Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Research

USP5 facilitates bladder cancer progression by stabilizing the c-Jun protein

Authors: Hui-hui Zhang, An-qi Zhang, Peng Peng, Liang Huang, Cai-ying Liu, Xin-rui Nie, De-fu Hou, Xia Zhang, Shang-ze Li

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Background

Bladder cancer is the second most common genitourinary malignancy worldwide. The death rate of bladder cancer has increased every year. However, the molecular mechanism of bladder cancer is not sufficiently studied. Deubiquitinating enzymes (DUBs) play an important role in carcinogenesis. Several studies have demonstrated that USP5 associated with malignancy and pathological progression in hepatocellular carcinoma, colorectal and non-small cell lung cancer. However, the role of USP5 in bladder cancer need to be explored.

Methods

The USP5 expression was analysed using the web server GEPIA. To explore USP5 function in bladder cancer, we constructed USP5-knockout cell lines in T24 cells. A FLAG-USP5 (WT USP5) plasmid and a plasmid FLAG-USP5 C335A (catalytic-inactive mutant) used to overexpress USP5 in EJ cells. CCK8, colony formation, transwell and scratch assays were used to assess cell viability, proliferation and migration. RNA sequencing (RNA-seq) and dual-luciferase reporter assays were performed to screen the pathway. Coimmunoprecipitation and immunofluorescence were used to explore the interaction between USP5 and c-Jun. Cycloheximide (CHX) chase assays were performed to establish the effect of USP5 on c-Jun stability. Xenograft mouse model was used to study the role of USP5 in bladder cancer.

Results

USP5 expression is increased in bladder cancer patients. Genetic ablation of USP5 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. RNA-seq and luciferase pathway screening showed that USP5 activated JNK signalling, and we identified the interaction between USP5 and c-Jun. USP5 was found to activate c-Jun by inhibiting its ubiquitination.

Conclusions

Our results show that high USP5 expression promotes bladder cancer progression by stabilizing c-Jun and that USP5 is a potential therapeutic target in bladder cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed
2.
3.
go back to reference Charlton ME, Adamo MP, Sun L, Deorah S. Bladder cancer collaborative stage variables and their data quality, usage, and clinical implications: a review of SEER data, 2004–2010. Cancer. 2014;120(0 23):3815–25.CrossRefPubMed Charlton ME, Adamo MP, Sun L, Deorah S. Bladder cancer collaborative stage variables and their data quality, usage, and clinical implications: a review of SEER data, 2004–2010. Cancer. 2014;120(0 23):3815–25.CrossRefPubMed
4.
5.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.CrossRefPubMed Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.CrossRefPubMed
6.
go back to reference Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014;171(1):24–37.CrossRefPubMed Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014;171(1):24–37.CrossRefPubMed
7.
go back to reference Zhou YY, Li Y, Jiang WQ, Zhou LF. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 2015, 35(3). Zhou YY, Li Y, Jiang WQ, Zhou LF. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 2015, 35(3).
8.
go back to reference Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in inflammatory skin disorders and Cancer. Cells 2020, 9(4). Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in inflammatory skin disorders and Cancer. Cells 2020, 9(4).
9.
go back to reference Gkouveris I, Nikitakis NG. Role of JNK signaling in oral cancer: a mini review. Tumour Biol. 2017;39(6):1010428317711659.CrossRefPubMed Gkouveris I, Nikitakis NG. Role of JNK signaling in oral cancer: a mini review. Tumour Biol. 2017;39(6):1010428317711659.CrossRefPubMed
10.
go back to reference Ni Z, Sun P, Zheng J, Wu M, Yang C, Cheng M, Yin M, Cui C, Wang G, Yuan L, et al. JNK Signaling promotes bladder Cancer Immune escape by regulating METTL3-Mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022;82(9):1789–802.CrossRefPubMed Ni Z, Sun P, Zheng J, Wu M, Yang C, Cheng M, Yin M, Cui C, Wang G, Yuan L, et al. JNK Signaling promotes bladder Cancer Immune escape by regulating METTL3-Mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022;82(9):1789–802.CrossRefPubMed
11.
go back to reference Corteggio A, Urraro C, Roperto S, Roperto F, Borzacchiello G. Phosphatidylinositol-3-kinase-AKT pathway, phospho-JUN and phospho-JNK expression in spontaneously arising bovine urinary bladder tumours. J Comp Pathol. 2010;143(2–3):173–8.CrossRefPubMed Corteggio A, Urraro C, Roperto S, Roperto F, Borzacchiello G. Phosphatidylinositol-3-kinase-AKT pathway, phospho-JUN and phospho-JNK expression in spontaneously arising bovine urinary bladder tumours. J Comp Pathol. 2010;143(2–3):173–8.CrossRefPubMed
12.
go back to reference Pan CW, Liu H, Zhao Y, Qian C, Wang L, Qi J. JNK2 downregulation promotes tumorigenesis and chemoresistance by decreasing p53 stability in bladder cancer. Oncotarget. 2016;7(23):35119–31.CrossRefPubMedPubMedCentral Pan CW, Liu H, Zhao Y, Qian C, Wang L, Qi J. JNK2 downregulation promotes tumorigenesis and chemoresistance by decreasing p53 stability in bladder cancer. Oncotarget. 2016;7(23):35119–31.CrossRefPubMedPubMedCentral
13.
go back to reference Ji L, Zhong B, Jiang X, Mao F, Liu G, Song B, Wang CY, Jiao Y, Wang JP, Xu ZB, et al. Actein induces autophagy and apoptosis in human bladder cancer by potentiating ROS/JNK and inhibiting AKT pathways. Oncotarget. 2017;8(68):112498–515.CrossRefPubMedPubMedCentral Ji L, Zhong B, Jiang X, Mao F, Liu G, Song B, Wang CY, Jiao Y, Wang JP, Xu ZB, et al. Actein induces autophagy and apoptosis in human bladder cancer by potentiating ROS/JNK and inhibiting AKT pathways. Oncotarget. 2017;8(68):112498–515.CrossRefPubMedPubMedCentral
14.
go back to reference Hua X, Xiang D, Guo M, Qian X, Chen R, Li T, Tian Z, Xu J, Huang C, Xie Q, et al. Induction of RAC1 protein translation and MKK7/JNK-dependent autophagy through dicer/miR-145/SOX2/miR-365a axis contributes to isorhapontigenin (ISO) inhibition of human bladder cancer invasion. Cell Death Dis. 2022;13(8):753.CrossRefPubMedPubMedCentral Hua X, Xiang D, Guo M, Qian X, Chen R, Li T, Tian Z, Xu J, Huang C, Xie Q, et al. Induction of RAC1 protein translation and MKK7/JNK-dependent autophagy through dicer/miR-145/SOX2/miR-365a axis contributes to isorhapontigenin (ISO) inhibition of human bladder cancer invasion. Cell Death Dis. 2022;13(8):753.CrossRefPubMedPubMedCentral
15.
go back to reference Lee EH, Chung JW, Sung E, Yoon BH, Jeon M, Park S, Chun SY, Lee JN, Kim BS, Kim HT et al. Anti-metastatic effect of pyruvate dehydrogenase kinase 4 inhibition in bladder Cancer via the ERK, SRC, and JNK pathways. Int J Mol Sci 2022, 23(21). Lee EH, Chung JW, Sung E, Yoon BH, Jeon M, Park S, Chun SY, Lee JN, Kim BS, Kim HT et al. Anti-metastatic effect of pyruvate dehydrogenase kinase 4 inhibition in bladder Cancer via the ERK, SRC, and JNK pathways. Int J Mol Sci 2022, 23(21).
16.
go back to reference Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: local switch or remote command? Biochim Biophys Acta Rev Cancer. 2019;1872(1):11–23.CrossRefPubMed Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: local switch or remote command? Biochim Biophys Acta Rev Cancer. 2019;1872(1):11–23.CrossRefPubMed
17.
go back to reference Hao P, Zhang J, Fang S, Jia M, Xian X, Yan S, Wang Y, Ren Q, Yue F, Cui H. Lipocalin-2 inhibits pancreatic cancer stemness via the AKT/c-Jun pathway. Hum Cell. 2022;35(5):1475–86.CrossRefPubMed Hao P, Zhang J, Fang S, Jia M, Xian X, Yan S, Wang Y, Ren Q, Yue F, Cui H. Lipocalin-2 inhibits pancreatic cancer stemness via the AKT/c-Jun pathway. Hum Cell. 2022;35(5):1475–86.CrossRefPubMed
18.
go back to reference Xiaohua Z, Xie Y, Huang W, Chen Z, Guo S. NAP1L1 promotes tumor proliferation through HDGF/C-JUN signaling in ovarian cancer. BMC Cancer. 2022;22(1):339.CrossRef Xiaohua Z, Xie Y, Huang W, Chen Z, Guo S. NAP1L1 promotes tumor proliferation through HDGF/C-JUN signaling in ovarian cancer. BMC Cancer. 2022;22(1):339.CrossRef
19.
go back to reference Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994;76(6):1025–37.CrossRefPubMed Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994;76(6):1025–37.CrossRefPubMed
20.
go back to reference Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC, Karin M. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase itch. Science. 2004;306(5694):271–5.CrossRefPubMed Gao M, Labuda T, Xia Y, Gallagher E, Fang D, Liu YC, Karin M. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase itch. Science. 2004;306(5694):271–5.CrossRefPubMed
21.
go back to reference Gu Q, Bowden GT, Normolle D, Sun Y. SAG/ROC2 E3 ligase regulates skin carcinogenesis by stage-dependent targeting of c-Jun/AP1 and IkappaB-alpha/NF-kappaB. J Cell Biol. 2007;178(6):1009–23.CrossRefPubMedPubMedCentral Gu Q, Bowden GT, Normolle D, Sun Y. SAG/ROC2 E3 ligase regulates skin carcinogenesis by stage-dependent targeting of c-Jun/AP1 and IkappaB-alpha/NF-kappaB. J Cell Biol. 2007;178(6):1009–23.CrossRefPubMedPubMedCentral
22.
go back to reference Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005;123(5):773–86.CrossRefPubMed Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005;123(5):773–86.CrossRefPubMed
23.
go back to reference Ansari-Lari MA, Muzny DM, Lu J, Lu F, Lilley CE, Spanos S, Malley T, Gibbs RA. A gene-rich cluster between the CD4 and triosephosphate isomerase genes at human chromosome 12p13. Genome Res. 1996;6(4):314–26.CrossRefPubMed Ansari-Lari MA, Muzny DM, Lu J, Lu F, Lilley CE, Spanos S, Malley T, Gibbs RA. A gene-rich cluster between the CD4 and triosephosphate isomerase genes at human chromosome 12p13. Genome Res. 1996;6(4):314–26.CrossRefPubMed
24.
go back to reference Meng J, Ai X, Lei Y, Zhong W, Qian B, Qiao K, Wang X, Zhou B, Wang H, Huai L, et al. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma. Theranostics. 2019;9(2):573–87.CrossRefPubMedPubMedCentral Meng J, Ai X, Lei Y, Zhong W, Qian B, Qiao K, Wang X, Zhou B, Wang H, Huai L, et al. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma. Theranostics. 2019;9(2):573–87.CrossRefPubMedPubMedCentral
25.
go back to reference Wierstra I. FOXM1 (forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res. 2013;119:191–419.CrossRefPubMed Wierstra I. FOXM1 (forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res. 2013;119:191–419.CrossRefPubMed
26.
go back to reference Ma X, Qi W, Pan H, Yang F, Deng J. Overexpression of USP5 contributes to tumorigenesis in non-small cell lung cancer via the stabilization of β-catenin protein. Am J Cancer Res. 2018;8(11):2284–95.PubMedPubMedCentral Ma X, Qi W, Pan H, Yang F, Deng J. Overexpression of USP5 contributes to tumorigenesis in non-small cell lung cancer via the stabilization of β-catenin protein. Am J Cancer Res. 2018;8(11):2284–95.PubMedPubMedCentral
27.
go back to reference Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7.CrossRefPubMed Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7.CrossRefPubMed
29.
go back to reference Zhang HH, Li SZ, Zhang ZY, Hu XM, Hou PN, Gao L, Du RL, Zhang XD. Nemo-like kinase is critical for p53 stabilization and function in response to DNA damage. Cell Death Differ. 2014;21(10):1656–63.CrossRefPubMedPubMedCentral Zhang HH, Li SZ, Zhang ZY, Hu XM, Hou PN, Gao L, Du RL, Zhang XD. Nemo-like kinase is critical for p53 stabilization and function in response to DNA damage. Cell Death Differ. 2014;21(10):1656–63.CrossRefPubMedPubMedCentral
30.
go back to reference Ning F, Xin H, Liu J, Lv C, Xu X, Wang M, Wang Y, Zhang W, Zhang X. Structure and function of USP5: insight into physiological and pathophysiological roles. Pharmacol Res. 2020;157:104557.CrossRefPubMed Ning F, Xin H, Liu J, Lv C, Xu X, Wang M, Wang Y, Zhang W, Zhang X. Structure and function of USP5: insight into physiological and pathophysiological roles. Pharmacol Res. 2020;157:104557.CrossRefPubMed
31.
go back to reference Lee EH, Kim HT, Chun SY, Chung JW, Choi SH, Lee JN, Kim BS, Yoo ES, Kwon TG, Kim TH, et al. Role of the JNK pathway in bladder Cancer. Onco Targets Ther. 2022;15:963–71.CrossRefPubMedPubMedCentral Lee EH, Kim HT, Chun SY, Chung JW, Choi SH, Lee JN, Kim BS, Yoo ES, Kwon TG, Kim TH, et al. Role of the JNK pathway in bladder Cancer. Onco Targets Ther. 2022;15:963–71.CrossRefPubMedPubMedCentral
32.
go back to reference Xia Y, Wang J, Xu S, Johnson GL, Hunter T, Lu Z. MEKK1 mediates the ubiquitination and degradation of c-Jun in response to osmotic stress. Mol Cell Biol. 2007;27(2):510–7.CrossRefPubMed Xia Y, Wang J, Xu S, Johnson GL, Hunter T, Lu Z. MEKK1 mediates the ubiquitination and degradation of c-Jun in response to osmotic stress. Mol Cell Biol. 2007;27(2):510–7.CrossRefPubMed
33.
go back to reference Li L, Yang H, He Y, Li T, Feng J, Chen W, Ao L, Shi X, Lin Y, Liu H et al. Ubiquitin-specific protease USP6 regulates the Stability of the c-Jun protein. Mol Cell Biol 2018, 38(2). Li L, Yang H, He Y, Li T, Feng J, Chen W, Ao L, Shi X, Lin Y, Liu H et al. Ubiquitin-specific protease USP6 regulates the Stability of the c-Jun protein. Mol Cell Biol 2018, 38(2).
34.
go back to reference Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem. 2009;284(8):5030–41.CrossRefPubMed Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem. 2009;284(8):5030–41.CrossRefPubMed
35.
go back to reference Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 2010;70(22):9265–76.CrossRefPubMed Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 2010;70(22):9265–76.CrossRefPubMed
36.
go back to reference Kapuria V, Peterson LF, Showalter HD, Kirchhoff PD, Talpaz M, Donato NJ. Protein cross-linking as a novel mechanism of action of a ubiquitin-activating enzyme inhibitor with anti-tumor activity. Biochem Pharmacol. 2011;82(4):341–9.CrossRefPubMed Kapuria V, Peterson LF, Showalter HD, Kirchhoff PD, Talpaz M, Donato NJ. Protein cross-linking as a novel mechanism of action of a ubiquitin-activating enzyme inhibitor with anti-tumor activity. Biochem Pharmacol. 2011;82(4):341–9.CrossRefPubMed
Metadata
Title
USP5 facilitates bladder cancer progression by stabilizing the c-Jun protein
Authors
Hui-hui Zhang
An-qi Zhang
Peng Peng
Liang Huang
Cai-ying Liu
Xin-rui Nie
De-fu Hou
Xia Zhang
Shang-ze Li
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03222-7

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine