Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Developing global maps of insecticide resistance risk to improve vector control

Authors: Michael Coleman, Janet Hemingway, Katherine Ann Gleave, Antoinette Wiebe, Peter W. Gething, Catherine L. Moyes

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Significant reductions in malaria transmission have been achieved over the last 15 years with elimination occurring in a small number of countries, however, increasing drug and insecticide resistance threatens these gains. Insecticide resistance has decreased the observed mortality to the most commonly used insecticide class, the pyrethroids, and the number of alternative classes approved for use in public health is limited. Disease prevention and elimination relies on operational control of Anopheles malaria vectors, which requires the deployment of effective insecticides. Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available.

Methods

Resistance data are obtained from published articles, by contacting authors and custodians of unpublished data sets. Where possible data is disaggregated to single sites and collection periods to give a fine spatial resolution.

Results

Currently the data set includes data from 1955 to October 2016 from 71 malaria endemic countries and 74 anopheline species. This includes data for all four classes of insecticides and associated resistance mechanisms.

Conclusions

Resistance is a rapidly evolving phenomena and the resources and human capacity to continuously monitor vast numbers of mosquito populations in numerous locations simultaneously are not available. The Malaria Atlas Project-Insecticide Resistance (MAP-IR) venture has been established to develop tools that will use available data to provide best estimates of the spatial distribution of insecticide resistance and help guide control programmes on this serious issue.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World Malaria report 2015. Geneva: World Health Organization; 2015. WHO. World Malaria report 2015. Geneva: World Health Organization; 2015.
2.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentral
3.
go back to reference Massey NC, Garrod G, Wiebe A, Henry AJ, Huang Z, Moyes CL, et al. A global bionomic database for the dominant vectors of human malaria. Sci Data. 2016;3:160014.CrossRefPubMedPubMedCentral Massey NC, Garrod G, Wiebe A, Henry AJ, Huang Z, Moyes CL, et al. A global bionomic database for the dominant vectors of human malaria. Sci Data. 2016;3:160014.CrossRefPubMedPubMedCentral
4.
go back to reference WHO. Pesticide evaluation scheme (WHOPES). Geneva: World Health Organization; 2011. WHO. Pesticide evaluation scheme (WHOPES). Geneva: World Health Organization; 2011.
5.
go back to reference Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14:1–5.CrossRefPubMed Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14:1–5.CrossRefPubMed
6.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRefPubMed Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.CrossRefPubMed
7.
go back to reference Coleman M, Sharp B, Seocharan I, Hemingway J. Developing an evidence-based decision support system for rational insecticide choice in the control of African malaria vectors. J Med Entomol. 2006;43:663–8.CrossRefPubMed Coleman M, Sharp B, Seocharan I, Hemingway J. Developing an evidence-based decision support system for rational insecticide choice in the control of African malaria vectors. J Med Entomol. 2006;43:663–8.CrossRefPubMed
8.
go back to reference Coetzee M, Horne D, Brooke BD, Hunt RH. DDT, dieldrin and pyrethroid insecticide resistance in African malaria vector mosquitoes: an historical review and implications for future malaria control in Southern Africa. S Afr J Sci. 1999;95:215–8. Coetzee M, Horne D, Brooke BD, Hunt RH. DDT, dieldrin and pyrethroid insecticide resistance in African malaria vector mosquitoes: an historical review and implications for future malaria control in Southern Africa. S Afr J Sci. 1999;95:215–8.
9.
go back to reference Donnelly MJ, Isaacs AT, Weetman D. Identification, validation, and application of molecular diagnostics for insecticide resistance in malaria vectors. Trends Parasitol. 2016;32:197–206.CrossRefPubMed Donnelly MJ, Isaacs AT, Weetman D. Identification, validation, and application of molecular diagnostics for insecticide resistance in malaria vectors. Trends Parasitol. 2016;32:197–206.CrossRefPubMed
10.
go back to reference Bagi J, Grisales N, Corkill R, Morgan JC, N’Fale S, Brogdon WG, et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J. 2015;14:210.CrossRefPubMedPubMedCentral Bagi J, Grisales N, Corkill R, Morgan JC, N’Fale S, Brogdon WG, et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J. 2015;14:210.CrossRefPubMedPubMedCentral
11.
go back to reference Toe KH, Jones CM, N’Fale S, Ismail HM, Dabire RK, et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness. Burkina Faso. Emerg Infect Dis. 2014;20:1691–6.CrossRefPubMed Toe KH, Jones CM, N’Fale S, Ismail HM, Dabire RK, et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness. Burkina Faso. Emerg Infect Dis. 2014;20:1691–6.CrossRefPubMed
12.
go back to reference Ochomo EO, Bayoh NM, Walker ED, Abongo BO, Ombok MO, Ouma C, et al. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malar J. 2013;12:368.CrossRefPubMedPubMedCentral Ochomo EO, Bayoh NM, Walker ED, Abongo BO, Ombok MO, Ouma C, et al. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malar J. 2013;12:368.CrossRefPubMedPubMedCentral
13.
go back to reference Edi CV, Koudou BG, Jones CM, Weetman D, Ranson H. Multiple-insecticide resistance in Anopheles gambiae mosquitoes, Southern Cote d’Ivoire. Emerg Infect Dis. 2012;18:1508–11.CrossRefPubMedPubMedCentral Edi CV, Koudou BG, Jones CM, Weetman D, Ranson H. Multiple-insecticide resistance in Anopheles gambiae mosquitoes, Southern Cote d’Ivoire. Emerg Infect Dis. 2012;18:1508–11.CrossRefPubMedPubMedCentral
14.
go back to reference Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000;14:181–9.CrossRefPubMed Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000;14:181–9.CrossRefPubMed
15.
go back to reference Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes. A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes. A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRefPubMed
16.
go back to reference Thompson KM, Deisler PF Jr, Schwing RC. Interdisciplinary vision: the first 25 years of the Society for Risk Analysis (SRA), 1980–2005. Risk Anal. 2005;25:53.CrossRef Thompson KM, Deisler PF Jr, Schwing RC. Interdisciplinary vision: the first 25 years of the Society for Risk Analysis (SRA), 1980–2005. Risk Anal. 2005;25:53.CrossRef
17.
go back to reference WHO. Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization; 2012. WHO. Global plan for insecticide resistance management in malaria vectors. Geneva: World Health Organization; 2012.
18.
go back to reference Mnzava AP, Macdonald MB, Knox TB, Temu EA, Shiff CJ. Malaria vector control at a crossroads: public health entomology and the drive to elimination. Trans R Soc Trop Med Hyg. 2014;108:550–4.CrossRefPubMed Mnzava AP, Macdonald MB, Knox TB, Temu EA, Shiff CJ. Malaria vector control at a crossroads: public health entomology and the drive to elimination. Trans R Soc Trop Med Hyg. 2014;108:550–4.CrossRefPubMed
19.
go back to reference Knox TB, Juma EO, Ochomo EO, Pates Jamet H, Ndungo L, Chege P, et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit Vect. 2014;7:76.CrossRef Knox TB, Juma EO, Ochomo EO, Pates Jamet H, Ndungo L, Chege P, et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit Vect. 2014;7:76.CrossRef
20.
go back to reference Dialynas E, Topalis P, Vontas J, Louis C. MIRO and IRbase: IT tools for the epidemiological monitoring of insecticide resistance in mosquito disease vectors. PLoS Negl Trop Dis. 2009;3:e465.CrossRefPubMedPubMedCentral Dialynas E, Topalis P, Vontas J, Louis C. MIRO and IRbase: IT tools for the epidemiological monitoring of insecticide resistance in mosquito disease vectors. PLoS Negl Trop Dis. 2009;3:e465.CrossRefPubMedPubMedCentral
21.
go back to reference Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015;14:173.CrossRefPubMedPubMedCentral Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015;14:173.CrossRefPubMedPubMedCentral
22.
go back to reference WHO. Global strategic framework for integrated vector management. Geneva: World Health Organization; 2004. WHO. Global strategic framework for integrated vector management. Geneva: World Health Organization; 2004.
23.
go back to reference Foof and Agriculture Organization of the United Nations. The global administrative unit layers (GAUL): technical aspects. EC-FAO Food Security Program; 2008. Foof and Agriculture Organization of the United Nations. The global administrative unit layers (GAUL): technical aspects. EC-FAO Food Security Program; 2008.
26.
go back to reference WHO. World malaria report 2014. Geneva: World Health Organization; 2014. WHO. World malaria report 2014. Geneva: World Health Organization; 2014.
27.
go back to reference Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34:653–65.CrossRefPubMed Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34:653–65.CrossRefPubMed
28.
go back to reference Brogdon WG, Chan A. Guideline for evaluating insecticide resistance in vectors using the CDC Bottle Assay. The Centres for Disease Control and Prevention, Atlanta; 2011. Brogdon WG, Chan A. Guideline for evaluating insecticide resistance in vectors using the CDC Bottle Assay. The Centres for Disease Control and Prevention, Atlanta; 2011.
29.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vectors. Geneva: World Health Organization; 2013. WHO. Test procedures for insecticide resistance monitoring in malaria vectors. Geneva: World Health Organization; 2013.
30.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12. Geneva: World Health Organization; 1998. WHO. Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12. Geneva: World Health Organization; 1998.
31.
32.
go back to reference Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vect. 2012;5:69.CrossRef Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vect. 2012;5:69.CrossRef
33.
34.
go back to reference Hemingway J, Vontas J, Poupardin R, Raman J, Lines J, Schwabe C, et al. Country-level operational implementation of the Global Plan for Insecticide Resistance Management. Proc Natl Acad Sci USA. 2013;110:9397–402.CrossRefPubMedPubMedCentral Hemingway J, Vontas J, Poupardin R, Raman J, Lines J, Schwabe C, et al. Country-level operational implementation of the Global Plan for Insecticide Resistance Management. Proc Natl Acad Sci USA. 2013;110:9397–402.CrossRefPubMedPubMedCentral
35.
go back to reference Riveron JM, Osae M, Egyir-Yawson A, Irving H, Ibrahim SS, Wondji CS. Multiple insecticide resistance in the major malaria vector Anopheles funestus in southern Ghana: implications for malaria control. Parasit Vect. 2016;9:504.CrossRef Riveron JM, Osae M, Egyir-Yawson A, Irving H, Ibrahim SS, Wondji CS. Multiple insecticide resistance in the major malaria vector Anopheles funestus in southern Ghana: implications for malaria control. Parasit Vect. 2016;9:504.CrossRef
36.
go back to reference Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, et al. Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci USA. 2012;109:19063–70.CrossRefPubMedPubMedCentral Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, et al. Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci USA. 2012;109:19063–70.CrossRefPubMedPubMedCentral
37.
Metadata
Title
Developing global maps of insecticide resistance risk to improve vector control
Authors
Michael Coleman
Janet Hemingway
Katherine Ann Gleave
Antoinette Wiebe
Peter W. Gething
Catherine L. Moyes
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1733-z

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.