Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

In vivo anti-malarial activity and toxicity studies of triterpenic esters isolated form Keetia leucantha and crude extracts

Authors: Claire Beaufay, Marie-France Hérent, Joëlle Quetin-Leclercq, Joanne Bero

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Considering the need for new anti-malarial drugs, further investigations on Keetia leucantha (Rubiaceae), an in vitro antiplasmodial plant traditionally used to treat malaria, were carried out. This paper aimed to assess the in vivo anti-malarial efficacy of K. leucantha triterpenic esters previously identified as the most in vitro active components against Plasmodium falciparum and their potential toxicity as well as those of anti-malarial extracts.

Results

These eight triterpenic esters and the major antiplasmodial triterpenic acids, ursolic and oleanolic acids, were quantified in the twigs dichloromethane extract by validated HPLC–UV methods. They account for about 19% of this extract (16.9% for acids and 1.8% for esters). These compounds were also identified in trace in the twigs decoction by HPLC-HRMS. Results also showed that extracts and esters did not produce any haemolysis, and were devoid of any acute toxicity at a total cumulative dose of 800 and 150 mg/kg respectively. Moreover, esters given intraperitoneally at 50 mg/kg/day to Plasmodium berghei-infected mice showed a very significant (p < 0.01) parasitaemia inhibition (27.8 ± 5.4%) on day 4 post-infection compared to vehicle-treated mice.

Conclusions

These results bring out new information on the safety of K. leucantha use and on the identification of anti-malarial compounds from its dichloromethane extract. Its activity can be explained by the presence of triterpenic acids and esters which in vivo activity and safety were demonstrated for the first time.
Literature
2.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral
3.
go back to reference Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. N Engl J Med. 2016;374:2519–29.CrossRefPubMedPubMedCentral Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. N Engl J Med. 2016;374:2519–29.CrossRefPubMedPubMedCentral
4.
go back to reference Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.CrossRefPubMed Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.CrossRefPubMed
5.
go back to reference Zhai X, Wang Q, Li M. Tu Youyou’s Nobel Prize and the academic evaluation system in China. Lancet. 2016;387:1722.CrossRefPubMed Zhai X, Wang Q, Li M. Tu Youyou’s Nobel Prize and the academic evaluation system in China. Lancet. 2016;387:1722.CrossRefPubMed
6.
go back to reference Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol. 2001;50:199–295.CrossRefPubMed Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol. 2001;50:199–295.CrossRefPubMed
7.
go back to reference Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part I. Curr Med Chem. 2012;19:2128–75.CrossRefPubMed Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part I. Curr Med Chem. 2012;19:2128–75.CrossRefPubMed
8.
9.
go back to reference Isah MB, Ibrahim MA, Mohammed A, Aliyu AB, Masola B, Coetzer THT. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology. 2016;143:1219–31.CrossRefPubMed Isah MB, Ibrahim MA, Mohammed A, Aliyu AB, Masola B, Coetzer THT. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology. 2016;143:1219–31.CrossRefPubMed
10.
go back to reference Bero J, Ganfon H, Jonville M-C, Frédérich M, Gbaguidi F, DeMol P, et al. In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. J Ethnopharmacol. 2009;122:439–44.CrossRefPubMed Bero J, Ganfon H, Jonville M-C, Frédérich M, Gbaguidi F, DeMol P, et al. In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. J Ethnopharmacol. 2009;122:439–44.CrossRefPubMed
11.
go back to reference Bero J, Hérent M-F, Schmeda-Hirschmann G, Frédérich M, Quetin-Leclercq J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J Ethnopharmacol. 2013;149:176–83.CrossRefPubMed Bero J, Hérent M-F, Schmeda-Hirschmann G, Frédérich M, Quetin-Leclercq J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J Ethnopharmacol. 2013;149:176–83.CrossRefPubMed
12.
go back to reference Cimanga RK, Tona GL, Mesia GK, Kambu OK, Bakana DP, Kalenda PDT, et al. Bioassay-guided isolation of antimalarial triterpenoid acids from the leaves of Morinda lucida. Pharm Biol. 2006;44:677–81.CrossRef Cimanga RK, Tona GL, Mesia GK, Kambu OK, Bakana DP, Kalenda PDT, et al. Bioassay-guided isolation of antimalarial triterpenoid acids from the leaves of Morinda lucida. Pharm Biol. 2006;44:677–81.CrossRef
13.
go back to reference Bero J, Beaufay C, Hannaert V, Hérent M-F, Michels PA, Quetin-Leclercq J. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase. Phytomedicine. 2013;20:270–4.CrossRefPubMed Bero J, Beaufay C, Hannaert V, Hérent M-F, Michels PA, Quetin-Leclercq J. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase. Phytomedicine. 2013;20:270–4.CrossRefPubMed
14.
go back to reference Ioset J-R, Brun R, Wenzler T, Kaiser M, Yardley V. Drug screening for kinetoplastids diseases, a training manual for screening in neglected diseases. Drugs for neglected diseases initiative and Pan-Asian Screening Network, Geneva, Switzerland; 2009. Ioset J-R, Brun R, Wenzler T, Kaiser M, Yardley V. Drug screening for kinetoplastids diseases, a training manual for screening in neglected diseases. Drugs for neglected diseases initiative and Pan-Asian Screening Network, Geneva, Switzerland; 2009.
15.
go back to reference Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80:482–9.CrossRefPubMed Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80:482–9.CrossRefPubMed
16.
go back to reference Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3:509–20.CrossRefPubMed Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3:509–20.CrossRefPubMed
17.
go back to reference Bero J, Hannaert V, Chataigné G, Hérent M-F, Quetin-Leclercq J. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J Ethnopharmacol. 2011;137:998–1002.CrossRefPubMed Bero J, Hannaert V, Chataigné G, Hérent M-F, Quetin-Leclercq J. In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J Ethnopharmacol. 2011;137:998–1002.CrossRefPubMed
18.
go back to reference Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, et al. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006;23:394–411.CrossRefPubMed Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, et al. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006;23:394–411.CrossRefPubMed
19.
go back to reference Ziegler HL, Franzyk H, Sairafianpour M, Tabatabai M, Tehrani MD, Bagherzadeh K, et al. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues. Bioorg Med Chem. 2004;12:119–27.CrossRefPubMed Ziegler HL, Franzyk H, Sairafianpour M, Tabatabai M, Tehrani MD, Bagherzadeh K, et al. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues. Bioorg Med Chem. 2004;12:119–27.CrossRefPubMed
20.
go back to reference Sairafianpour M, Bahreininejad B, Witt M, Ziegler HL, Jaroszewski JW, Staerk D. Terpenoids of Salvia hydrangea: two new, rearranged 20-norabietanes and the effect of oleanolic acid on erythrocyte membranes. Planta Med. 2003;69:846–50.CrossRefPubMed Sairafianpour M, Bahreininejad B, Witt M, Ziegler HL, Jaroszewski JW, Staerk D. Terpenoids of Salvia hydrangea: two new, rearranged 20-norabietanes and the effect of oleanolic acid on erythrocyte membranes. Planta Med. 2003;69:846–50.CrossRefPubMed
21.
go back to reference Vo NN, Fukushima EO, Muranaka T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J Nat Med. 2017;71:50–8.CrossRefPubMed Vo NN, Fukushima EO, Muranaka T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J Nat Med. 2017;71:50–8.CrossRefPubMed
22.
go back to reference Broniatowski M, Flasiński M, Wydro P. Investigation of the interactions of lupane type pentacyclic triterpenes with outer leaflet membrane phospholipids–Langmuir monolayer and synchrotron X-ray scattering study. J Colloid Interface Sci. 2012;381:116–24.CrossRefPubMed Broniatowski M, Flasiński M, Wydro P. Investigation of the interactions of lupane type pentacyclic triterpenes with outer leaflet membrane phospholipids–Langmuir monolayer and synchrotron X-ray scattering study. J Colloid Interface Sci. 2012;381:116–24.CrossRefPubMed
23.
go back to reference Broniatowski M, Flasiński M, Zięba K, Miśkowiec P. Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems. Biochim Biophys Acta. 2014;1838:2530–8.CrossRefPubMed Broniatowski M, Flasiński M, Zięba K, Miśkowiec P. Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems. Biochim Biophys Acta. 2014;1838:2530–8.CrossRefPubMed
24.
go back to reference Fajardo-Sánchez E, Galiano V, Villalaín J. Location of the bioactive pentacyclic triterpene ursolic acid in the membrane. A molecular dynamics study. J Biomol Struct Dyn. 2016;35(12):2688–700.CrossRefPubMed Fajardo-Sánchez E, Galiano V, Villalaín J. Location of the bioactive pentacyclic triterpene ursolic acid in the membrane. A molecular dynamics study. J Biomol Struct Dyn. 2016;35(12):2688–700.CrossRefPubMed
25.
go back to reference Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov. 2006;5:941–55.CrossRefPubMed Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov. 2006;5:941–55.CrossRefPubMed
26.
go back to reference Pink R, Hudson A, Mouriès M-A, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4:727–40.CrossRefPubMed Pink R, Hudson A, Mouriès M-A, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4:727–40.CrossRefPubMed
27.
go back to reference Woźniak Ł, Skąpska S, Marszałek K. Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20:20614–41.CrossRefPubMed Woźniak Ł, Skąpska S, Marszałek K. Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20:20614–41.CrossRefPubMed
28.
go back to reference Sultana N, Saeed Saify Z. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antiinflamm Antiallergy Agents Med Chem. 2012;11:3–19.CrossRefPubMed Sultana N, Saeed Saify Z. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antiinflamm Antiallergy Agents Med Chem. 2012;11:3–19.CrossRefPubMed
30.
go back to reference Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J. 2011;10:S4.CrossRefPubMedPubMedCentral Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J. 2011;10:S4.CrossRefPubMedPubMedCentral
31.
go back to reference Deharo E, Ginsburg H. Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar J. 2011;10:S5.CrossRefPubMedPubMedCentral Deharo E, Ginsburg H. Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar J. 2011;10:S5.CrossRefPubMedPubMedCentral
32.
go back to reference de Sá MS, Costa JFO, Krettli AU, Zalis MG, de Maia GLA, Sette IMF, et al. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitol Res. 2009;105:275.CrossRefPubMed de Sá MS, Costa JFO, Krettli AU, Zalis MG, de Maia GLA, Sette IMF, et al. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitol Res. 2009;105:275.CrossRefPubMed
33.
go back to reference da Silva GNS, Maria NRG, Schuck DC, Cruz LN, de Moraes MS, Nakabashi M, et al. Two series of new semisynthetic triterpene derivatives: differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar J. 2013;12:89.CrossRefPubMedPubMedCentral da Silva GNS, Maria NRG, Schuck DC, Cruz LN, de Moraes MS, Nakabashi M, et al. Two series of new semisynthetic triterpene derivatives: differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar J. 2013;12:89.CrossRefPubMedPubMedCentral
34.
go back to reference Moneriz C, Marín-García P, Bautista JM, Diez A, Puyet A. Parasitostatic effect of maslinic acid. II. Survival increase and immune protection in lethal Plasmodium yoelii-infected mice. Malar J. 2011;10:103.CrossRefPubMedPubMedCentral Moneriz C, Marín-García P, Bautista JM, Diez A, Puyet A. Parasitostatic effect of maslinic acid. II. Survival increase and immune protection in lethal Plasmodium yoelii-infected mice. Malar J. 2011;10:103.CrossRefPubMedPubMedCentral
35.
go back to reference Mavondo GA, Mkhwananzi BN, Mabandla MV. Pre-infection administration of asiatic acid retards parasitaemia induction in Plasmodium berghei murine malaria infected Sprague-Dawley rats. Malar J. 2016;15:226.CrossRefPubMedPubMedCentral Mavondo GA, Mkhwananzi BN, Mabandla MV. Pre-infection administration of asiatic acid retards parasitaemia induction in Plasmodium berghei murine malaria infected Sprague-Dawley rats. Malar J. 2016;15:226.CrossRefPubMedPubMedCentral
36.
go back to reference Gnoatto SCB, Susplugas S, Vechia LD, Ferreira TB, Dassonville-Klimpt A, Zimmer KR, et al. Pharmacomodulation on the 3-acetylursolic acid skeleton: design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl)piperazinyl]propyl}-3-O-acetylursolamide derivatives as antimalarial agents. Bioorg Med Chem. 2008;16:771–82.CrossRefPubMed Gnoatto SCB, Susplugas S, Vechia LD, Ferreira TB, Dassonville-Klimpt A, Zimmer KR, et al. Pharmacomodulation on the 3-acetylursolic acid skeleton: design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl)piperazinyl]propyl}-3-O-acetylursolamide derivatives as antimalarial agents. Bioorg Med Chem. 2008;16:771–82.CrossRefPubMed
37.
go back to reference Innocente AM, Silva GNS, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, et al. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules. 2012;17:12003–14.CrossRefPubMed Innocente AM, Silva GNS, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, et al. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules. 2012;17:12003–14.CrossRefPubMed
38.
go back to reference Simelane M, Shonhai A, Shode F, Smith P, Singh M, Opoku A. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules. 2013;18:12313–23.CrossRefPubMed Simelane M, Shonhai A, Shode F, Smith P, Singh M, Opoku A. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules. 2013;18:12313–23.CrossRefPubMed
39.
go back to reference Steele JC, Warhurst DC, Kirby GC, Simmonds MS. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res PTR. 1999;13:115–9.CrossRefPubMed Steele JC, Warhurst DC, Kirby GC, Simmonds MS. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res PTR. 1999;13:115–9.CrossRefPubMed
40.
go back to reference Mutai C, Rukunga G, Vagias C, Roussis V. In vivo screening of antimalarial activity of Acacia mellifera (Benth) (Leguminosae) on Plasmodium berghei in mice. Afr J Tradit Complement Altern Med. 2007;5:46–50.PubMedPubMedCentral Mutai C, Rukunga G, Vagias C, Roussis V. In vivo screening of antimalarial activity of Acacia mellifera (Benth) (Leguminosae) on Plasmodium berghei in mice. Afr J Tradit Complement Altern Med. 2007;5:46–50.PubMedPubMedCentral
41.
go back to reference Habila JD. Novel antimalarial agent (Cinnamic 3β-hydroxyolean-12-en-28-carboxylic anhydride): synthesis, characterization and in vivo studies. Afr J Pharm Pharmacol. 2011;5:2667–75.CrossRef Habila JD. Novel antimalarial agent (Cinnamic 3β-hydroxyolean-12-en-28-carboxylic anhydride): synthesis, characterization and in vivo studies. Afr J Pharm Pharmacol. 2011;5:2667–75.CrossRef
42.
go back to reference Drag-Zalesinska M, Kulbacka J, Saczko J, Wysocka T, Zabel M, Surowiak P, et al. Esters of betulin and betulinic acid with amino acids have improved water solubility and are selectively cytotoxic toward cancer cells. Bioorg Med Chem Lett. 2009;19:4814–7.CrossRefPubMed Drag-Zalesinska M, Kulbacka J, Saczko J, Wysocka T, Zabel M, Surowiak P, et al. Esters of betulin and betulinic acid with amino acids have improved water solubility and are selectively cytotoxic toward cancer cells. Bioorg Med Chem Lett. 2009;19:4814–7.CrossRefPubMed
43.
go back to reference Suneela D, Dipmala P. Synthesis and pharmacokinetic profile of rhein-boswellic acid conjugate. Bioorg Med Chem Lett. 2012;22:7582–7.CrossRefPubMed Suneela D, Dipmala P. Synthesis and pharmacokinetic profile of rhein-boswellic acid conjugate. Bioorg Med Chem Lett. 2012;22:7582–7.CrossRefPubMed
44.
go back to reference Yu Z, Sun W, Peng W, Yu R, Li G, Jiang T. Pharmacokinetics in vitro and in vivo of two novel prodrugs of oleanolic acid in rats and its hepatoprotective effects against liver injury induced by CCl4. Mol Pharm. 2016;13:1699–710.CrossRefPubMed Yu Z, Sun W, Peng W, Yu R, Li G, Jiang T. Pharmacokinetics in vitro and in vivo of two novel prodrugs of oleanolic acid in rats and its hepatoprotective effects against liver injury induced by CCl4. Mol Pharm. 2016;13:1699–710.CrossRefPubMed
45.
go back to reference Sun W, Peng W, Li G, Jiang T. Design, synthesis, and sustained-release property of 1,3-cyclic propanyl phosphate ester of 18β-glycyrrhetinic acid. Chem Biol Drug Des. 2011;77:206–11.CrossRefPubMed Sun W, Peng W, Li G, Jiang T. Design, synthesis, and sustained-release property of 1,3-cyclic propanyl phosphate ester of 18β-glycyrrhetinic acid. Chem Biol Drug Des. 2011;77:206–11.CrossRefPubMed
46.
go back to reference Zhang B, Zhu X-M, Hu J-N, Ye H, Luo T, Liu X-R, et al. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J Agric Food Chem. 2012;60:10278–84.CrossRefPubMed Zhang B, Zhu X-M, Hu J-N, Ye H, Luo T, Liu X-R, et al. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J Agric Food Chem. 2012;60:10278–84.CrossRefPubMed
47.
go back to reference Koga K, Kawamura M, Iwase H, Yoshikawa N. Intestinal absorption and biliary elimination of glycyrrhizic acid diethyl ester in rats. Drug Des Devel Ther. 2013;7:1235–43.CrossRefPubMedPubMedCentral Koga K, Kawamura M, Iwase H, Yoshikawa N. Intestinal absorption and biliary elimination of glycyrrhizic acid diethyl ester in rats. Drug Des Devel Ther. 2013;7:1235–43.CrossRefPubMedPubMedCentral
48.
go back to reference Cao F, Jia J, Yin Z, Gao Y, Sha L, Lai Y, et al. Ethylene glycol-linked amino acid diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability and pharmacokinetics. Mol Pharm. 2012;9:2127–35.PubMed Cao F, Jia J, Yin Z, Gao Y, Sha L, Lai Y, et al. Ethylene glycol-linked amino acid diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability and pharmacokinetics. Mol Pharm. 2012;9:2127–35.PubMed
49.
go back to reference Chinaeke EE, Chime SA, Onyishi VI, Attama AA, Okore VC. Formulation development and evaluation of the anti-malaria properties of sustained release artesunate-loaded solid lipid microparticles based on phytolipids. Drug Deliv. 2015;22:652–65.CrossRefPubMed Chinaeke EE, Chime SA, Onyishi VI, Attama AA, Okore VC. Formulation development and evaluation of the anti-malaria properties of sustained release artesunate-loaded solid lipid microparticles based on phytolipids. Drug Deliv. 2015;22:652–65.CrossRefPubMed
50.
go back to reference Thakkar M, Brijesh S. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res. 2016;6:414–25.PubMed Thakkar M, Brijesh S. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res. 2016;6:414–25.PubMed
Metadata
Title
In vivo anti-malarial activity and toxicity studies of triterpenic esters isolated form Keetia leucantha and crude extracts
Authors
Claire Beaufay
Marie-France Hérent
Joëlle Quetin-Leclercq
Joanne Bero
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2054-y

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.