Skip to main content
Top
Published in: Malaria Journal 1/2019

Open Access 01-12-2019 | Plasmodium Falciparum | Research

Diverse origin of Plasmodium falciparum in northwest Ecuador

Authors: Claudia A. Vera-Arias, L. Enrique Castro, Javier Gómez-Obando, Fabián E. Sáenz

Published in: Malaria Journal | Issue 1/2019

Login to get access

Abstract

Background

Ecuador plans to eliminate malaria by 2020, and the country has already seen a decrease in the number of cases from more than 100,000 in 2000 to only 618 in 2015. Around 30% of malaria infections in Ecuador are caused by Plasmodium falciparum. Most malaria population genetics studies performed in Latin America, especially in the Pacific Coast, indicate a high clonality and a clear structure of P. falciparum populations. It was shown that an outbreak of P. falciparum in northwest Ecuador was the result of a clonal expansion of parasites circulating at low levels in the country or re-invading Ecuador from neighbouring territories. However, general characteristics of P. falciparum circulating in the northwest coast of Ecuador have not been determined. The main goal of this study was to genetically characterize the population structure of P. falciparum in coastal Ecuadorian localities bordering with Colombia.

Methods

Molecular investigation of 41 samples collected from 2013 to 2016 in San Lorenzo County, northwest Ecuador was performed using seven neutral microsatellite markers.

Results

The genetic population structure of P. falciparum in northwest Ecuador is clearly defined as three different genetic groups previously reported in Ecuador, Peru and Colombia.

Conclusions

The limited number of P. falciparum clonal types that are circulating in northwest Ecuador, are related to ancestral parasite clonal lineages reported in the Pacific Coast. These parasites could be a product of migration from neighbouring regions or residual clonal types circulating in the country in low proportions. Studies of the genetic characterization of P. falciparum in eliminating areas help determine the possible origin of parasites in order to create strategies to prevent the entrance of new lineages and achieve local elimination of malaria.
Literature
1.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2017. WHO. World malaria report. Geneva: World Health Organization; 2017.
2.
go back to reference Yalcindag E, Elguero E, Arnathau C, Durand P, Akiana J, Anderson TJ, et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc Natl Acad Sci. 2012;109:511–6.CrossRef Yalcindag E, Elguero E, Arnathau C, Durand P, Akiana J, Anderson TJ, et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc Natl Acad Sci. 2012;109:511–6.CrossRef
3.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2016. WHO. World malaria report. Geneva: World Health Organization; 2016.
4.
go back to reference WHO. World malaria report. Geneva: World Health Organization; 2015. WHO. World malaria report. Geneva: World Health Organization; 2015.
5.
go back to reference Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRef Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRef
6.
go back to reference MSP. Gaceta Epidemiológica Semanal No. 52: Ministerio de Salud Pública del Ecuador. Quito: Ministerio de Salud Pública del Ecuador; 2017. MSP. Gaceta Epidemiológica Semanal No. 52: Ministerio de Salud Pública del Ecuador. Quito: Ministerio de Salud Pública del Ecuador; 2017.
7.
go back to reference Saenz FE, Morton LC, Okoth SA, Valenzuela G, Vera-Arias CA, Velez-Alvarez E, et al. Clonal population expansion in an outbreak of Plasmodium falciparum on the northwest coast of Ecuador. Malar J. 2015;13:497.CrossRef Saenz FE, Morton LC, Okoth SA, Valenzuela G, Vera-Arias CA, Velez-Alvarez E, et al. Clonal population expansion in an outbreak of Plasmodium falciparum on the northwest coast of Ecuador. Malar J. 2015;13:497.CrossRef
8.
go back to reference Niang M, Thiam LG, Loucoubar C, Sow A, Sadio BD, Diallo M, et al. Spatio-temporal analysis of the genetic diversity and complexity of Plasmodium falciparum infections in Kedougou, southeastern Senegal. Parasit Vectors. 2017;10:33.CrossRef Niang M, Thiam LG, Loucoubar C, Sow A, Sadio BD, Diallo M, et al. Spatio-temporal analysis of the genetic diversity and complexity of Plasmodium falciparum infections in Kedougou, southeastern Senegal. Parasit Vectors. 2017;10:33.CrossRef
9.
go back to reference Tibayrenc M, Ayala FJ. The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol. 2002;18:405–10.CrossRef Tibayrenc M, Ayala FJ. The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol. 2002;18:405–10.CrossRef
10.
go back to reference Landier J, Parker DM, Thu AM, Lwin KM, Delmas G, Nosten FH, et al. Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional elimination programme. Lancet. 2018;391:1916–26.CrossRef Landier J, Parker DM, Thu AM, Lwin KM, Delmas G, Nosten FH, et al. Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional elimination programme. Lancet. 2018;391:1916–26.CrossRef
11.
go back to reference Carter TE, Malloy H, Existe A, Memnon G, St Victor Y, Okech BA, et al. Genetic diversity of Plasmodium falciparum in Haiti: insights from microsatellite markers. PLoS ONE. 2015;10:e0140416.CrossRef Carter TE, Malloy H, Existe A, Memnon G, St Victor Y, Okech BA, et al. Genetic diversity of Plasmodium falciparum in Haiti: insights from microsatellite markers. PLoS ONE. 2015;10:e0140416.CrossRef
12.
go back to reference Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–82.CrossRef Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–82.CrossRef
13.
go back to reference Udhayakumar V, Barnwell JW, De Oliveira AM. Vigilancia molecular de la resistencia de Plasmodium falciparum a los antimaláricos (de 2005 a 2012). Atlanta: Centers for Disease Control and Prevention; 2013. Udhayakumar V, Barnwell JW, De Oliveira AM. Vigilancia molecular de la resistencia de Plasmodium falciparum a los antimaláricos (de 2005 a 2012). Atlanta: Centers for Disease Control and Prevention; 2013.
14.
go back to reference Echeverry DF, Nair S, Osorio L, Menon S, Murillo C, Anderson TJ. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region. BMC Genet. 2013;14:2.CrossRef Echeverry DF, Nair S, Osorio L, Menon S, Murillo C, Anderson TJ. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region. BMC Genet. 2013;14:2.CrossRef
15.
go back to reference Baldeviano GC, Okoth SA, Arrospide N, Gonzalez RV, Sanchez JF, Macedo S, et al. Molecular epidemiology of Plasmodium falciparum malaria outbreak, Tumbes, Peru, 2010–2012. Emerg Infect Dis. 2015;21:797–803.CrossRef Baldeviano GC, Okoth SA, Arrospide N, Gonzalez RV, Sanchez JF, Macedo S, et al. Molecular epidemiology of Plasmodium falciparum malaria outbreak, Tumbes, Peru, 2010–2012. Emerg Infect Dis. 2015;21:797–803.CrossRef
16.
go back to reference Arango EM, Samuel R, Agudelo OM, Carmona-Fonseca J, Maestre A, Yanow SK. Genotype comparison of Plasmodium vivax and Plasmodium falciparum clones from pregnant and non-pregnant populations in North-west Colombia. Malar J. 2012;11:392.CrossRef Arango EM, Samuel R, Agudelo OM, Carmona-Fonseca J, Maestre A, Yanow SK. Genotype comparison of Plasmodium vivax and Plasmodium falciparum clones from pregnant and non-pregnant populations in North-west Colombia. Malar J. 2012;11:392.CrossRef
17.
go back to reference Larranaga N, Mejia RE, Hormaza JI, Montoya A, Soto A, Fontecha GA. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border. Malar J. 2013;12:354.CrossRef Larranaga N, Mejia RE, Hormaza JI, Montoya A, Soto A, Fontecha GA. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border. Malar J. 2013;12:354.CrossRef
18.
go back to reference Anderson T, Su X-Z, Bockarie M, Lagog M, Day K. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999;119:113–25.CrossRef Anderson T, Su X-Z, Bockarie M, Lagog M, Day K. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999;119:113–25.CrossRef
19.
go back to reference Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15:66–78.CrossRef Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15:66–78.CrossRef
20.
go back to reference Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S, Lacerda MVG. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J. 2017;16:273.CrossRef Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S, Lacerda MVG. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J. 2017;16:273.CrossRef
21.
go back to reference Griffing SM, Mixson-Hayden T, Sridaran S, Alam MT, McCollum AM, Cabezas C, et al. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS ONE. 2011;6:e23486.CrossRef Griffing SM, Mixson-Hayden T, Sridaran S, Alam MT, McCollum AM, Cabezas C, et al. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS ONE. 2011;6:e23486.CrossRef
22.
go back to reference Sridaran S, Rodriguez B, Soto AM, De Oliveira AM, Udhayakumar V. Molecular analysis of chloroquine and sulfadoxine–pyrimethamine resistance-associated alleles in Plasmodium falciparum isolates from Nicaragua. Am J Trop Med Hyg. 2014;90:840–5.CrossRef Sridaran S, Rodriguez B, Soto AM, De Oliveira AM, Udhayakumar V. Molecular analysis of chloroquine and sulfadoxine–pyrimethamine resistance-associated alleles in Plasmodium falciparum isolates from Nicaragua. Am J Trop Med Hyg. 2014;90:840–5.CrossRef
23.
go back to reference Cortese JF, Caraballo A, Contreras CE, Plowe CV. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis. 2002;186:999–1006.CrossRef Cortese JF, Caraballo A, Contreras CE, Plowe CV. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis. 2002;186:999–1006.CrossRef
24.
go back to reference Chenet SM, Schneider KA, Villegas L, Escalante AA. Local population structure of Plasmodium: impact on malaria control and elimination. Malar J. 2012;11:412.CrossRef Chenet SM, Schneider KA, Villegas L, Escalante AA. Local population structure of Plasmodium: impact on malaria control and elimination. Malar J. 2012;11:412.CrossRef
25.
go back to reference Chenet SM, Okoth SA, Kelley J, Lucchi N, Huber CS, Vreden S, et al. Molecular profile of malaria drug resistance markers of Plasmodium falciparum in suriname. Antimicrob Agents Chemother. 2017;61:e02655-16.CrossRef Chenet SM, Okoth SA, Kelley J, Lucchi N, Huber CS, Vreden S, et al. Molecular profile of malaria drug resistance markers of Plasmodium falciparum in suriname. Antimicrob Agents Chemother. 2017;61:e02655-16.CrossRef
26.
go back to reference Solano CM, Okoth SA, Abdallah JF, Pava Z, Dorado E, Incardona S, et al. Deletion of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) and histidine-rich protein 3 (pfhrp3) genes in Colombian parasites. PLoS ONE. 2015;10:e0131576.CrossRef Solano CM, Okoth SA, Abdallah JF, Pava Z, Dorado E, Incardona S, et al. Deletion of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) and histidine-rich protein 3 (pfhrp3) genes in Colombian parasites. PLoS ONE. 2015;10:e0131576.CrossRef
27.
go back to reference Dorado EJ, Okoth SA, Montenegro LM, Diaz G, Barnwell JW, Udhayakumar V, et al. Genetic characterisation of Plasmodium falciparum isolates with deletion of the pfhrp2 and/or pfhrp3 genes in Colombia: the Amazon Region, a challenge for malaria diagnosis and control. PLoS ONE. 2016;11:e0163137.CrossRef Dorado EJ, Okoth SA, Montenegro LM, Diaz G, Barnwell JW, Udhayakumar V, et al. Genetic characterisation of Plasmodium falciparum isolates with deletion of the pfhrp2 and/or pfhrp3 genes in Colombia: the Amazon Region, a challenge for malaria diagnosis and control. PLoS ONE. 2016;11:e0163137.CrossRef
28.
go back to reference Chenet SM, Taylor JE, Blair S, Zuluaga L, Escalante AA. Longitudinal analysis of Plasmodium falciparum genetic variation in Turbo, Colombia: implications for malaria control and elimination. Malar J. 2015;14:363.CrossRef Chenet SM, Taylor JE, Blair S, Zuluaga L, Escalante AA. Longitudinal analysis of Plasmodium falciparum genetic variation in Turbo, Colombia: implications for malaria control and elimination. Malar J. 2015;14:363.CrossRef
29.
go back to reference Aponte S, Guerra ÁP, Álvarez-Larrotta C, Bernal SD, Restrepo C, González C, et al. Baseline in vivo, ex vivo and molecular responses of Plasmodium falciparum to artemether and lumefantrine in three endemic zones for malaria in Colombia. Trans R Soc Trop Med Hyg. 2017;111:71–80.CrossRef Aponte S, Guerra ÁP, Álvarez-Larrotta C, Bernal SD, Restrepo C, González C, et al. Baseline in vivo, ex vivo and molecular responses of Plasmodium falciparum to artemether and lumefantrine in three endemic zones for malaria in Colombia. Trans R Soc Trop Med Hyg. 2017;111:71–80.CrossRef
30.
go back to reference Orjuela-Sánchez P, Brandi MC, Ferreira MU. Microsatellite analysis of malaria parasites. Microsatellites: methods and protocols. Totowa: Humana Press; 2013. p. 247–58.CrossRef Orjuela-Sánchez P, Brandi MC, Ferreira MU. Microsatellite analysis of malaria parasites. Microsatellites: methods and protocols. Totowa: Humana Press; 2013. p. 247–58.CrossRef
31.
go back to reference Snounou G. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol. 1996;50:263–91.PubMed Snounou G. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol. 1996;50:263–91.PubMed
32.
go back to reference Lucchi NW, Narayanan J, Karell MA, Xayavong M, Kariuki S, DaSilva AJ, et al. Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR. PLoS ONE. 2013;8:e56677.CrossRef Lucchi NW, Narayanan J, Karell MA, Xayavong M, Kariuki S, DaSilva AJ, et al. Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR. PLoS ONE. 2013;8:e56677.CrossRef
33.
go back to reference Abdallah JF, Okoth SA, Fontecha GA, Torres REM, Banegas EI, Matute ML, et al. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras. Malar J. 2015;14:19.CrossRef Abdallah JF, Okoth SA, Fontecha GA, Torres REM, Banegas EI, Matute ML, et al. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras. Malar J. 2015;14:19.CrossRef
34.
go back to reference McCollum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine–pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother. 2007;51:2085–91.CrossRef McCollum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine–pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother. 2007;51:2085–91.CrossRef
35.
go back to reference Akinyi S, Hayden T, Gamboa D, Torres K, Bendezu J, Abdallah JF, et al. Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru. Sci Rep. 2013;3:2797.CrossRef Akinyi S, Hayden T, Gamboa D, Torres K, Bendezu J, Abdallah JF, et al. Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru. Sci Rep. 2013;3:2797.CrossRef
36.
go back to reference Biosystems A. Peak scanner software version 1.0 reference guide. Waltham: Thermo Fisher Scientific; 2006. Biosystems A. Peak scanner software version 1.0 reference guide. Waltham: Thermo Fisher Scientific; 2006.
37.
go back to reference Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.CrossRef Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.CrossRef
38.
go back to reference Schneider S, Roessli D, Excoffier L. Arlequin ver. 2.000. A software for population genetics data analysis. Geneva: Genetics and Biometry Laboratory, University of Geneva; 2000. Schneider S, Roessli D, Excoffier L. Arlequin ver. 2.000. A software for population genetics data analysis. Geneva: Genetics and Biometry Laboratory, University of Geneva; 2000.
39.
go back to reference Pritcharda JK, Wena X, Falushb D. Documentation for structure software: version 2.3. Waltham: Thermo Fisher Scientific; 2009. Pritcharda JK, Wena X, Falushb D. Documentation for structure software: version 2.3. Waltham: Thermo Fisher Scientific; 2009.
40.
go back to reference Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.PubMedPubMedCentral Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.PubMedPubMedCentral
41.
go back to reference Earl DA. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. 2012;4:359–61.CrossRef Earl DA. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. 2012;4:359–61.CrossRef
42.
go back to reference Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13:87.CrossRef Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13:87.CrossRef
43.
go back to reference Wright S. Evolution and the genetics of populations. Chicago: Univerity of Chicago Press; 1978. Wright S. Evolution and the genetics of populations. Chicago: Univerity of Chicago Press; 1978.
44.
go back to reference Griffing SM, Viana GMR, Mixson-Hayden T, Sridaran S, Alam MT, de Oliveira AM, et al. Historical shifts in Brazilian P. falciparum population structure and drug resistance alleles. PLoS ONE. 2013;8:e58984.CrossRef Griffing SM, Viana GMR, Mixson-Hayden T, Sridaran S, Alam MT, de Oliveira AM, et al. Historical shifts in Brazilian P. falciparum population structure and drug resistance alleles. PLoS ONE. 2013;8:e58984.CrossRef
45.
go back to reference MSP. Gaceta Epidemiológica Semanal No. 31: Ministerio de Salud Pública del Ecuador. Quito: Ministerio de Salud Pública del Ecuador; 2018. MSP. Gaceta Epidemiológica Semanal No. 31: Ministerio de Salud Pública del Ecuador. Quito: Ministerio de Salud Pública del Ecuador; 2018.
46.
go back to reference MSP. Reporte de Datos de Malaria del periodo 2008 al inicios del 2018. Quito: Ministerio de Salud Pública del Ecuador; 2018. MSP. Reporte de Datos de Malaria del periodo 2008 al inicios del 2018. Quito: Ministerio de Salud Pública del Ecuador; 2018.
47.
go back to reference Valenzuela GR, P. Saenz, FE. Genotypes and phenotypes of resistance in Ecuadorian Plasmodium falciparum. Quito. 2018. Valenzuela GR, P. Saenz, FE. Genotypes and phenotypes of resistance in Ecuadorian Plasmodium falciparum. Quito. 2018.
Metadata
Title
Diverse origin of Plasmodium falciparum in northwest Ecuador
Authors
Claudia A. Vera-Arias
L. Enrique Castro
Javier Gómez-Obando
Fabián E. Sáenz
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2019
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-2891-y

Other articles of this Issue 1/2019

Malaria Journal 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine