Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Effectiveness and safety of artemether–lumefantrine versus artesunate–amodiaquine for unsupervised treatment of uncomplicated falciparum malaria in patients of all age groups in Nanoro, Burkina Faso: a randomized open label trial

Authors: Paul Sondo, Karim Derra, Seydou Diallo-Nakanabo, Zekiba Tarnagda, Odile Zampa, Adama Kazienga, Innocent Valea, Hermann Sorgho, Ellis Owusu-Dabo, Jean-Bosco Ouedraogo, Tinga Robert Guiguemde, Halidou Tinto

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Several studies have reported high efficacy and safety of artemisinin-based combination therapy (ACT) mostly under strict supervision of drug intake and limited to children less than 5 years of age. Patients over 5 years of age are usually not involved in such studies. Thus, the findings do not fully reflect the reality in the field. This study aimed to assess the effectiveness and safety of ACT in routine treatment of uncomplicated malaria among patients of all age groups in Nanoro, Burkina Faso.

Methods

A randomized open label trial comparing artesunate–amodiaquine (ASAQ) and artemether–lumefantrine (AL) was carried out from September 2010 to October 2012 at two primary health centres (Nanoro and Nazoanga) of Nanoro health district. A total of 680 patients were randomized to receive either ASAQ or AL without any distinction by age. Drug intake was not supervised as pertains in routine practice in the field. Patients or their parents/guardians were advised on the time and mode of administration for the 3 days treatment unobserved at home. Follow-up visits were performed on days 3, 7, 14, 21, and 28 to evaluate clinical and parasitological resolution of their malaria episode as well as adverse events. PCR genotyping of merozoite surface proteins 1 and 2 (msp-1, msp-2) was used to differentiate recrudescence and new infection.

Results

By day 28, the PCR corrected adequate clinical and parasitological response was 84.1 and 77.8 % respectively for ASAQ and AL. The cure rate was higher in older patients than in children under 5 years old. The risk of re-infection by day 28 was higher in AL treated patients compared with those receiving ASAQ (p < 0.00001). Both AL and ASAQ treatments were well tolerated.

Conclusion

This study shows a lowering of the efficacy when drug intake is not directly supervised. This is worrying as both rates are lower than the critical threshold of 90 % required by the WHO to recommend the use of an anti-malarial drug in a treatment policy.
Trial registration: NCT01232530
Literature
1.
go back to reference WHO. Antimalarial drug combination therapy: report of a technical consultation. Geneva: World Health Organization; 2001. WHO. Antimalarial drug combination therapy: report of a technical consultation. Geneva: World Health Organization; 2001.
2.
go back to reference Ministry of Health of Burkina Faso/PNLP. Directives Nationales pour la prise en charge du paludisme au Burkina Faso; 2006. Ministry of Health of Burkina Faso/PNLP. Directives Nationales pour la prise en charge du paludisme au Burkina Faso; 2006.
3.
go back to reference Kobbe R, Klein P, Adjei S, Amemasor S, Thompson WN, Heidemann H, et al. A randomized trial on effectiveness of artemether–lumefantrine versus artesunate plus amodiaquine for unsupervised treatment of uncomplicated Plasmodium falciparum malaria in Ghanaian children. Malar J. 2008;7:261.PubMedCentralCrossRefPubMed Kobbe R, Klein P, Adjei S, Amemasor S, Thompson WN, Heidemann H, et al. A randomized trial on effectiveness of artemether–lumefantrine versus artesunate plus amodiaquine for unsupervised treatment of uncomplicated Plasmodium falciparum malaria in Ghanaian children. Malar J. 2008;7:261.PubMedCentralCrossRefPubMed
4.
go back to reference Bassat Q, Mulenga M, Tinto H, Piola P, Borrmann S, Menéndez C, et al. Dihydroartemisinin–piperaquine and artemether–lumefantrine for treating uncomplicated malaria in African children: a randomised, non-inferiority trial. PLoS One. 2009;4:e7871.PubMedCentralCrossRefPubMed Bassat Q, Mulenga M, Tinto H, Piola P, Borrmann S, Menéndez C, et al. Dihydroartemisinin–piperaquine and artemether–lumefantrine for treating uncomplicated malaria in African children: a randomised, non-inferiority trial. PLoS One. 2009;4:e7871.PubMedCentralCrossRefPubMed
5.
go back to reference Meremikwu M, Alaribe A, Ejemot R, Oyo-Ita A, Ekenjoku J, Nwachukwu C, et al. Artemether–lumefantrine versus artesunate plus amodiaquine for treating uncomplicated childhood malaria in Nigeria: randomized controlled trial. Malar J. 2006;5:43.PubMedCentralCrossRefPubMed Meremikwu M, Alaribe A, Ejemot R, Oyo-Ita A, Ekenjoku J, Nwachukwu C, et al. Artemether–lumefantrine versus artesunate plus amodiaquine for treating uncomplicated childhood malaria in Nigeria: randomized controlled trial. Malar J. 2006;5:43.PubMedCentralCrossRefPubMed
6.
go back to reference Tinto H, Diallo S, Zongo I, Guiraud I, Valea I, Kazienga A, et al. Effectiveness of artesunate–amodiaquine vs. artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in Nanoro, Burkina Faso: a noninferiority randomised trial. Trop Med Int Health. 2014;19:469–75.CrossRefPubMed Tinto H, Diallo S, Zongo I, Guiraud I, Valea I, Kazienga A, et al. Effectiveness of artesunate–amodiaquine vs. artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in Nanoro, Burkina Faso: a noninferiority randomised trial. Trop Med Int Health. 2014;19:469–75.CrossRefPubMed
7.
go back to reference Ministry of Health of Burkina Faso/DSN. Acting plan 2014 of the Nanoro Sanitary District; 2013. Ministry of Health of Burkina Faso/DSN. Acting plan 2014 of the Nanoro Sanitary District; 2013.
8.
go back to reference Derra K, Rouamba E, Kazienga A, Ouedraogo S, Tahita MC, Sorgho H, et al. Profile: Nanoro health and demographic surveillance system. Int J Epidemiol. 2012;41:1293–301.CrossRefPubMed Derra K, Rouamba E, Kazienga A, Ouedraogo S, Tahita MC, Sorgho H, et al. Profile: Nanoro health and demographic surveillance system. Int J Epidemiol. 2012;41:1293–301.CrossRefPubMed
9.
go back to reference WHO. Toxicity grading scale for determining the severity of adverse events. World Health Organization; 2003. WHO. Toxicity grading scale for determining the severity of adverse events. World Health Organization; 2003.
10.
go back to reference Ranford-Cartwright L, Taylor J, Umasunthar T, Taylor L, Babiker H, Lell B, et al. Molecular analysis of recrudescent parasites in a Plasmodium falciparum drug efficacy trial in Gabon. Trans R Soc Trop Med Hyg. 1997;91:719–24.CrossRefPubMed Ranford-Cartwright L, Taylor J, Umasunthar T, Taylor L, Babiker H, Lell B, et al. Molecular analysis of recrudescent parasites in a Plasmodium falciparum drug efficacy trial in Gabon. Trans R Soc Trop Med Hyg. 1997;91:719–24.CrossRefPubMed
11.
go back to reference WHO. Assessment of therapeutic efficacy of antimalarial drugs for uncomplicated falciparum malaria. Geneva: World Health Organization; 2003. WHO. Assessment of therapeutic efficacy of antimalarial drugs for uncomplicated falciparum malaria. Geneva: World Health Organization; 2003.
12.
go back to reference Oyakhirome S, Pötschke M, Schwarz NG, Dörnemann J, Laengin M, Salazar CO, et al. Artesunate–amodiaquine combination therapy for falciparum malaria in young Gabonese children. Malar J. 2007;6:29.PubMedCentralCrossRefPubMed Oyakhirome S, Pötschke M, Schwarz NG, Dörnemann J, Laengin M, Salazar CO, et al. Artesunate–amodiaquine combination therapy for falciparum malaria in young Gabonese children. Malar J. 2007;6:29.PubMedCentralCrossRefPubMed
13.
go back to reference Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Séré Y, Rosenthal PJ, et al. Randomized comparison of amodiaquine plus sulfadoxine–pyrimethamine, artemether–lumefantrine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso. Clin Infect Dis. 2007;45:1453–61.CrossRefPubMed Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Séré Y, Rosenthal PJ, et al. Randomized comparison of amodiaquine plus sulfadoxine–pyrimethamine, artemether–lumefantrine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso. Clin Infect Dis. 2007;45:1453–61.CrossRefPubMed
14.
go back to reference Ndiaye JL, Randrianarivelojosia M, Sagara I, Brasseur P, Ndiaye I, Faye B, et al. Randomized, multicentre assessment of the efficacy and safety of ASAQ—a fixed-dose artesunate–amodiaquine combination therapy in the treatment of uncomplicated Plasmodium falciparum malaria. Malar J. 2009;8:125.PubMedCentralCrossRefPubMed Ndiaye JL, Randrianarivelojosia M, Sagara I, Brasseur P, Ndiaye I, Faye B, et al. Randomized, multicentre assessment of the efficacy and safety of ASAQ—a fixed-dose artesunate–amodiaquine combination therapy in the treatment of uncomplicated Plasmodium falciparum malaria. Malar J. 2009;8:125.PubMedCentralCrossRefPubMed
15.
go back to reference Adams A, Soumerai SB, Lomas J, Ross-Degnan D. Evidence of self-report bias in assessing adherence to guidelines. Int J Qual Health Care. 1999;11:187–92.CrossRefPubMed Adams A, Soumerai SB, Lomas J, Ross-Degnan D. Evidence of self-report bias in assessing adherence to guidelines. Int J Qual Health Care. 1999;11:187–92.CrossRefPubMed
16.
go back to reference Bell DJ, Wootton D, Mukaka M, Montgomery J, Kayange N, Chimpeni P, et al. Measurement of adherence, drug concentrations and the effectiveness of artemether–lumefantrine, chlorproguanil–dapsone or sulphadoxine–pyrimethamine in the treatment of uncomplicated malaria in Malawi. Malar J. 2009;8:204.PubMedCentralCrossRefPubMed Bell DJ, Wootton D, Mukaka M, Montgomery J, Kayange N, Chimpeni P, et al. Measurement of adherence, drug concentrations and the effectiveness of artemether–lumefantrine, chlorproguanil–dapsone or sulphadoxine–pyrimethamine in the treatment of uncomplicated malaria in Malawi. Malar J. 2009;8:204.PubMedCentralCrossRefPubMed
17.
go back to reference White NJ, van Vugt M, Ezzet FD. Clinical pharmacokinetics and pharmacodynamics of artemether–lumefantrine. Clin Pharmacokinet. 1999;37:105–25.CrossRefPubMed White NJ, van Vugt M, Ezzet FD. Clinical pharmacokinetics and pharmacodynamics of artemether–lumefantrine. Clin Pharmacokinet. 1999;37:105–25.CrossRefPubMed
18.
go back to reference Tinto H, Bonkian LN, Nana LA, Yerbanga I, Lingani M, Kazienga A, et al. Ex vivo anti-malarial drugs sensitivity profile of Plasmodium falciparum field isolates from Burkina Faso five years after the national policy change. Malar J. 2014;13:207.PubMedCentralCrossRefPubMed Tinto H, Bonkian LN, Nana LA, Yerbanga I, Lingani M, Kazienga A, et al. Ex vivo anti-malarial drugs sensitivity profile of Plasmodium falciparum field isolates from Burkina Faso five years after the national policy change. Malar J. 2014;13:207.PubMedCentralCrossRefPubMed
19.
go back to reference Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, et al. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS One. 2011;6:e26005.PubMedCentralCrossRefPubMed Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, et al. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS One. 2011;6:e26005.PubMedCentralCrossRefPubMed
20.
go back to reference Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.PubMedCentralCrossRefPubMed Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:1960–6.PubMedCentralCrossRefPubMed
21.
go back to reference Ladeia-Andrade S, Ferreira MU, de Carvalho ME, Curado I, Coura JR. Age-dependent acquisition of protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. Am J Trop Med Hyg. 2009;80:452–9.PubMed Ladeia-Andrade S, Ferreira MU, de Carvalho ME, Curado I, Coura JR. Age-dependent acquisition of protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. Am J Trop Med Hyg. 2009;80:452–9.PubMed
22.
go back to reference Brasseur P, Vaillant MT, Olliaro PL. Anti-malarial drug safety information obtained through routine monitoring in a rural district of South-Western Senegal. Malar J. 2012;11:402.PubMedCentralCrossRefPubMed Brasseur P, Vaillant MT, Olliaro PL. Anti-malarial drug safety information obtained through routine monitoring in a rural district of South-Western Senegal. Malar J. 2012;11:402.PubMedCentralCrossRefPubMed
23.
go back to reference WHO. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2010. WHO. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2010.
24.
go back to reference WHO. Global report on antimalaria drug efficacy and drug resistance: 2000–2010. Geneva: World Health Organization; 2000. WHO. Global report on antimalaria drug efficacy and drug resistance: 2000–2010. Geneva: World Health Organization; 2000.
Metadata
Title
Effectiveness and safety of artemether–lumefantrine versus artesunate–amodiaquine for unsupervised treatment of uncomplicated falciparum malaria in patients of all age groups in Nanoro, Burkina Faso: a randomized open label trial
Authors
Paul Sondo
Karim Derra
Seydou Diallo-Nakanabo
Zekiba Tarnagda
Odile Zampa
Adama Kazienga
Innocent Valea
Hermann Sorgho
Ellis Owusu-Dabo
Jean-Bosco Ouedraogo
Tinga Robert Guiguemde
Halidou Tinto
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0843-8

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine