Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Reduced-representation sequencing identifies small effective population sizes of Anopheles gambiae in the north-western Lake Victoria basin, Uganda

Authors: Rachel M. Wiltshire, Christina M. Bergey, Jonathan K. Kayondo, Josephine Birungi, Louis G. Mukwaya, Scott J. Emrich, Nora J. Besansky, Frank H. Collins

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes.

Methods

478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST).

Results

5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480–0.0846). Ne estimates were generally small (124.2–1920.3).

Conclusions

A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.
Appendix
Available only for authorised users
Literature
2.
go back to reference The malERA Consultative Group on Vector Control. A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRefPubMedCentral The malERA Consultative Group on Vector Control. A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.CrossRefPubMedCentral
4.
5.
go back to reference Shaukat AM, Breman JG, McKenzie FE. Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination. Malar J. 2010;9:122.CrossRefPubMedPubMedCentral Shaukat AM, Breman JG, McKenzie FE. Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination. Malar J. 2010;9:122.CrossRefPubMedPubMedCentral
6.
go back to reference Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–49.CrossRefPubMed Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–49.CrossRefPubMed
7.
go back to reference Lawniczak MK, Emrich S, Holloway AK, Regier AP, Olson M, White B, et al. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science. 2010;330:512–4.CrossRefPubMedPubMedCentral Lawniczak MK, Emrich S, Holloway AK, Regier AP, Olson M, White B, et al. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science. 2010;330:512–4.CrossRefPubMedPubMedCentral
8.
go back to reference Neafsey DE, Waterhouse RM, Collins FH, Emrich SJ, Fontaine MC, Gelbart W, et al. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015;347:1258522.CrossRefPubMed Neafsey DE, Waterhouse RM, Collins FH, Emrich SJ, Fontaine MC, Gelbart W, et al. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015;347:1258522.CrossRefPubMed
9.
go back to reference Burt A. Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc B. 2014;369:20130432.CrossRef Burt A. Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc B. 2014;369:20130432.CrossRef
10.
11.
12.
go back to reference Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013;340:748–51.CrossRefPubMed Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013;340:748–51.CrossRefPubMed
13.
go back to reference Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA. 2015;112:E6736–43.CrossRefPubMed Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA. 2015;112:E6736–43.CrossRefPubMed
14.
go back to reference Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.CrossRefPubMed Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.CrossRefPubMed
15.
go back to reference Lehmann T, Hawley WA, Kamau L, Fontenille D, Simard F, Collins FH. Genetic differentiation of Anopheles gambiae populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity. 1996;77:192–208.CrossRefPubMed Lehmann T, Hawley WA, Kamau L, Fontenille D, Simard F, Collins FH. Genetic differentiation of Anopheles gambiae populations from East and West Africa: comparison of microsatellite and allozyme loci. Heredity. 1996;77:192–208.CrossRefPubMed
16.
go back to reference Besansky NJ, Lehmann T, Fahey GT, Fontenille D, Braack LE, Hawley WA, et al. Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and An. arabiensis, suggest extensive gene flow. Genetics. 1997;147:1817–28.PubMedPubMedCentral Besansky NJ, Lehmann T, Fahey GT, Fontenille D, Braack LE, Hawley WA, et al. Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and An. arabiensis, suggest extensive gene flow. Genetics. 1997;147:1817–28.PubMedPubMedCentral
17.
go back to reference Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH. The Rift Valley Complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered. 1999;90:613–21.CrossRefPubMed Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH. The Rift Valley Complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered. 1999;90:613–21.CrossRefPubMed
18.
go back to reference Lehmann T, Blackston CR, Besansky NJ, Escalante AA, Collins FH, Hawley WA. The Rift Valley Complex as a barrier to gene flow for Anopheles gambiae in Kenya: the mtDNA perspective. J Hered. 2000;91:165–8.CrossRefPubMed Lehmann T, Blackston CR, Besansky NJ, Escalante AA, Collins FH, Hawley WA. The Rift Valley Complex as a barrier to gene flow for Anopheles gambiae in Kenya: the mtDNA perspective. J Hered. 2000;91:165–8.CrossRefPubMed
19.
go back to reference Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, et al. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl. 2013;6:706–20.CrossRefPubMedPubMedCentral Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, et al. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl. 2013;6:706–20.CrossRefPubMedPubMedCentral
20.
go back to reference Chen H, Minakawa N, Beier J, Yan G. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, West Kenya. Malar J. 2004;3:48.CrossRefPubMedPubMedCentral Chen H, Minakawa N, Beier J, Yan G. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, West Kenya. Malar J. 2004;3:48.CrossRefPubMedPubMedCentral
21.
go back to reference Kayondo J, Mukwaya LG, Stump A, Michel AP, Coulibaly MB, Besansky NJ, et al. Genetic structure of Anopheles gambiae populations on islands in north-western Lake Victoria, Uganda. Malar J. 2005;4:59.CrossRefPubMedPubMedCentral Kayondo J, Mukwaya LG, Stump A, Michel AP, Coulibaly MB, Besansky NJ, et al. Genetic structure of Anopheles gambiae populations on islands in north-western Lake Victoria, Uganda. Malar J. 2005;4:59.CrossRefPubMedPubMedCentral
23.
go back to reference Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17:240–8.CrossRefPubMedPubMedCentral Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17:240–8.CrossRefPubMedPubMedCentral
24.
go back to reference Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:e3376.CrossRefPubMedPubMedCentral Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:e3376.CrossRefPubMedPubMedCentral
25.
go back to reference Thomas AS. The vegetation of the Sese Islands. Uganda: an illustration of edaphic factors in tropical ecology. J Ecol. 1941;29:330–53.CrossRef Thomas AS. The vegetation of the Sese Islands. Uganda: an illustration of edaphic factors in tropical ecology. J Ecol. 1941;29:330–53.CrossRef
26.
go back to reference Ssegawa P, Nkuutu DN. Diversity of vascular plants on Ssese Islands in Lake Victoria, central Uganda. Afr J Ecol. 2006;44:22–9.CrossRef Ssegawa P, Nkuutu DN. Diversity of vascular plants on Ssese Islands in Lake Victoria, central Uganda. Afr J Ecol. 2006;44:22–9.CrossRef
32.
go back to reference Gillies MT. Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Entomol Res. 1961;52:99–127.CrossRef Gillies MT. Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Entomol Res. 1961;52:99–127.CrossRef
33.
go back to reference Gillies MT, de Meillon B. The anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). 2nd ed. Johannesburg: South African Institute for Medical Research; 1968. Gillies MT, de Meillon B. The anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). 2nd ed. Johannesburg: South African Institute for Medical Research; 1968.
34.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.CrossRefPubMed
35.
go back to reference Chen H, Rangasamy M, Tan SY, Wang H, Siegfried BD. Evaluation of five methods for total DNA extraction from Western Corn Rootworm beetles. PLoS ONE. 2010;5:e11963.CrossRefPubMedPubMedCentral Chen H, Rangasamy M, Tan SY, Wang H, Siegfried BD. Evaluation of five methods for total DNA extraction from Western Corn Rootworm beetles. PLoS ONE. 2010;5:e11963.CrossRefPubMedPubMedCentral
36.
go back to reference Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol. 2012;21:2991–3005.CrossRefPubMed Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol. 2012;21:2991–3005.CrossRefPubMed
38.
go back to reference White BJ, Santolamazza F, Kamau L, Pombi M, Grushko O, Mouline K, et al. Molecular karyotyping of the 2La inversion in Anopheles gambiae. Am J Trop Med Hyg. 2007;76:334–9.PubMedCrossRef White BJ, Santolamazza F, Kamau L, Pombi M, Grushko O, Mouline K, et al. Molecular karyotyping of the 2La inversion in Anopheles gambiae. Am J Trop Med Hyg. 2007;76:334–9.PubMedCrossRef
45.
go back to reference Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakov IV, et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science. 2015;347:1258524.CrossRefPubMed Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakov IV, et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science. 2015;347:1258524.CrossRefPubMed
46.
47.
go back to reference Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.CrossRefPubMedPubMedCentral Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.CrossRefPubMedPubMedCentral
48.
go back to reference Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73.CrossRefPubMedPubMedCentral Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73.CrossRefPubMedPubMedCentral
49.
go back to reference Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7.CrossRefPubMedPubMedCentral Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7.CrossRefPubMedPubMedCentral
52.
go back to reference Wright S. Evolution and the genetics of populations: a treatise in four volumes: vol. 4: variability within and among natural populations. Chicago: University of Chicago Press; 1978. Wright S. Evolution and the genetics of populations: a treatise in four volumes: vol. 4: variability within and among natural populations. Chicago: University of Chicago Press; 1978.
53.
go back to reference Weir BS, Cockerham CC. F-Statistics for the analysis of population structure. Evolution. 1984;38:1358–70.PubMed Weir BS, Cockerham CC. F-Statistics for the analysis of population structure. Evolution. 1984;38:1358–70.PubMed
54.
go back to reference Arnold B, Corbett-Detig RB, Hartl D, Bomblies K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol. 2013;22:3179–90.CrossRefPubMed Arnold B, Corbett-Detig RB, Hartl D, Bomblies K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol. 2013;22:3179–90.CrossRefPubMed
56.
go back to reference Rousset F. Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics. 1997;145:1219–28.PubMedPubMedCentral Rousset F. Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics. 1997;145:1219–28.PubMedPubMedCentral
57.
go back to reference Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.PubMed Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.PubMed
58.
go back to reference Waples RS, Do C. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol. 2008;8:753–6.CrossRef Waples RS, Do C. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol. 2008;8:753–6.CrossRef
59.
go back to reference Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective populations size (Ne) from genetic data. Mol Ecol Resour. 2014;14:209–14.CrossRefPubMed Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective populations size (Ne) from genetic data. Mol Ecol Resour. 2014;14:209–14.CrossRefPubMed
60.
go back to reference Sharakhova MV, Hammond MP, Lobo NF, Krzywinski J, Unger MF, Hillenmeyer ME, et al. Update of the Anopheles gambiae PEST genome assembly. Genome Biol. 2007;8:R5.CrossRefPubMedPubMedCentral Sharakhova MV, Hammond MP, Lobo NF, Krzywinski J, Unger MF, Hillenmeyer ME, et al. Update of the Anopheles gambiae PEST genome assembly. Genome Biol. 2007;8:R5.CrossRefPubMedPubMedCentral
61.
go back to reference O’Loughlin SM, Magesa S, Mbogo C, Mosha F, Midega J, Lomas S, et al. Genomic analyses of three malaria vectors reveals extensive shared polymorphism but contrasting population histories. Mol Biol Evol. 2014;31:889–902.CrossRefPubMedPubMedCentral O’Loughlin SM, Magesa S, Mbogo C, Mosha F, Midega J, Lomas S, et al. Genomic analyses of three malaria vectors reveals extensive shared polymorphism but contrasting population histories. Mol Biol Evol. 2014;31:889–902.CrossRefPubMedPubMedCentral
62.
go back to reference Gilbert KJ, Whitlock MC. Evaluating methods for estimating local effective population size with and without migration. Evolution. 2015;69:2154–66.CrossRefPubMed Gilbert KJ, Whitlock MC. Evaluating methods for estimating local effective population size with and without migration. Evolution. 2015;69:2154–66.CrossRefPubMed
63.
go back to reference Wang J. A comparison of single-sample estimators of effective population sizes from genetic marker data. Mol Ecol. 2016;25:4692–711.CrossRefPubMed Wang J. A comparison of single-sample estimators of effective population sizes from genetic marker data. Mol Ecol. 2016;25:4692–711.CrossRefPubMed
64.
go back to reference Lehmann T, Hawley WA, Grebert H, Collins FH. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol. 1998;15:264–76.CrossRefPubMed Lehmann T, Hawley WA, Grebert H, Collins FH. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol. 1998;15:264–76.CrossRefPubMed
