1994 May;10(10):4441–5.
24.
go back to reference Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994 Jul;15(1):35–43. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994 Jul;15(1):35–43.
25.
go back to reference Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004 Apr 19;23(18):3151–71. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004 Apr 19;23(18):3151–71.
26.
go back to reference Rabanal-Ruiz Y, Korolchuk V. mTORC1 and Nutrient Homeostasis: The Central Role of the Lysosome. Int J Mol Sci. 2018 Mar 12;19(3):818. Rabanal-Ruiz Y, Korolchuk V. mTORC1 and Nutrient Homeostasis: The Central Role of the Lysosome. Int J Mol Sci. 2018 Mar 12;19(3):818.
27.
go back to reference Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002 Sep;10(3):457–68. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002 Sep;10(3):457–68.
28.
go back to reference Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Sci 2008 Jun 13;320(5882):1496–501. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Sci 2008 Jun 13;320(5882):1496–501.
29.
go back to reference Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by rag GTPases in nutrient response. Nat Cell Biol 2008 Aug;10(8):935–45. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by rag GTPases in nutrient response. Nat Cell Biol 2008 Aug;10(8):935–45.
30.
go back to reference Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol CB. 2005 Apr;26(8):702–13. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol CB. 2005 Apr;26(8):702–13.
31.
32.
go back to reference Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr;141(2):290–303. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr;141(2):290–303.
33.
go back to reference Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003 Aug 1;17(15):1829–34. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003 Aug 1;17(15):1829–34.
34.
go back to reference Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol CB. 2003 Aug;5(15):1259–68. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol CB. 2003 Aug;5(15):1259–68.
35.
go back to reference Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006 Sep 8;126(5):955–68. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006 Sep 8;126(5):955–68.
36.
go back to reference Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005 Apr 22;121(2):179–93. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005 Apr 22;121(2):179–93.
37.
go back to reference Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A. 2004 Sep;14(37):13489–94. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A. 2004 Sep;14(37):13489–94.
38.
go back to reference Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007 Mar 23;25(6):903–15. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007 Mar 23;25(6):903–15.
39.
go back to reference Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007 Mar;9(3):316–23. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007 Mar;9(3):316–23.
40.
go back to reference Inoki K, Zhu T, Guan KL. TSC2 mediates Cellular Energy response to Control Cell Growth and Survival. Cell 2003 Nov 26;115(5):577–90. Inoki K, Zhu T, Guan KL. TSC2 mediates Cellular Energy response to Control Cell Growth and Survival. Cell 2003 Nov 26;115(5):577–90.
41.
go back to reference Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK Phosphorylation of Raptor mediates a metabolic checkpoint. Mol Cell 2008 Apr;30(2):214–26. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK Phosphorylation of Raptor mediates a metabolic checkpoint. Mol Cell 2008 Apr;30(2):214–26.
42.
go back to reference Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, et al. IKKβ suppression of TSC1 links inflammation and Tumor Angiogenesis via the mTOR pathway. Cell. 2007 Aug;130(3):440–55. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, et al. IKKβ suppression of TSC1 links inflammation and Tumor Angiogenesis via the mTOR pathway. Cell. 2007 Aug;130(3):440–55.
43.
go back to reference Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004 Dec 1;18(23):2893–904. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004 Dec 1;18(23):2893–904.
44.
go back to reference DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008 Jan 15;22(2):239–51. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008 Jan 15;22(2):239–51.
45.
go back to reference Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos-Zebrucka K, Patterson JB et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget 2016 Mar 15;7(11):12254–66. Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos-Zebrucka K, Patterson JB et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget 2016 Mar 15;7(11):12254–66.
46.
go back to reference Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007 Apr 1;67(7):3043–53. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007 Apr 1;67(7):3043–53.
47.
go back to reference Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004 Jul 19;166(2):213–23. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004 Jul 19;166(2):213–23.
48.
go back to reference Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K Cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 2004 Sep;14(18):1650–6. Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K Cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 2004 Sep;14(18):1650–6.
49.
go back to reference Ebner M, Sinkovics B, Szczygieł M, Ribeiro DW, Yudushkin I. Localization of mTORC2 activity inside cells. J Cell Biol. 2017 Feb 1;216(2):343–53. Ebner M, Sinkovics B, Szczygieł M, Ribeiro DW, Yudushkin I. Localization of mTORC2 activity inside cells. J Cell Biol. 2017 Feb 1;216(2):343–53.
50.
go back to reference Rosner M, Hengstschlager M. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 2008 Jul 9;17(19):2934–48. Rosner M, Hengstschlager M. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 2008 Jul 9;17(19):2934–48.
51.
go back to reference Rosner M, Hengstschläger M. mTOR protein localization is cell cycle-regulated. Cell Cycle 2011 Oct 15;10(20):3608–10. Rosner M, Hengstschläger M. mTOR protein localization is cell cycle-regulated. Cell Cycle 2011 Oct 15;10(20):3608–10.
52.
go back to reference Yuan HX, Guan KL. The SIN1-PH Domain Connects mTORC2 to PI3K. Cancer Discov. 2015 Nov 1;5(11):1127–9. Yuan HX, Guan KL. The SIN1-PH Domain Connects mTORC2 to PI3K. Cancer Discov. 2015 Nov 1;5(11):1127–9.
53.
go back to reference Khanna A, Bhushan B, Chauhan PS, Saxena S, Gupta DK, Siraj F. High mTOR expression independently prognosticates poor clinical outcome to induction chemotherapy in acute lymphoblastic leukemia. Clin Exp Med. 2018 May;18(2):221–7. Khanna A, Bhushan B, Chauhan PS, Saxena S, Gupta DK, Siraj F. High mTOR expression independently prognosticates poor clinical outcome to induction chemotherapy in acute lymphoblastic leukemia. Clin Exp Med. 2018 May;18(2):221–7.
54.
go back to reference Kovalski JR, Bhaduri A, Zehnder AM, Neela PH, Che Y, Wozniak GG et al. The Functional Proximal Proteome of Oncogenic Ras Includes mTORC2. Mol Cell. 2019 Feb 21;73(4):830–844.e12. Kovalski JR, Bhaduri A, Zehnder AM, Neela PH, Che Y, Wozniak GG et al. The Functional Proximal Proteome of Oncogenic Ras Includes mTORC2. Mol Cell. 2019 Feb 21;73(4):830–844.e12.
55.
go back to reference Saci A, Cantley LC, Carpenter CL. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011 Apr 8;42(1):50–61. Saci A, Cantley LC, Carpenter CL. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011 Apr 8;42(1):50–61.
56.
go back to reference Senoo H, Kamimura Y, Kimura R, Nakajima A, Sawai S, Sesaki H, et al. Phosphorylated Rho–GDP directly activates mTORC2 kinase towards AKT through dimerization with Ras–GTP to regulate cell migration. Nat Cell Biol. 2019 Jul;21(7):867–78. Senoo H, Kamimura Y, Kimura R, Nakajima A, Sawai S, Sesaki H, et al. Phosphorylated Rho–GDP directly activates mTORC2 kinase towards AKT through dimerization with Ras–GTP to regulate cell migration. Nat Cell Biol. 2019 Jul;21(7):867–78.
57.
go back to reference Moloughney JG, Kim PK, Vega-Cotto NM, Wu CC, Zhang S, Adlam M, et al. mTORC2 responds to glutamine catabolite levels to modulate the hexosamine biosynthesis enzyme GFAT1. Mol Cell. 2016 Sep;63(5):811–26. Moloughney JG, Kim PK, Vega-Cotto NM, Wu CC, Zhang S, Adlam M, et al. mTORC2 responds to glutamine catabolite levels to modulate the hexosamine biosynthesis enzyme GFAT1. Mol Cell. 2016 Sep;63(5):811–26.
58.
go back to reference Shin S, Buel GR, Wolgamott L, Plas DR, Asara JM, Blenis J, et al. ERK2 mediates metabolic stress response to regulate cell fate. Mol Cell. 2015 Aug;59(3):382–98. Shin S, Buel GR, Wolgamott L, Plas DR, Asara JM, Blenis J, et al. ERK2 mediates metabolic stress response to regulate cell fate. Mol Cell. 2015 Aug;59(3):382–98.
59.
go back to reference Fu W, Hall MN. Regulation of mTORC2 Signaling. Genes 2020 Sep 4;11(9):1045. Fu W, Hall MN. Regulation of mTORC2 Signaling. Genes 2020 Sep 4;11(9):1045.
60.
go back to reference Oh WJ, Wu C, Kim SJ, Facchinetti V, Julien LA, Finlan M et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent akt polypeptide. EMBO J. 2010. Oh WJ, Wu C, Kim SJ, Facchinetti V, Julien LA, Finlan M et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent akt polypeptide. EMBO J. 2010.
61.
go back to reference Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011 Mar 4;144(5):757–68. Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011 Mar 4;144(5):757–68.
62.
go back to reference Kazyken D, Magnuson B, Bodur C, Acosta-Jaquez HA, Zhang D, Tong X et al. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci Signal. 2019 Jun 11;12(585):eaav3249. Kazyken D, Magnuson B, Bodur C, Acosta-Jaquez HA, Zhang D, Tong X et al. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci Signal. 2019 Jun 11;12(585):eaav3249.
63.
go back to reference Daulat AM, Bertucci F, Audebert S, Sergé A, Finetti P, Josselin E, et al. PRICKLE1 contributes to Cancer Cell dissemination through its Interaction with mTORC2. Dev Cell. 2016 May;37(4):311–25. Daulat AM, Bertucci F, Audebert S, Sergé A, Finetti P, Josselin E, et al. PRICKLE1 contributes to Cancer Cell dissemination through its Interaction with mTORC2. Dev Cell. 2016 May;37(4):311–25.
64.
go back to reference Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg Effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013 May;17(5):745–55. Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg Effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013 May;17(5):745–55.
65.
go back to reference Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol. 2012 Dec;14(12):1322–9. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol. 2012 Dec;14(12):1322–9.
66.
go back to reference Kim SW, Kim HI, Thapa B, Nuwormegbe S, Lee K. Critical role of mTORC2-Akt signaling in TGF-β1-Induced Myofibroblast differentiation of human pterygium fibroblasts. Investig Opthalmology Vis Sci. 2019 Jan;14(1):82. Kim SW, Kim HI, Thapa B, Nuwormegbe S, Lee K. Critical role of mTORC2-Akt signaling in TGF-β1-Induced Myofibroblast differentiation of human pterygium fibroblasts. Investig Opthalmology Vis Sci. 2019 Jan;14(1):82.
67.
go back to reference Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-β-induced activation of mTOR complex 2 drives epithelial–mesenchymal transition and cell invasion. Dev 2012 May 15;139(10):e1008–8. Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-β-induced activation of mTOR complex 2 drives epithelial–mesenchymal transition and cell invasion. Dev 2012 May 15;139(10):e1008–8.
68.
go back to reference Urbanska M, Gozdz A, Macias M, Cymerman IA, Liszewska E, Kondratiuk I, et al. GSK3β controls mTOR and Prosurvival Signaling in neurons. Mol Neurobiol. 2018 Jul;55(7):6050–62. Urbanska M, Gozdz A, Macias M, Cymerman IA, Liszewska E, Kondratiuk I, et al. GSK3β controls mTOR and Prosurvival Signaling in neurons. Mol Neurobiol. 2018 Jul;55(7):6050–62.
69.
go back to reference Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Sci 2011 Jun 10;332(6035):1317–22. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Sci 2011 Jun 10;332(6035):1317–22.
70.
go back to reference Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011 Jun;10(6035):1322–6. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011 Jun;10(6035):1322–6.
71.
go back to reference Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes 2020 Aug 25;11(9):989. Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes 2020 Aug 25;11(9):989.
72.
go back to reference Casamassimi A, Ciccodicola A. Transcriptional regulation: molecules, involved mechanisms, and Misregulation. Int J Mol Sci. 2019 Mar;14(6):1281. Casamassimi A, Ciccodicola A. Transcriptional regulation: molecules, involved mechanisms, and Misregulation. Int J Mol Sci. 2019 Mar;14(6):1281.
73.
go back to reference Yuan X, Zhang L, Cui Y, Yu Y, Gao X, Ao J. NCOA5 is a master regulator of amino acid-induced mTOR activation and β-casein synthesis in bovine mammary epithelial cells. Biochem Biophys Res Commun. 2020 Aug;529(3):569–74. Yuan X, Zhang L, Cui Y, Yu Y, Gao X, Ao J. NCOA5 is a master regulator of amino acid-induced mTOR activation and β-casein synthesis in bovine mammary epithelial cells. Biochem Biophys Res Commun. 2020 Aug;529(3):569–74.
74.
go back to reference Huo N, Yu M, Li X, Zhou C, Jin X, Gao X. PURB is a positive regulator of amino acid-induced milk synthesis in bovine mammary epithelial cells. J Cell Physiol. 2019 May;234(5):6992–7003. Huo N, Yu M, Li X, Zhou C, Jin X, Gao X. PURB is a positive regulator of amino acid-induced milk synthesis in bovine mammary epithelial cells. J Cell Physiol. 2019 May;234(5):6992–7003.
75.
go back to reference Yuan X, Zhang M, Ao J, Zhen Z, Gao X, Li M. NUCKS1 is a novel regulator of milk synthesis in and proliferation of mammary epithelial cells via the mTOR signaling pathway. J Cell Physiol. 2019 Sep;234(9):15825–35. Yuan X, Zhang M, Ao J, Zhen Z, Gao X, Li M. NUCKS1 is a novel regulator of milk synthesis in and proliferation of mammary epithelial cells via the mTOR signaling pathway. J Cell Physiol. 2019 Sep;234(9):15825–35.
76.
go back to reference Huang X, Zang Y, Zhang M, Yuan X, Li M, Gao X. Nuclear factor of κB1 is a Key Regulator for the Transcriptional activation of milk synthesis in bovine mammary epithelial cells. DNA Cell Biol. 2017 Apr;36(4):295–302. Huang X, Zang Y, Zhang M, Yuan X, Li M, Gao X. Nuclear factor of κB1 is a Key Regulator for the Transcriptional activation of milk synthesis in bovine mammary epithelial cells. DNA Cell Biol. 2017 Apr;36(4):295–302.
77.
go back to reference Qi H, Wang L, Zhang M, Wang Z, Gao X, Li M. Methionine and leucine induce ARID1A degradation to promote mTOR expression and milk synthesis in mammary epithelial cells. J Nutr Biochem. 2022 Mar;101:108924. Qi H, Wang L, Zhang M, Wang Z, Gao X, Li M. Methionine and leucine induce ARID1A degradation to promote mTOR expression and milk synthesis in mammary epithelial cells. J Nutr Biochem. 2022 Mar;101:108924.
78.
go back to reference Lin G, Qi H, Guo X, Wang W, Zhang M, Gao X. ARID1B blocks methionine-stimulated mTOR activation to inhibit milk fat and protein synthesis in and proliferation of mouse mammary epithelial cells. J Nutr Biochem. 2023 Apr;114:109274. Lin G, Qi H, Guo X, Wang W, Zhang M, Gao X. ARID1B blocks methionine-stimulated mTOR activation to inhibit milk fat and protein synthesis in and proliferation of mouse mammary epithelial cells. J Nutr Biochem. 2023 Apr;114:109274.
79.
go back to reference Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009 May;459(7243):108–12. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009 May;459(7243):108–12.
80.
go back to reference Hao Q, Wang Z, Wang L, Han M, Zhang M, Gao X. Isoleucine stimulates mTOR and SREBP-1c gene expression for milk synthesis in mammary epithelial cells through BRG1-mediated chromatin remodelling. Br J Nutr. 2023 Feb;28(4):553–63. Hao Q, Wang Z, Wang L, Han M, Zhang M, Gao X. Isoleucine stimulates mTOR and SREBP-1c gene expression for milk synthesis in mammary epithelial cells through BRG1-mediated chromatin remodelling. Br J Nutr. 2023 Feb;28(4):553–63.
81.
go back to reference Igolkina AA, Zinkevich A, Karandasheva KO, Popov AA, Selifanova MV, Nikolaeva D et al. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks. Cells. 2019 Sep 5;8(9):1034. Igolkina AA, Zinkevich A, Karandasheva KO, Popov AA, Selifanova MV, Nikolaeva D et al. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks. Cells. 2019 Sep 5;8(9):1034.
82.
go back to reference Hao Q, Wang L, Zhang M, Wang Z, Li M, Gao X. Taurine stimulates protein synthesis and proliferation of C2C12 myoblast cells through the PI3K-ARID4B-mTOR pathway. Br J Nutr. 2022 Nov;28(10):1875–86. Hao Q, Wang L, Zhang M, Wang Z, Li M, Gao X. Taurine stimulates protein synthesis and proliferation of C2C12 myoblast cells through the PI3K-ARID4B-mTOR pathway. Br J Nutr. 2022 Nov;28(10):1875–86.
83.
go back to reference Yu M, Wang Y, Wang Z, Liu Y, Yu Y, Gao X. Taurine promotes milk synthesis via the GPR87-PI3K-SETD1A signaling in BMECs. J Agric Food Chem 2019 Feb 20;67(7):1927–36. Yu M, Wang Y, Wang Z, Liu Y, Yu Y, Gao X. Taurine promotes milk synthesis via the GPR87-PI3K-SETD1A signaling in BMECs. J Agric Food Chem 2019 Feb 20;67(7):1927–36.
84.
go back to reference Davie JR, Xu W, Delcuve GP. Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochem Cell Biol. 2016 Feb;94(1):1–11. Davie JR, Xu W, Delcuve GP. Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochem Cell Biol. 2016 Feb;94(1):1–11.
85.
go back to reference Xu M, Zhou Y, Fan S, Zhang M, Gao X. Cul5 mediates taurine-stimulated mTOR mRNA expression and proliferation of mouse mammary epithelial cells. Amino Acids. 2023 Feb;55(2):243–52. Xu M, Zhou Y, Fan S, Zhang M, Gao X. Cul5 mediates taurine-stimulated mTOR mRNA expression and proliferation of mouse mammary epithelial cells. Amino Acids. 2023 Feb;55(2):243–52.
86.
go back to reference Ke C, Zhao S, Wang L, Zhang M, Gao X. Chromatin remodeler BRM is a key mediator of leucine-stimulated mTOR gene transcription in mouse mammary epithelial cells. Biochem Biophys Res Commun. 2023 Feb;643:88–95. Ke C, Zhao S, Wang L, Zhang M, Gao X. Chromatin remodeler BRM is a key mediator of leucine-stimulated mTOR gene transcription in mouse mammary epithelial cells. Biochem Biophys Res Commun. 2023 Feb;643:88–95.
87.
go back to reference Ramirez-Valle F, Badura ML, Braunstein S, Narasimhan M, Schneider RJ. Mitotic Raptor promotes mTORC1 activity, G2/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation. Mol Cell Biol. 2010 May;30(13):3151–64. Ramirez-Valle F, Badura ML, Braunstein S, Narasimhan M, Schneider RJ. Mitotic Raptor promotes mTORC1 activity, G2/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation. Mol Cell Biol. 2010 May;30(13):3151–64.
88.
go back to reference Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci. 1995 Jun;6(12):5510–4. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci. 1995 Jun;6(12):5510–4.
89.
go back to reference Vilà L, Roglans N, Baena M, Barroso E, Alegret M, Merlos M, et al. Metabolic alterations and increased liver mTOR expression precede the development of Autoimmune Disease in a murine model of Lupus Erythematosus. Boussiotis VA, editor. PLoS ONE. 2012 Dec;4(12):e51118. Vilà L, Roglans N, Baena M, Barroso E, Alegret M, Merlos M, et al. Metabolic alterations and increased liver mTOR expression precede the development of Autoimmune Disease in a murine model of Lupus Erythematosus. Boussiotis VA, editor. PLoS ONE. 2012 Dec;4(12):e51118.
90.
go back to reference Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A et al. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA. 2017 Aug 18;rna.063040.117. Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A et al. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA. 2017 Aug 18;rna.063040.117.
91.
go back to reference Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y, Tahmasebi S, et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015 Jun;290(26):15996–6020. Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y, Tahmasebi S, et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015 Jun;290(26):15996–6020.
92.
go back to reference Hong S, Freeberg MA, Han T, Kamath A, Yao Y, Fukuda T et al. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. eLife. 2017 Jun 26;6:e25237. Hong S, Freeberg MA, Han T, Kamath A, Yao Y, Fukuda T et al. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. eLife. 2017 Jun 26;6:e25237.
93.
go back to reference Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP et al. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5’TOP mRNA translation. Genes Dev 2014 Feb 15;28(4):357–71. Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP et al. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5’TOP mRNA translation. Genes Dev 2014 Feb 15;28(4):357–71.
94.
go back to reference Philippe L, van den Elzen AMG, Watson MJ, Thoreen CC. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5′ TOP motifs. Proc Natl Acad Sci. 2020 Mar;10(10):5319–28. Philippe L, van den Elzen AMG, Watson MJ, Thoreen CC. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5′ TOP motifs. Proc Natl Acad Sci. 2020 Mar;10(10):5319–28.
95.
go back to reference Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, et al. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene. 2015 Sep;34(39):5025–36. Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, et al. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene. 2015 Sep;34(39):5025–36.
96.
go back to reference He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019 Dec;18(1):176. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019 Dec;18(1):176.
97.
go back to reference Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018 Sep;20(9):1074–83. Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018 Sep;20(9):1074–83.
98.
go back to reference Zhao Q, Zhao Y, Hu W, Zhang Y, Wu X, Lu J, et al. M 6 a RNA modification modulates PI3K/Akt/mTOR signal pathway in gastrointestinal Cancer. Theranostics. 2020;10(21):9528–43.CrossRefPubMedPubMedCentral Zhao Q, Zhao Y, Hu W, Zhang Y, Wu X, Lu J, et al. M 6 a RNA modification modulates PI3K/Akt/mTOR signal pathway in gastrointestinal Cancer. Theranostics. 2020;10(21):9528–43.CrossRefPubMedPubMedCentral
99.
go back to reference Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome. Nat Rev Mol Cell Biol. 2016 Dec;17(12):771–82. Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome. Nat Rev Mol Cell Biol. 2016 Dec;17(12):771–82.
100.
go back to reference Liu YC, Gao XX, Zhang ZG, Lin ZH, Zou QL. PPAR Gamma Coactivator 1 Beta (PGC-1β) reduces mammalian target of Rapamycin (mTOR) expression via a SIRT1-Dependent mechanism in neurons. Cell Mol Neurobiol. 2017 Jul;37(5):879–87. Liu YC, Gao XX, Zhang ZG, Lin ZH, Zou QL. PPAR Gamma Coactivator 1 Beta (PGC-1β) reduces mammalian target of Rapamycin (mTOR) expression via a SIRT1-Dependent mechanism in neurons. Cell Mol Neurobiol. 2017 Jul;37(5):879–87.
101.
go back to reference Park JA, Lee CH. Temporal changes in mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia. J Vet Sci. 2017 Mar;30(1):11–6. Park JA, Lee CH. Temporal changes in mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia. J Vet Sci. 2017 Mar;30(1):11–6.
102.
go back to reference Park JS, Park HJ, Park YS, Lee SM, Yim JJ, Yoo CG, et al. Clinical significance of mTOR, ZEB1, ROCK1 expression in lung tissues of pulmonary fibrosis patients. BMC Pulm Med. 2014 Dec;14(1):168. Park JS, Park HJ, Park YS, Lee SM, Yim JJ, Yoo CG, et al. Clinical significance of mTOR, ZEB1, ROCK1 expression in lung tissues of pulmonary fibrosis patients. BMC Pulm Med. 2014 Dec;14(1):168.
103.
go back to reference Balato A, Di Caprio R, Lembo S, Mattii M, Megna M, Schiattarella M, et al. Mammalian target of rapamycin in inflammatory skin conditions. Eur J Inflamm. 2014 May;12(2):341–50. Balato A, Di Caprio R, Lembo S, Mattii M, Megna M, Schiattarella M, et al. Mammalian target of rapamycin in inflammatory skin conditions. Eur J Inflamm. 2014 May;12(2):341–50.
104.
go back to reference Monfrecola G, Lembo S, Caiazzo G, De Vita V, Di Caprio R, Balato A, et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients’ skin. Exp Dermatol. 2016 Feb;25(2):153–5. Monfrecola G, Lembo S, Caiazzo G, De Vita V, Di Caprio R, Balato A, et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients’ skin. Exp Dermatol. 2016 Feb;25(2):153–5.
105.
go back to reference Tang ZM, Zhai XX, Ding JC. Expression of mTOR/70S6K signaling pathway in pathological scar fibroblasts and the effects of resveratrol intervention. Mol Med Rep. 2017 May;15(5):2546–50. Tang ZM, Zhai XX, Ding JC. Expression of mTOR/70S6K signaling pathway in pathological scar fibroblasts and the effects of resveratrol intervention. Mol Med Rep. 2017 May;15(5):2546–50.
106.
go back to reference Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011 Jun;121(6):2197–209. Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011 Jun;121(6):2197–209.
107.
go back to reference Tchetina EV, Poole AR, Zaitseva EM, Sharapova EP, Kashevarova NG, Taskina EA et al. Differences in mammalian target of Rapamycin Gene expression in the Peripheral blood and articular cartilages of osteoarthritic patients and Disease Activity. Arthritis 2013 Jun 25;2013:1–14. Tchetina EV, Poole AR, Zaitseva EM, Sharapova EP, Kashevarova NG, Taskina EA et al. Differences in mammalian target of Rapamycin Gene expression in the Peripheral blood and articular cartilages of osteoarthritic patients and Disease Activity. Arthritis 2013 Jun 25;2013:1–14.
108.
go back to reference Mohammadian A, Naderali E, Mohammadi SM, Movasaghpour A, Valipour B, Nouri M et al. Cord blood cells responses to IL2, IL7 and IL15 cytokines for mTOR expression. Adv Pharm Bull 2017 Apr 13;7(1):81–5. Mohammadian A, Naderali E, Mohammadi SM, Movasaghpour A, Valipour B, Nouri M et al. Cord blood cells responses to IL2, IL7 and IL15 cytokines for mTOR expression. Adv Pharm Bull 2017 Apr 13;7(1):81–5.
109.
go back to reference Wong M. Mammalian target of Rapamycin (mTOR) pathways in neurological Diseases. Biomed J. 2013;36(2):40.CrossRefPubMed Wong M. Mammalian target of Rapamycin (mTOR) pathways in neurological Diseases. Biomed J. 2013;36(2):40.CrossRefPubMed
110.
go back to reference Zhang Z, Fan Q, Luo X, Lou K, Weiss WA, Shokat KM. Brain-restricted mTOR inhibition with binary pharmacology. Nat 2022 Sep 22;609(7928):822–8. Zhang Z, Fan Q, Luo X, Lou K, Weiss WA, Shokat KM. Brain-restricted mTOR inhibition with binary pharmacology. Nat 2022 Sep 22;609(7928):822–8.
111.
go back to reference Lee H. Phosphorylated mTOR expression profiles in human normal and Carcinoma tissues. Dis Markers. 2017;2017:1–8. Lee H. Phosphorylated mTOR expression profiles in human normal and Carcinoma tissues. Dis Markers. 2017;2017:1–8.
113.
go back to reference Li L, Liu D, Qiu ZX, Zhao S, Zhang L, Li WM. The Prognostic Role of mTOR and P-mTOR for Survival in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Reis RM, editor. PLOS ONE. 2015 Feb 13;10(2):e0116771. Li L, Liu D, Qiu ZX, Zhao S, Zhang L, Li WM. The Prognostic Role of mTOR and P-mTOR for Survival in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Reis RM, editor. PLOS ONE. 2015 Feb 13;10(2):e0116771.
114.
go back to reference Karachaliou N, Codony-Servat J, Teixidó C, Pilotto S, Drozdowskyj A, Codony-Servat C, et al. BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer. Sci Rep. 2015 Dec;5(1):17499. Karachaliou N, Codony-Servat J, Teixidó C, Pilotto S, Drozdowskyj A, Codony-Servat C, et al. BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer. Sci Rep. 2015 Dec;5(1):17499.
115.
go back to reference Kasajima A, Pavel M, Darb-Esfahani S, Noske A, Stenzinger A, Sasano H et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2010 Dec 15;18(1):181–92. Kasajima A, Pavel M, Darb-Esfahani S, Noske A, Stenzinger A, Sasano H et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2010 Dec 15;18(1):181–92.
116.
go back to reference Li M, Sun H, Song L, Gao X, Chang W, Qin X. Immunohistochemical expression of mTOR negatively correlates with PTEN expression in gastric carcinoma. Oncol Lett. 2012 Dec;4(6):1213–8. Li M, Sun H, Song L, Gao X, Chang W, Qin X. Immunohistochemical expression of mTOR negatively correlates with PTEN expression in gastric carcinoma. Oncol Lett. 2012 Dec;4(6):1213–8.
117.
go back to reference Bornschein J, Seidel T, Langner C, Link A, Wex T, Selgrad M, et al. MMP2 and MMP7 at the invasive front of gastric cancer are not associated with mTOR expression. Diagn Pathol. 2015 Dec;10(1):212. Bornschein J, Seidel T, Langner C, Link A, Wex T, Selgrad M, et al. MMP2 and MMP7 at the invasive front of gastric cancer are not associated with mTOR expression. Diagn Pathol. 2015 Dec;10(1):212.
118.
go back to reference Guerrero M, Ferrín G, Rodríguez-Perálvarez M, González-Rubio S, Sánchez-Frías M, Amado V et al. mTOR expression in liver transplant candidates with Hepatocellular Carcinoma: impact on histological features and Tumour recurrence. Int J Mol Sci 2019 Jan 15;20(2):336. Guerrero M, Ferrín G, Rodríguez-Perálvarez M, González-Rubio S, Sánchez-Frías M, Amado V et al. mTOR expression in liver transplant candidates with Hepatocellular Carcinoma: impact on histological features and Tumour recurrence. Int J Mol Sci 2019 Jan 15;20(2):336.
119.
go back to reference Wu N, Du Z, Zhu Y, Song Y, Pang L, Chen Z. The expression and prognostic impact of the PI3K/AKT/mTOR signaling pathway in Advanced Esophageal squamous cell carcinoma. Technol Cancer Res Treat. 2018 Jan;17:153303381875877. Wu N, Du Z, Zhu Y, Song Y, Pang L, Chen Z. The expression and prognostic impact of the PI3K/AKT/mTOR signaling pathway in Advanced Esophageal squamous cell carcinoma. Technol Cancer Res Treat. 2018 Jan;17:153303381875877.
120.
go back to reference Marioni G, Staffieri A, Lora L, Fermo S, Giacomelli L, La Torre FB, et al. mTOR expression and prognosis in elderly patients with laryngeal carcinoma: Uni- and multivariate analyses. Oral Oncol. 2012 Jun;48(6):530–4. Marioni G, Staffieri A, Lora L, Fermo S, Giacomelli L, La Torre FB, et al. mTOR expression and prognosis in elderly patients with laryngeal carcinoma: Uni- and multivariate analyses. Oral Oncol. 2012 Jun;48(6):530–4.
121.
go back to reference Marioni G, Ottaviano G, Lovato A, Franz L, Bandolin L, Contro G, et al. Expression of maspin tumor suppressor and mTOR in laryngeal carcinoma. Am J Otolaryngol. 2020 Jan;41(1):102322. Marioni G, Ottaviano G, Lovato A, Franz L, Bandolin L, Contro G, et al. Expression of maspin tumor suppressor and mTOR in laryngeal carcinoma. Am J Otolaryngol. 2020 Jan;41(1):102322.
122.
go back to reference Winters BR, Vakar-Lopez F, Brown L, Montgomery B, Seiler R, Black PC et al. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy. Urol Oncol Semin Orig Investig. 2018 Jul;36(7):342.e7-342.e14. Winters BR, Vakar-Lopez F, Brown L, Montgomery B, Seiler R, Black PC et al. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy. Urol Oncol Semin Orig Investig. 2018 Jul;36(7):342.e7-342.e14.
123.
go back to reference Han X, Ji Y, Zhao J, Xu X, Lou W. Expression of PTEN and mTOR in pancreatic neuroendocrine tumors. Tumor Biol. 2013 Oct;34(5):2871–9. Han X, Ji Y, Zhao J, Xu X, Lou W. Expression of PTEN and mTOR in pancreatic neuroendocrine tumors. Tumor Biol. 2013 Oct;34(5):2871–9.
124.
go back to reference Beca F, Andre R, Martins DS, Bilhim T, Martins D, Schmitt F. p-mTOR expression is associated with better prognosis in luminal breast carcinoma. J Clin Pathol. 2014 Nov;67(11):961–7. Beca F, Andre R, Martins DS, Bilhim T, Martins D, Schmitt F. p-mTOR expression is associated with better prognosis in luminal breast carcinoma. J Clin Pathol. 2014 Nov;67(11):961–7.
125.
go back to reference Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K, et al. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate. 2006 Aug;66(1):1203–12. Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K, et al. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate. 2006 Aug;66(1):1203–12.
126.
go back to reference Foster H, Coley HM, Goumenou A, Pados G, Harvey A, Karteris E. Differential expression of mTOR signalling components in drug resistance in ovarian cancer. Anticancer Res. 2010 Sep;30(9):3529–34. Foster H, Coley HM, Goumenou A, Pados G, Harvey A, Karteris E. Differential expression of mTOR signalling components in drug resistance in ovarian cancer. Anticancer Res. 2010 Sep;30(9):3529–34.
128.
go back to reference Ulińska E, Mycko K, Sałacińska-Łoś E, Pastorczak A, Siwicka A, Młynarski W, et al. Impact of mTOR expression on clinical outcome in paediatric patients with B-cell acute lymphoblastic leukaemia – preliminary report. Współczesna Onkol. 2016;4:291–6.CrossRef Ulińska E, Mycko K, Sałacińska-Łoś E, Pastorczak A, Siwicka A, Młynarski W, et al. Impact of mTOR expression on clinical outcome in paediatric patients with B-cell acute lymphoblastic leukaemia – preliminary report. Współczesna Onkol. 2016;4:291–6.CrossRef
129.
go back to reference Stockwin W, Johnson P, Vajpayee N. Immunohistochemical expression of mTOR in multiple myeloma: retrospective analysis of 31 cases, a clinicopathological study. Ann Clin Lab Sci. 2016;46(2):125–31.PubMed Stockwin W, Johnson P, Vajpayee N. Immunohistochemical expression of mTOR in multiple myeloma: retrospective analysis of 31 cases, a clinicopathological study. Ann Clin Lab Sci. 2016;46(2):125–31.PubMed
130.
go back to reference Chen K, Mo J, Zhou M, Wang G, Wu G, Chen H, et al. Expression of PTEN and mTOR in sacral chordoma and association with poor prognosis. Med Oncol. 2014 Apr;31(4):886. Chen K, Mo J, Zhou M, Wang G, Wu G, Chen H, et al. Expression of PTEN and mTOR in sacral chordoma and association with poor prognosis. Med Oncol. 2014 Apr;31(4):886.
131.
go back to reference Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol. 2021 May;898:173983. Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol. 2021 May;898:173983.
133.
go back to reference Chuang WY, Chang YS, Chao YK, Yeh CJ, Ueng SH, Chang CY, et al. Phosphorylated mTOR expression correlates with podoplanin expression and high tumor grade in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2015;8(10):12757–65.PubMedPubMedCentral Chuang WY, Chang YS, Chao YK, Yeh CJ, Ueng SH, Chang CY, et al. Phosphorylated mTOR expression correlates with podoplanin expression and high tumor grade in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2015;8(10):12757–65.PubMedPubMedCentral
134.
go back to reference Sutherland SIM, Pe Benito R, Henshall SM, Horvath LG, Kench JG. Expression of phosphorylated-mTOR during the development of prostate cancer: expression of p-mTOR in prostate Cancer. Prostate. 2014 Sep;74(12):1231–9. Sutherland SIM, Pe Benito R, Henshall SM, Horvath LG, Kench JG. Expression of phosphorylated-mTOR during the development of prostate cancer: expression of p-mTOR in prostate Cancer. Prostate. 2014 Sep;74(12):1231–9.
135.
go back to reference Byeon S, Han N, Choi J, Kim MA, Kim WH. Prognostic implication of TSC1 and mTOR expression in gastric carcinoma: TSC1 and p-mTOR expression in gastric Cancer. J Surg Oncol. 2014 Jun;109(8):812–7. Byeon S, Han N, Choi J, Kim MA, Kim WH. Prognostic implication of TSC1 and mTOR expression in gastric carcinoma: TSC1 and p-mTOR expression in gastric Cancer. J Surg Oncol. 2014 Jun;109(8):812–7.
136.
go back to reference Murayama T, Inokuchi M, Takagi Y, Yamada H, Kojima K, Kumagai J, et al. Relation between outcomes and localisation of p-mTOR expression in gastric cancer. Br J Cancer. 2009 Mar;100(5):782–8. Murayama T, Inokuchi M, Takagi Y, Yamada H, Kojima K, Kumagai J, et al. Relation between outcomes and localisation of p-mTOR expression in gastric cancer. Br J Cancer. 2009 Mar;100(5):782–8.
137.
go back to reference Wang J, Zhu X, Xu X, Guo L, Shen G, Liu X, et al. PIK3CA mutations and downstream effector p-mTOR expression: implication for prognostic factors and therapeutic targets in triple negative breast cancer. Int J Clin Exp Pathol. 2017;10(7):7682–91.PubMedPubMedCentral Wang J, Zhu X, Xu X, Guo L, Shen G, Liu X, et al. PIK3CA mutations and downstream effector p-mTOR expression: implication for prognostic factors and therapeutic targets in triple negative breast cancer. Int J Clin Exp Pathol. 2017;10(7):7682–91.PubMedPubMedCentral
138.
go back to reference Rojo F, Domingo L, Sala M, Zazo S, Chamizo C, Menendez S et al. Gene Expression Profiling in True Interval Breast Cancer Reveals Overactivation of the mTOR Signaling Pathway. Cancer Epidemiol Biomarkers Prev. 2014 Feb 1;23(2):288–99. Rojo F, Domingo L, Sala M, Zazo S, Chamizo C, Menendez S et al. Gene Expression Profiling in True Interval Breast Cancer Reveals Overactivation of the mTOR Signaling Pathway. Cancer Epidemiol Biomarkers Prev. 2014 Feb 1;23(2):288–99.
139.
go back to reference Alì G, Boldrini L, Capodanno A, Pelliccioni S, Servadio A, Crisman G, et al. Expression of p-AKT and p-mTOR in a large series of bronchopulmonary neuroendocrine tumors. Exp Ther Med. 2011;2(5):787–92.CrossRefPubMedPubMedCentral Alì G, Boldrini L, Capodanno A, Pelliccioni S, Servadio A, Crisman G, et al. Expression of p-AKT and p-mTOR in a large series of bronchopulmonary neuroendocrine tumors. Exp Ther Med. 2011;2(5):787–92.CrossRefPubMedPubMedCentral
140.
go back to reference Travis WD, Rush W, Flieder DB, Falk R, Fleming MV, Gal AA, et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol. 1998 Aug;22(8):934–44. Travis WD, Rush W, Flieder DB, Falk R, Fleming MV, Gal AA, et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol. 1998 Aug;22(8):934–44.
141.
go back to reference Murali AR, Patil S, Phillips KT, Voigt MD. Locoregional Therapy with curative intent Versus Primary Liver Transplant for Hepatocellular Carcinoma: systematic review and Meta-analysis. Transplantation. 2017 Aug;101(8):e249–57. Murali AR, Patil S, Phillips KT, Voigt MD. Locoregional Therapy with curative intent Versus Primary Liver Transplant for Hepatocellular Carcinoma: systematic review and Meta-analysis. Transplantation. 2017 Aug;101(8):e249–57.
Metadata
Title
Expression of mTOR in normal and pathological conditions
Authors
A Marques-Ramos
R Cervantes
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Biomarkers
Published in
Molecular Cancer / Issue 1/2023
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-023-01820-z

Other articles of this Issue 1/2023

Molecular Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine