Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Anti-malarial effect of semi-synthetic drug amitozyn

Authors: Sergey O. Tcherniuk, Olga Chesnokova, Irina V. Oleinikov, Anatoly I. Potopalsky, Andrew V. Oleinikov

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Malaria caused by Plasmodium falciparum is the most virulent form of malaria, leading to approximately a half million deaths per year. Chemotherapy continues to be a key approach in malaria prevention and treatment. Due to widespread parasite drug resistance, identification and development of new anti-malarial compounds remains an important task of malarial parasitology. The semi-synthetic drug amitozyn, obtained through alkylation of major celandine (Chelidonium majus) alkaloids with N,NN′-triethylenethiophosphoramide (ThioTEPA), is a widely used Eastern European folk medicine for the treatment of various tumours. However, its anti-malarial effect has never been studied.

Methods

The anti-malarial effects of amitozyn alone and in combination with chloroquine, pyrimethamine and artemisinin on the blood stages of P. falciparum were analysed. The cytostatic effects of amitozyn on parasites and various cancerous and non-cancerous human cells were compared and their toxic effects on unparasitized human red blood cells were analysed.

Results

Obtained results demonstrate that amitozyn effectively inhibits the growth of blood-stage parasites with IC50 9.6 ± 2, 11.3 ± 2.8 and 10.8 ± 1.8 μg/mL using CS2, 3G8 and NF54 parasite lines, respectively. The median IC50 for 14 tested human cell lines was 33–152 μg/mL. Treatment of uninfected red blood cells with a high dose of amitozyn (500 μg/mL) did not change cell morphology, demonstrating its non-toxicity for erythrocytes. The synergistic impact of the amitozyn/chloroquine combination was observed at growth inhibition levels of 10–80 %, while demonstrating a nearly additive effect at a growth inhibition level of 90 %. The combination of amitozyn with pyrimethamine has a synergistic effect at growth inhibition levels of 10–70 % and a nearly additive effect at a growth inhibition level of 90 %. The synergistic anti-malarial effect of the amitozyn/artemisinin combination was observed at growth inhibition levels of 10–40 % and a nearly additive effect at growth inhibition levels of 50–90 %.

Conclusions

These in vitro results suggest that the semi-synthetic drug amitozyn, typically used for the treatment of tumours, is a potential anti-malarial candidate and warrants more detailed laboratory and pre-clinical investigations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and Plasmodium ovale—the “bashful” malaria parasites. Trends Parasitol. 2007;23:278–83.PubMedCentralCrossRefPubMed Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and Plasmodium ovale—the “bashful” malaria parasites. Trends Parasitol. 2007;23:278–83.PubMedCentralCrossRefPubMed
2.
go back to reference Collins WE. Plasmodium knowlesi: a malaria parasite of monkeys and humans”. Annu Rev Entomol. 2012;57:107–21.CrossRefPubMed Collins WE. Plasmodium knowlesi: a malaria parasite of monkeys and humans”. Annu Rev Entomol. 2012;57:107–21.CrossRefPubMed
3.
go back to reference Nadjm B, Behrens RH. Malaria: an update for physicians. Infect Dis Clin North Am. 2012;26:243–59.CrossRefPubMed Nadjm B, Behrens RH. Malaria: an update for physicians. Infect Dis Clin North Am. 2012;26:243–59.CrossRefPubMed
4.
go back to reference Sarkar PK, Ahluwalia G, Vijayan VK, Talwar A. Critical care aspects of malaria. J Intensive Care Med. 2009;25:93–103.CrossRefPubMed Sarkar PK, Ahluwalia G, Vijayan VK, Talwar A. Critical care aspects of malaria. J Intensive Care Med. 2009;25:93–103.CrossRefPubMed
6.
go back to reference Aguiar AC, Rocha EM, Souza NB, França TC, Krettli AU. New approaches in antimalarial drug discovery and development. Mem Inst Oswaldo Cruz. 2012;107:831–45.CrossRefPubMed Aguiar AC, Rocha EM, Souza NB, França TC, Krettli AU. New approaches in antimalarial drug discovery and development. Mem Inst Oswaldo Cruz. 2012;107:831–45.CrossRefPubMed
7.
go back to reference Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedCentralCrossRefPubMed Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.PubMedCentralCrossRefPubMed
8.
go back to reference WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010. WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010.
9.
go back to reference WHO. Global report on antimalarial drug efficacy and drug resistance: 2000–2010. Geneva: World Health Organization; 2010. WHO. Global report on antimalarial drug efficacy and drug resistance: 2000–2010. Geneva: World Health Organization; 2010.
10.
go back to reference Wildbolz A. Methotrexate in the therapy of malaria. Ther Umsch. 1973;30:218–22.PubMed Wildbolz A. Methotrexate in the therapy of malaria. Ther Umsch. 1973;30:218–22.PubMed
11.
go back to reference Pouvelle B, Farley PJ, Long CA, Taraschi TF. Taxol arrests the development of blood-stage Plasmodium falciparum in vitro and Plasmodium chabaudi adami in malaria-infected mice. J Clin Invest. 1994;94:413–7.PubMedCentralCrossRefPubMed Pouvelle B, Farley PJ, Long CA, Taraschi TF. Taxol arrests the development of blood-stage Plasmodium falciparum in vitro and Plasmodium chabaudi adami in malaria-infected mice. J Clin Invest. 1994;94:413–7.PubMedCentralCrossRefPubMed
12.
go back to reference Usanga EA. Mitotic inhibitors arrest the growth of Plasmodium falciparum. FEBS Lett. 1986;209:23–7.CrossRefPubMed Usanga EA. Mitotic inhibitors arrest the growth of Plasmodium falciparum. FEBS Lett. 1986;209:23–7.CrossRefPubMed
13.
go back to reference Nair L, Bhasin VK. Cure with cisplatin (II) or murine malaria infection and in vitro inhibition of a chloroquine-resistant Plasmodium falciparum isolate. Jpn J Med Sci Biol. 1994;47:241–52.CrossRefPubMed Nair L, Bhasin VK. Cure with cisplatin (II) or murine malaria infection and in vitro inhibition of a chloroquine-resistant Plasmodium falciparum isolate. Jpn J Med Sci Biol. 1994;47:241–52.CrossRefPubMed
14.
go back to reference Kreidenweiss A. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar J. 2008;7:187.PubMedCentralCrossRefPubMed Kreidenweiss A. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar J. 2008;7:187.PubMedCentralCrossRefPubMed
16.
go back to reference Moll K, Ljungstrom I, Perlmann H, Scherf A, Mats Wahlgren M. Methods in Malaria Research, 5th edn. Virginia: MR4/ATCC; 2008. Moll K, Ljungstrom I, Perlmann H, Scherf A, Mats Wahlgren M. Methods in Malaria Research, 5th edn. Virginia: MR4/ATCC; 2008.
17.
go back to reference Shapiro HM, Mandy F. Cytometry in malaria: moving beyond Giemsa. Cytom A. 2007;71:643–5.CrossRef Shapiro HM, Mandy F. Cytometry in malaria: moving beyond Giemsa. Cytom A. 2007;71:643–5.CrossRef
18.
go back to reference Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.CrossRefPubMed Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.CrossRefPubMed
19.
go back to reference Chou TC. The median-effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TC, Rideout DC, editors. Synergism and antagonism in chemotherapy. San Diego: Academic Press; 1991. Chou TC. The median-effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TC, Rideout DC, editors. Synergism and antagonism in chemotherapy. San Diego: Academic Press; 1991.
20.
go back to reference Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;137:13–21.CrossRefPubMed Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;137:13–21.CrossRefPubMed
21.
go back to reference Fil’chenkov OO, Zavelevych MP, Khranovs’ka NM, Zaïka LA, Potopal’s’ky AI. Modified alkaloids from Chelidonium majus L. induce G2/M arrest, caspase-3 activation, and apoptosis in human acute lymphoblastic leukemia MT-4 cells. Ukr Biokhim Zh 2006;78:81–7. Fil’chenkov OO, Zavelevych MP, Khranovs’ka NM, Zaïka LA, Potopal’s’ky AI. Modified alkaloids from Chelidonium majus L. induce G2/M arrest, caspase-3 activation, and apoptosis in human acute lymphoblastic leukemia MT-4 cells. Ukr Biokhim Zh 2006;78:81–7.
22.
go back to reference Bell A. Microtubule inhibitors as potential antimalarial agents. Parasitol Today. 1998;14:234–40.CrossRefPubMed Bell A. Microtubule inhibitors as potential antimalarial agents. Parasitol Today. 1998;14:234–40.CrossRefPubMed
23.
go back to reference Bejon PA, Bannister LH, Fowler RE, Fookes RE, Webb SE, Wright A, et al. A role for microtubules in Plasmodium falciparum merozoite invasion. Parasitology. 1997;114:1–6.CrossRefPubMed Bejon PA, Bannister LH, Fowler RE, Fookes RE, Webb SE, Wright A, et al. A role for microtubules in Plasmodium falciparum merozoite invasion. Parasitology. 1997;114:1–6.CrossRefPubMed
25.
go back to reference Delves CJ, Ridley RG, Goman M, Holloway SP, Hyde JE, Scaife JG. Cloning of a beta-tubulin gene from Plasmodium falciparum. Mol Microbiol. 1989;3:1511–9.CrossRefPubMed Delves CJ, Ridley RG, Goman M, Holloway SP, Hyde JE, Scaife JG. Cloning of a beta-tubulin gene from Plasmodium falciparum. Mol Microbiol. 1989;3:1511–9.CrossRefPubMed
26.
go back to reference Holloway SP, Sims PF, Delves CJ, Scaife JG, Hyde JE. Isolation of alpha-tubulin genes from the human malaria parasite, Plasmodium falciparum: sequence analysis of alpha-tubulin. Mol Microbiol. 1989;3:1501–10.CrossRefPubMed Holloway SP, Sims PF, Delves CJ, Scaife JG, Hyde JE. Isolation of alpha-tubulin genes from the human malaria parasite, Plasmodium falciparum: sequence analysis of alpha-tubulin. Mol Microbiol. 1989;3:1501–10.CrossRefPubMed
27.
go back to reference Holloway SP, Gerousis M, Delves CJ, Sims PF, Scaife JG, Hyde JE. The tubulin genes of the human malaria parasite Plasmodium falciparum, their chromosomal location and sequence analysis of the alpha-tubulin II gene. Mol Biochem Parasitol. 1990;43:257–70.CrossRefPubMed Holloway SP, Gerousis M, Delves CJ, Sims PF, Scaife JG, Hyde JE. The tubulin genes of the human malaria parasite Plasmodium falciparum, their chromosomal location and sequence analysis of the alpha-tubulin II gene. Mol Biochem Parasitol. 1990;43:257–70.CrossRefPubMed
28.
go back to reference Wesseling JG, Dirks R, Smits MA, Schoenmakers JG. Nucleotide sequence and expression of a beta-tubulin gene from Plasmodium falciparum, a malarial parasite of man. Gene. 1989;83:301–9.CrossRefPubMed Wesseling JG, Dirks R, Smits MA, Schoenmakers JG. Nucleotide sequence and expression of a beta-tubulin gene from Plasmodium falciparum, a malarial parasite of man. Gene. 1989;83:301–9.CrossRefPubMed
29.
go back to reference Winstanley PA, Mberu EK, Szwandt IS, Breckenridge AM, Watkins WM. In vitro activities of novel antifolate drug combinations against Plasmodium falciparum and human granulocyte CFUs. Antimicrob Agents Chemother. 1995;39:948–52.PubMedCentralCrossRefPubMed Winstanley PA, Mberu EK, Szwandt IS, Breckenridge AM, Watkins WM. In vitro activities of novel antifolate drug combinations against Plasmodium falciparum and human granulocyte CFUs. Antimicrob Agents Chemother. 1995;39:948–52.PubMedCentralCrossRefPubMed
30.
go back to reference Ohrt C, Willingmyre GD, Lee P, Knirsch C, Milhous W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob Agents Chemother. 2002;46:2518–24.PubMedCentralCrossRefPubMed Ohrt C, Willingmyre GD, Lee P, Knirsch C, Milhous W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob Agents Chemother. 2002;46:2518–24.PubMedCentralCrossRefPubMed
31.
go back to reference Canfield CJ, Pudney M, Gutteridge WE. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp Parasitol. 1995;80:373–81.CrossRefPubMed Canfield CJ, Pudney M, Gutteridge WE. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp Parasitol. 1995;80:373–81.CrossRefPubMed
32.
go back to reference Co EM, Dennull RA, Reinbold DD, Waters NC, Johnson JD. Assessment of malaria in vitro drug combination screening and mixed-strain infections using the malaria Sybr green I-based fluorescence assay. Antimicrob Agents Chemother. 2009;53:2557–63.PubMedCentralCrossRefPubMed Co EM, Dennull RA, Reinbold DD, Waters NC, Johnson JD. Assessment of malaria in vitro drug combination screening and mixed-strain infections using the malaria Sybr green I-based fluorescence assay. Antimicrob Agents Chemother. 2009;53:2557–63.PubMedCentralCrossRefPubMed
33.
go back to reference Agarwal D, Sharma M, Dixit SK, Dutta RK, Singh AK, Gupta RD, et al. In vitro synergistic effect of fluoroquinolone analogues in combination with artemisinin against Plasmodium falciparum; their antiplasmodial action in rodent malaria model. Malar J. 2015;14:48.PubMedCentralCrossRefPubMed Agarwal D, Sharma M, Dixit SK, Dutta RK, Singh AK, Gupta RD, et al. In vitro synergistic effect of fluoroquinolone analogues in combination with artemisinin against Plasmodium falciparum; their antiplasmodial action in rodent malaria model. Malar J. 2015;14:48.PubMedCentralCrossRefPubMed
34.
go back to reference He Z, Chen L, You J, Qin L, Chen X. In vitro interactions between antiretroviral protease inhibitors and artemisinin endoperoxides against Plasmodium falciparum. Int J Antimicrob Agents. 2009;35:191–3.CrossRefPubMed He Z, Chen L, You J, Qin L, Chen X. In vitro interactions between antiretroviral protease inhibitors and artemisinin endoperoxides against Plasmodium falciparum. Int J Antimicrob Agents. 2009;35:191–3.CrossRefPubMed
35.
go back to reference Bhattacharya A, Mishra LC, Bhasin VK. In vitro activity of artemisinin in combination with clotrimazole or heat-treated amphotericin B against Plasmodium falciparum. Am J Trop Med Hyg. 2008;78:721–8.PubMed Bhattacharya A, Mishra LC, Bhasin VK. In vitro activity of artemisinin in combination with clotrimazole or heat-treated amphotericin B against Plasmodium falciparum. Am J Trop Med Hyg. 2008;78:721–8.PubMed
36.
go back to reference Nakornchai S, Konthiang P. Activity of azithromycin or erythromycin in combination with antimalarial drugs against multidrug-resistant Plasmodium falciparum in vitro. Acta Trop. 2006;100:185–91.CrossRefPubMed Nakornchai S, Konthiang P. Activity of azithromycin or erythromycin in combination with antimalarial drugs against multidrug-resistant Plasmodium falciparum in vitro. Acta Trop. 2006;100:185–91.CrossRefPubMed
37.
go back to reference Hempelmann E. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol Res. 2007;100:671–6.CrossRefPubMed Hempelmann E. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol Res. 2007;100:671–6.CrossRefPubMed
38.
go back to reference Ferone R, Burchall JJ, Hitchings GH. Plasmodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates. Mol Pharmacol. 1969;5:49–59.PubMed Ferone R, Burchall JJ, Hitchings GH. Plasmodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates. Mol Pharmacol. 1969;5:49–59.PubMed
39.
go back to reference Schnell JR, Dyson HJ. Wright PE Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct. 2004;33:119–40.CrossRefPubMed Schnell JR, Dyson HJ. Wright PE Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct. 2004;33:119–40.CrossRefPubMed
41.
go back to reference Schellenberg KA, Coatney GR. The influence of antimalarial drugs on nucleic acid synthesis in Plasmodium gallinaceum and Plasmodium berghei. Biochem Pharmacol. 1961;6:143–52.CrossRefPubMed Schellenberg KA, Coatney GR. The influence of antimalarial drugs on nucleic acid synthesis in Plasmodium gallinaceum and Plasmodium berghei. Biochem Pharmacol. 1961;6:143–52.CrossRefPubMed
42.
go back to reference Gutteridge WE, Trigg PI. Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro. Parasitology. 1971;62:431–44.CrossRefPubMed Gutteridge WE, Trigg PI. Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro. Parasitology. 1971;62:431–44.CrossRefPubMed
43.
go back to reference Newbold CI, Boyle DB, Smith CC, Brown KN. Stage specific protein and nucleic acid synthesis during the asexual cycle of the rodent malaria Plasmodium chabaudi. Mol Biochem Parasitol. 1982;5:33–44.CrossRefPubMed Newbold CI, Boyle DB, Smith CC, Brown KN. Stage specific protein and nucleic acid synthesis during the asexual cycle of the rodent malaria Plasmodium chabaudi. Mol Biochem Parasitol. 1982;5:33–44.CrossRefPubMed
44.
go back to reference Hyde JE. The dihydrofolate reductase–thymidylate synthetase gene in the drug resistance of malaria parasites. Pharmacol Ther. 1990;48:45–59.CrossRefPubMed Hyde JE. The dihydrofolate reductase–thymidylate synthetase gene in the drug resistance of malaria parasites. Pharmacol Ther. 1990;48:45–59.CrossRefPubMed
45.
go back to reference Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003;424:957–61.CrossRefPubMed Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003;424:957–61.CrossRefPubMed
46.
go back to reference Arnou B, Montigny C, Morth JP, Nissen P, Jaxel C, Møller JV, et al. The Plasmodium falciparum Ca(2+)-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans. 2011;39:823–31.CrossRefPubMed Arnou B, Montigny C, Morth JP, Nissen P, Jaxel C, Møller JV, et al. The Plasmodium falciparum Ca(2+)-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans. 2011;39:823–31.CrossRefPubMed
47.
go back to reference Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002;32:1655–60.CrossRefPubMed Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002;32:1655–60.CrossRefPubMed
48.
49.
go back to reference Meshnick SR, Little B, Yang YZ. Alkylation of proteins by artemisinin. Biochem Pharm. 1994;48:569–73.PubMed Meshnick SR, Little B, Yang YZ. Alkylation of proteins by artemisinin. Biochem Pharm. 1994;48:569–73.PubMed
Metadata
Title
Anti-malarial effect of semi-synthetic drug amitozyn
Authors
Sergey O. Tcherniuk
Olga Chesnokova
Irina V. Oleinikov
Anatoly I. Potopalsky
Andrew V. Oleinikov
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0952-4

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.