65.
go back to reference Athrey G, Hodges TK, Reddy MR, Overgaard HJ, Matias A, Ridl FC, et al. The effective population size of malaria mosquitoes: large impact of vector control. PLoS Genet. 2012;8:e1003097.CrossRefPubMedPubMedCentral Athrey G, Hodges TK, Reddy MR, Overgaard HJ, Matias A, Ridl FC, et al. The effective population size of malaria mosquitoes: large impact of vector control. PLoS Genet. 2012;8:e1003097.CrossRefPubMedPubMedCentral
66.
go back to reference Coluzzi M, Sabatini A, Petrarca V, di Deco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73:483–97.CrossRefPubMed Coluzzi M, Sabatini A, Petrarca V, di Deco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73:483–97.CrossRefPubMed
67.
go back to reference Touré YT, Dolo G, Petrarca V, Traoré SF, Bouaré M, Dao A, et al. Mark-release-recapture experiments with Anopeheles gambiae s.l. in Banambani Village, Mali, to determine population size and structure. Med Vet Entomol. 1998;12:74–83.CrossRefPubMed Touré YT, Dolo G, Petrarca V, Traoré SF, Bouaré M, Dao A, et al. Mark-release-recapture experiments with Anopeheles gambiae s.l. in Banambani Village, Mali, to determine population size and structure. Med Vet Entomol. 1998;12:74–83.CrossRefPubMed
68.
go back to reference Simard F, Fontenille D, Lehmann T, Girod R, Brutus L, Gopaul R, et al. High amounts of genetic differentiation between populations of the malaria vector Anopheles arabiensis from West Africa and eastern outer islands. Am J Trop Med Hyg. 1999;60:1000–9.CrossRefPubMed Simard F, Fontenille D, Lehmann T, Girod R, Brutus L, Gopaul R, et al. High amounts of genetic differentiation between populations of the malaria vector Anopheles arabiensis from West Africa and eastern outer islands. Am J Trop Med Hyg. 1999;60:1000–9.CrossRefPubMed
69.
go back to reference Anopheles gambiae 1000 Genomes Consortium. Genetic diversity of the African malaria vector Anopheles gambiae. Nature. 2017;552:96–100. Anopheles gambiae 1000 Genomes Consortium. Genetic diversity of the African malaria vector Anopheles gambiae. Nature. 2017;552:96–100.
70.
go back to reference Lukindu M, Bergey CM, Wiltshire RM, Small ST, Bourke BP, Kayondo JK, et al. Spatio-temporal genetic structure of Anopheles gambiae in the north-western Lake Victoria basin, Uganda: implications for genetic control trials in malaria endemic regions. Parasit Vectors. 2018;11:246.CrossRefPubMedPubMedCentral Lukindu M, Bergey CM, Wiltshire RM, Small ST, Bourke BP, Kayondo JK, et al. Spatio-temporal genetic structure of Anopheles gambiae in the north-western Lake Victoria basin, Uganda: implications for genetic control trials in malaria endemic regions. Parasit Vectors. 2018;11:246.CrossRefPubMedPubMedCentral
71.
go back to reference Carmody P, Taylor D. Globalization, land grabbing, and the present-day colonial state in Uganda: ecolonization and its impacts. J Environ Dev. 2016;25:100–26.CrossRef Carmody P, Taylor D. Globalization, land grabbing, and the present-day colonial state in Uganda: ecolonization and its impacts. J Environ Dev. 2016;25:100–26.CrossRef
72.
go back to reference Mukiama TK, Mwangi RW. Seasonal population changes and malaria transmission potential of Anopheles pharoensis and the minor anophelines in Mwea irrigation scheme, Kenya. Acta Trop. 1989;46:181–9.CrossRefPubMed Mukiama TK, Mwangi RW. Seasonal population changes and malaria transmission potential of Anopheles pharoensis and the minor anophelines in Mwea irrigation scheme, Kenya. Acta Trop. 1989;46:181–9.CrossRefPubMed
73.
go back to reference Kabbale FG, Akol AM, Kaddu JB, Onapa AW. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli district, Uganda. Parasit Vectors. 2013;6:340.CrossRefPubMedPubMedCentral Kabbale FG, Akol AM, Kaddu JB, Onapa AW. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli district, Uganda. Parasit Vectors. 2013;6:340.CrossRefPubMedPubMedCentral
Metadata
Title
Reduced-representation sequencing identifies small effective population sizes of Anopheles gambiae in the north-western Lake Victoria basin, Uganda
Authors
Rachel M. Wiltshire
Christina M. Bergey
Jonathan K. Kayondo
Josephine Birungi
Louis G. Mukwaya
Scott J. Emrich
Nora J. Besansky
Frank H. Collins
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2432-0

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine