Skip to main content
Top
Published in: Cancer Cell International 1/2023

Open Access 01-12-2023 | NSCLC | Review

Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review

Authors: Mohammad Saleh Sadeghi, Mohadeseh lotfi, Narges Soltani, Elahe Farmani, Jaime Humberto Ortiz Fernandez, Sheida Akhlaghitehrani, Safaa Hallol Mohammed, Saman Yasamineh, Hesam Ghafouri Kalajahi, Omid Gholizadeh

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.

Graphical abstract

Literature
1.
go back to reference Yuan M, et al. Signal pathways and precision therapy of small-cell Lung cancer. Signal Transduct Target Therapy. 2022;7(1):1–18. Yuan M, et al. Signal pathways and precision therapy of small-cell Lung cancer. Signal Transduct Target Therapy. 2022;7(1):1–18.
2.
3.
go back to reference Tammemägi MC, et al. USPSTF2013 versus PLCOm2012 Lung cancer screening eligibility criteria (International Lung Screening Trial): interim analysis of a prospective cohort study. Lancet Oncol. 2022;23(1):138–48.PubMedPubMedCentralCrossRef Tammemägi MC, et al. USPSTF2013 versus PLCOm2012 Lung cancer screening eligibility criteria (International Lung Screening Trial): interim analysis of a prospective cohort study. Lancet Oncol. 2022;23(1):138–48.PubMedPubMedCentralCrossRef
4.
go back to reference Dwivedi K, et al. An explainable AI-driven biomarker discovery framework for Non-small Cell Lung Cancer classification. Comput Biol Med. 2023;153:106544.PubMedCrossRef Dwivedi K, et al. An explainable AI-driven biomarker discovery framework for Non-small Cell Lung Cancer classification. Comput Biol Med. 2023;153:106544.PubMedCrossRef
5.
go back to reference Thandra KC, et al. Epidemiology of Lung cancer. Contemp Oncology/Współczesna Onkologia. 2021;25(1):45–52.PubMedCrossRef Thandra KC, et al. Epidemiology of Lung cancer. Contemp Oncology/Współczesna Onkologia. 2021;25(1):45–52.PubMedCrossRef
7.
go back to reference Rudin CM, et al. Small-cell Lung cancer. Nat Reviews Disease Primers. 2021;7(1):1–20. Rudin CM, et al. Small-cell Lung cancer. Nat Reviews Disease Primers. 2021;7(1):1–20.
8.
go back to reference Krist AH, et al. Screening for Lung cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(10):962–70.PubMedCrossRef Krist AH, et al. Screening for Lung cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(10):962–70.PubMedCrossRef
9.
go back to reference Hui Z, et al. Single-cell profiling of immune cells after neoadjuvant pembrolizumab and chemotherapy in IIIA non-small cell Lung cancer (NSCLC). Cell Death Dis. 2022;13(7):1–18.CrossRef Hui Z, et al. Single-cell profiling of immune cells after neoadjuvant pembrolizumab and chemotherapy in IIIA non-small cell Lung cancer (NSCLC). Cell Death Dis. 2022;13(7):1–18.CrossRef
10.
go back to reference Black RC, Khurshid H. NSCLC: an update of driver mutations, their role in pathogenesis and clinical significance. RI Med J. 2015;98(10):25–8. Black RC, Khurshid H. NSCLC: an update of driver mutations, their role in pathogenesis and clinical significance. RI Med J. 2015;98(10):25–8.
11.
go back to reference Shames DS, Wistuba II. The evolving genomic classification of Lung cancer. J Pathol. 2014;232(2):121–33.PubMedCrossRef Shames DS, Wistuba II. The evolving genomic classification of Lung cancer. J Pathol. 2014;232(2):121–33.PubMedCrossRef
12.
go back to reference Meador CB, Sequist LV, Piotrowska Z. Targeting EGFR exon 20 insertions in non–small cell Lung Cancer: recent advances and clinical UpdatesTargeting EGFR exon 20 insertions in NSCLC. Cancer Discov. 2021;11(9):2145–57.PubMedPubMedCentralCrossRef Meador CB, Sequist LV, Piotrowska Z. Targeting EGFR exon 20 insertions in non–small cell Lung Cancer: recent advances and clinical UpdatesTargeting EGFR exon 20 insertions in NSCLC. Cancer Discov. 2021;11(9):2145–57.PubMedPubMedCentralCrossRef
13.
go back to reference Lim TKH, et al. KRAS G12C in advanced NSCLC: prevalence, co-mutations, and testing. Lung Cancer. 2023;184:107293.PubMedCrossRef Lim TKH, et al. KRAS G12C in advanced NSCLC: prevalence, co-mutations, and testing. Lung Cancer. 2023;184:107293.PubMedCrossRef
14.
go back to reference Martín-Sánchez JC, et al. Projections in breast and Lung cancer mortality among women: a bayesian analysis of 52 countries worldwide. Cancer Res. 2018;78(15):4436–42.PubMedCrossRef Martín-Sánchez JC, et al. Projections in breast and Lung cancer mortality among women: a bayesian analysis of 52 countries worldwide. Cancer Res. 2018;78(15):4436–42.PubMedCrossRef
15.
go back to reference Weiss G, et al. EGFR regulation by microRNA in Lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol. 2008;19(6):1053–9.PubMedCrossRef Weiss G, et al. EGFR regulation by microRNA in Lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol. 2008;19(6):1053–9.PubMedCrossRef
16.
go back to reference Yang C, et al. LncRNA PCAT6 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of lung adenocarcinoma cell by targeting miR-545-3p. Mol Biol Rep. 2023;50(4):3557–68.PubMedPubMedCentralCrossRef Yang C, et al. LncRNA PCAT6 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of lung adenocarcinoma cell by targeting miR-545-3p. Mol Biol Rep. 2023;50(4):3557–68.PubMedPubMedCentralCrossRef
17.
go back to reference Kaźmierczak D, et al. Elevated expression of mir-494-3p is associated with resistance to osimertinib in EGFR T790M-positive non-small cell Lung cancer. Translational Lung Cancer Research. 2022;11(5):722.PubMedPubMedCentralCrossRef Kaźmierczak D, et al. Elevated expression of mir-494-3p is associated with resistance to osimertinib in EGFR T790M-positive non-small cell Lung cancer. Translational Lung Cancer Research. 2022;11(5):722.PubMedPubMedCentralCrossRef
18.
go back to reference Lai Y, et al. Mir-100-5p confers resistance to ALK tyrosine kinase inhibitors Crizotinib and Lorlatinib in EML4-ALK positive NSCLC. Biochem Biophys Res Commun. 2019;511(2):260–5.PubMedCrossRef Lai Y, et al. Mir-100-5p confers resistance to ALK tyrosine kinase inhibitors Crizotinib and Lorlatinib in EML4-ALK positive NSCLC. Biochem Biophys Res Commun. 2019;511(2):260–5.PubMedCrossRef
19.
go back to reference Gao HX et al. miR-200c regulates crizotinib-resistant ALK-positive lung cancer cells by reversing epithelial-mesenchymal transition via targeting ZEB1 Molecular medicine reports, 2016. 14(5): p. 4135–43. Gao HX et al. miR-200c regulates crizotinib-resistant ALK-positive lung cancer cells by reversing epithelial-mesenchymal transition via targeting ZEB1 Molecular medicine reports, 2016. 14(5): p. 4135–43.
20.
go back to reference Yan C, et al. MiR-760 suppresses non-small cell Lung cancer proliferation and Metastasis by targeting ROS1. Environ Sci Pollut Res. 2018;25:18385–91.CrossRef Yan C, et al. MiR-760 suppresses non-small cell Lung cancer proliferation and Metastasis by targeting ROS1. Environ Sci Pollut Res. 2018;25:18385–91.CrossRef
21.
go back to reference Ma Z, et al. MiR-181a-5p inhibits cell proliferation and migration by targeting Kras in non-small cell Lung cancer A549 cells. Acta Biochim Biophys Sin. 2015;47(8):630–8.PubMedCrossRef Ma Z, et al. MiR-181a-5p inhibits cell proliferation and migration by targeting Kras in non-small cell Lung cancer A549 cells. Acta Biochim Biophys Sin. 2015;47(8):630–8.PubMedCrossRef
22.
go back to reference Jin H, et al. Restoration of mutant K-Ras repressed miR-199b inhibits K-Ras mutant non-small cell Lung cancer progression. J Experimental Clin Cancer Res. 2019;38:1–11.CrossRef Jin H, et al. Restoration of mutant K-Ras repressed miR-199b inhibits K-Ras mutant non-small cell Lung cancer progression. J Experimental Clin Cancer Res. 2019;38:1–11.CrossRef
24.
go back to reference Fan Q, et al. MiR-193a-3p is an important tumour suppressor in Lung cancer and directly targets KRAS. Cell Physiol Biochem. 2017;44(4):1311–24.PubMedCrossRef Fan Q, et al. MiR-193a-3p is an important tumour suppressor in Lung cancer and directly targets KRAS. Cell Physiol Biochem. 2017;44(4):1311–24.PubMedCrossRef
25.
go back to reference Spitschak A, et al. MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer. 2017;16(1):1–16.CrossRef Spitschak A, et al. MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer. 2017;16(1):1–16.CrossRef
26.
go back to reference Lasithiotaki I, et al. Aberrant expression of miR-21, miR-376c and miR-145 and their target host genes in Merkel cell polyomavirus-positive non-small cell Lung cancer. Oncotarget. 2017;8(68):112371–83.PubMedCrossRef Lasithiotaki I, et al. Aberrant expression of miR-21, miR-376c and miR-145 and their target host genes in Merkel cell polyomavirus-positive non-small cell Lung cancer. Oncotarget. 2017;8(68):112371–83.PubMedCrossRef
27.
go back to reference Cui J, et al. HDAC inhibitor ITF2357 reduces resistance of mutant-KRAS non-small cell Lung cancer to pemetrexed through a HDAC2/miR-130a-3p-dependent mechanism. J Translational Med. 2023;21(1):1–16.CrossRef Cui J, et al. HDAC inhibitor ITF2357 reduces resistance of mutant-KRAS non-small cell Lung cancer to pemetrexed through a HDAC2/miR-130a-3p-dependent mechanism. J Translational Med. 2023;21(1):1–16.CrossRef
28.
go back to reference Bogatyrova O, et al. FGFR1 overexpression in non-small cell Lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. Eur J Cancer. 2021;151:136–49.PubMedCrossRef Bogatyrova O, et al. FGFR1 overexpression in non-small cell Lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. Eur J Cancer. 2021;151:136–49.PubMedCrossRef
29.
go back to reference Huang Q, et al. miR–497 inhibits the proliferation and migration of A549 non–small–cell Lung cancer cells by targeting FGFR1. Mol Med Rep. 2019;20(4):3959–67.PubMed Huang Q, et al. miR–497 inhibits the proliferation and migration of A549 non–small–cell Lung cancer cells by targeting FGFR1. Mol Med Rep. 2019;20(4):3959–67.PubMed
31.
go back to reference Sun Z, Zhang T, Chen B. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes proliferation and Metastasis of osteosarcoma cells by targeting c-met and SOX4 via miR-34a/c-5p and miR-449a/b. Med Sci Monitor: Int Med J Experimental Clin Res. 2019;25:1410.CrossRef Sun Z, Zhang T, Chen B. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes proliferation and Metastasis of osteosarcoma cells by targeting c-met and SOX4 via miR-34a/c-5p and miR-449a/b. Med Sci Monitor: Int Med J Experimental Clin Res. 2019;25:1410.CrossRef
32.
go back to reference Li Y, et al. MiR-182 inhibits the epithelial to mesenchymal transition and Metastasis of Lung cancer cells by targeting the Met gene. Mol Carcinog. 2018;57(1):125–36.PubMedCrossRef Li Y, et al. MiR-182 inhibits the epithelial to mesenchymal transition and Metastasis of Lung cancer cells by targeting the Met gene. Mol Carcinog. 2018;57(1):125–36.PubMedCrossRef
33.
go back to reference Chen Q-y, et al. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget. 2016;7(17):24510.PubMedPubMedCentralCrossRef Chen Q-y, et al. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget. 2016;7(17):24510.PubMedPubMedCentralCrossRef
34.
go back to reference Boren T, et al. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol. 2008;110(2):206–15.PubMedCrossRef Boren T, et al. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol. 2008;110(2):206–15.PubMedCrossRef
35.
go back to reference Ye L, et al. Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression: a comprehensive review. Cytokine & Growth Factor Reviews; 2023. Ye L, et al. Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression: a comprehensive review. Cytokine & Growth Factor Reviews; 2023.
36.
go back to reference Zhu Q, et al. MiR-124-3p impedes the Metastasis of non-small cell Lung cancer via extracellular exosome transport and intracellular PI3K/AKT signaling. Biomark Res. 2023;11(1):1.PubMedPubMedCentralCrossRef Zhu Q, et al. MiR-124-3p impedes the Metastasis of non-small cell Lung cancer via extracellular exosome transport and intracellular PI3K/AKT signaling. Biomark Res. 2023;11(1):1.PubMedPubMedCentralCrossRef
37.
go back to reference Wang Z, et al. MiR-142-5p suppresses tumorigenesis by targeting PIK3CA in non-small cell Lung cancer. Cell Physiol Biochem. 2017;43(6):2505–15.PubMedCrossRef Wang Z, et al. MiR-142-5p suppresses tumorigenesis by targeting PIK3CA in non-small cell Lung cancer. Cell Physiol Biochem. 2017;43(6):2505–15.PubMedCrossRef
38.
go back to reference Meng F, Zhang L. Mir-183-5p functions as a Tumor suppressor in Lung cancer through PIK3CA inhibition. Exp Cell Res. 2019;374(2):315–22.PubMedCrossRef Meng F, Zhang L. Mir-183-5p functions as a Tumor suppressor in Lung cancer through PIK3CA inhibition. Exp Cell Res. 2019;374(2):315–22.PubMedCrossRef
39.
go back to reference Yu Sh, et al. miR-99a suppresses the Metastasis of human non‐small cell Lung cancer cells by targeting AKT1 signaling pathway. J Cell Biochem. 2015;116(2):268–76.PubMedCrossRef Yu Sh, et al. miR-99a suppresses the Metastasis of human non‐small cell Lung cancer cells by targeting AKT1 signaling pathway. J Cell Biochem. 2015;116(2):268–76.PubMedCrossRef
40.
go back to reference Yoo J, et al. The novel miR-9500 regulates the proliferation and migration of human Lung cancer cells by targeting Akt1. Cell Death & Differentiation. 2014;21(7):1150–9.CrossRef Yoo J, et al. The novel miR-9500 regulates the proliferation and migration of human Lung cancer cells by targeting Akt1. Cell Death & Differentiation. 2014;21(7):1150–9.CrossRef
41.
go back to reference Liu C, et al. microRNA-548l is involved in the migration and invasion of non-small cell Lung cancer by targeting the AKT1 signaling pathway. J Cancer Res Clin Oncol. 2015;141:431–41.PubMedCrossRef Liu C, et al. microRNA-548l is involved in the migration and invasion of non-small cell Lung cancer by targeting the AKT1 signaling pathway. J Cancer Res Clin Oncol. 2015;141:431–41.PubMedCrossRef
42.
go back to reference Cao L, et al. GAS5 knockdown reduces the chemo-sensitivity of non-small cell Lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis. Biomed Pharmacother. 2017;93:570–9.PubMedCrossRef Cao L, et al. GAS5 knockdown reduces the chemo-sensitivity of non-small cell Lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis. Biomed Pharmacother. 2017;93:570–9.PubMedCrossRef
44.
go back to reference Gong J, et al. MicroRNA–20a promotes non–small cell Lung cancer proliferation by upregulating PD–L1 by targeting PTEN. Oncol Lett. 2022;23(5):1–8.CrossRef Gong J, et al. MicroRNA–20a promotes non–small cell Lung cancer proliferation by upregulating PD–L1 by targeting PTEN. Oncol Lett. 2022;23(5):1–8.CrossRef
45.
go back to reference Ortiz GGR, et al. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity. Cell Communication and Signaling. 2023;21(1):1–16.CrossRef Ortiz GGR, et al. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity. Cell Communication and Signaling. 2023;21(1):1–16.CrossRef
46.
go back to reference Meng X, et al. The roles of different microRNAs in the regulation of cholesterol in viral hepatitis. Cell Communication and Signaling. 2023;21(1):1–13. Meng X, et al. The roles of different microRNAs in the regulation of cholesterol in viral hepatitis. Cell Communication and Signaling. 2023;21(1):1–13.
47.
go back to reference Norouzi M, et al. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Engineering: C. 2019;104:110007.CrossRef Norouzi M, et al. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Engineering: C. 2019;104:110007.CrossRef
49.
go back to reference Sargazi S et al. Opportunities and challenges of using high-sensitivity nanobiosensors to detect long noncoding RNAs: a preliminary review. Int J Biol Macromol, 2022. Sargazi S et al. Opportunities and challenges of using high-sensitivity nanobiosensors to detect long noncoding RNAs: a preliminary review. Int J Biol Macromol, 2022.
50.
go back to reference Gholizadeh O et al. Recent advances in treatment Crimean–Congo hemorrhagic fever virus: A concise overview Microbial Pathogenesis, 2022: p. 105657. Gholizadeh O et al. Recent advances in treatment Crimean–Congo hemorrhagic fever virus: A concise overview Microbial Pathogenesis, 2022: p. 105657.
51.
52.
go back to reference Yasamineh S et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm, 2022: p. 121878. Yasamineh S et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm, 2022: p. 121878.
53.
go back to reference Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics; 2022. Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics; 2022.
55.
go back to reference Pereira DM, et al. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18(5–6):282–9.PubMedCrossRef Pereira DM, et al. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18(5–6):282–9.PubMedCrossRef
56.
go back to reference Calin GA, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic Leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef Calin GA, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic Leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef
57.
go back to reference Takamizawa J, et al. Reduced expression of the let-7 microRNAs in human Lung Cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–6.PubMedCrossRef Takamizawa J, et al. Reduced expression of the let-7 microRNAs in human Lung Cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–6.PubMedCrossRef
59.
go back to reference Zhong S, et al. miRNAs in Lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in Lung cancer. Translational Res. 2021;230:164–96.CrossRef Zhong S, et al. miRNAs in Lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in Lung cancer. Translational Res. 2021;230:164–96.CrossRef
61.
go back to reference He Q, et al. Analysis of differential expression profile of miRNA in peripheral blood of patients with Lung cancer. J Clin Lab Anal. 2019;33(9):e23003.PubMedPubMedCentralCrossRef He Q, et al. Analysis of differential expression profile of miRNA in peripheral blood of patients with Lung cancer. J Clin Lab Anal. 2019;33(9):e23003.PubMedPubMedCentralCrossRef
64.
go back to reference O’Brien J, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.CrossRef O’Brien J, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.CrossRef
65.
go back to reference Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview MicroRNA Profiling, 2017: p. 1–10. Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview MicroRNA Profiling, 2017: p. 1–10.
66.
go back to reference Leitão AL, Enguita FJ. A structural view of miRNA Biogenesis and function. Volume 8. Non-coding RNA; 2022. p. 10. 1. Leitão AL, Enguita FJ. A structural view of miRNA Biogenesis and function. Volume 8. Non-coding RNA; 2022. p. 10. 1.
67.
go back to reference Pietrykowska H, et al. Biogenesis, conservation and function of miRNA in liverworts. Journal of Experimental Botany; 2022. Pietrykowska H, et al. Biogenesis, conservation and function of miRNA in liverworts. Journal of Experimental Botany; 2022.
68.
go back to reference Berindan-Neagoe I, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy. Cancer J Clin. 2014;64(5):311–36.CrossRef Berindan-Neagoe I, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy. Cancer J Clin. 2014;64(5):311–36.CrossRef
69.
go back to reference Denli AM, et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.PubMedCrossRef Denli AM, et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.PubMedCrossRef
73.
go back to reference Zhao L et al. The Role of miRNA in Ovarian Cancer: an Overview Reproductive Sciences, 2022: p. 1–8. Zhao L et al. The Role of miRNA in Ovarian Cancer: an Overview Reproductive Sciences, 2022: p. 1–8.
74.
go back to reference Wu Z-H, et al. miRNA biomarkers for predicting overall survival outcomes for head and neck squamous cell carcinoma. Genomics. 2021;113(1):135–41.PubMedCrossRef Wu Z-H, et al. miRNA biomarkers for predicting overall survival outcomes for head and neck squamous cell carcinoma. Genomics. 2021;113(1):135–41.PubMedCrossRef
75.
76.
go back to reference Bravo-Vázquez LA et al. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol, 2023. 11. Bravo-Vázquez LA et al. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol, 2023. 11.
77.
go back to reference Susanti R, Dafip M, Mustikaningtyas D. OncomiR structure and network prediction on Adenomatosis Polyposis Coli (APC) gene silencing regulation in Colorectal Cancer. Trends in Sciences. 2023;20(10):6168–8.CrossRef Susanti R, Dafip M, Mustikaningtyas D. OncomiR structure and network prediction on Adenomatosis Polyposis Coli (APC) gene silencing regulation in Colorectal Cancer. Trends in Sciences. 2023;20(10):6168–8.CrossRef
78.
go back to reference Mardani R, et al. MicroRNA in Leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 2019;234(6):8465–86.PubMedCrossRef Mardani R, et al. MicroRNA in Leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 2019;234(6):8465–86.PubMedCrossRef
79.
go back to reference Izzotti A, et al. Relationship between the miRNA profiles and oncogene mutations in non-smoker Lung cancer. Relevance for Lung cancer personalized screenings and treatments. J Personalized Med. 2021;11(3):182.CrossRef Izzotti A, et al. Relationship between the miRNA profiles and oncogene mutations in non-smoker Lung cancer. Relevance for Lung cancer personalized screenings and treatments. J Personalized Med. 2021;11(3):182.CrossRef
80.
go back to reference Ferrante M, Cristaldi A, Oliveri G, Conti. Oncogenic role of miRNA in environmental exposure to plasticizers: a systematic review. J Personalized Med. 2021;11(6):500.CrossRef Ferrante M, Cristaldi A, Oliveri G, Conti. Oncogenic role of miRNA in environmental exposure to plasticizers: a systematic review. J Personalized Med. 2021;11(6):500.CrossRef
84.
go back to reference Xiong Q, et al. miR-133b targets NCAPH to promote β-catenin degradation and reduce cancer stem cell maintenance in non-small cell Lung cancer. Signal Transduct Target Therapy. 2021;6(1):1–3. Xiong Q, et al. miR-133b targets NCAPH to promote β-catenin degradation and reduce cancer stem cell maintenance in non-small cell Lung cancer. Signal Transduct Target Therapy. 2021;6(1):1–3.
85.
go back to reference Kim DH, et al. Exosomal miR-1260b derived from non-small cell Lung cancer promotes Tumor Metastasis through the inhibition of HIPK2. Volume 12. Cell death & disease; 2021. pp. 1–10. 8. Kim DH, et al. Exosomal miR-1260b derived from non-small cell Lung cancer promotes Tumor Metastasis through the inhibition of HIPK2. Volume 12. Cell death & disease; 2021. pp. 1–10. 8.
86.
go back to reference Zou P, et al. Mir-192-5p suppresses the progression of Lung cancer bone Metastasis by targeting TRIM44. Sci Rep. 2019;9(1):1–9.CrossRef Zou P, et al. Mir-192-5p suppresses the progression of Lung cancer bone Metastasis by targeting TRIM44. Sci Rep. 2019;9(1):1–9.CrossRef
87.
go back to reference Iqbal MA et al. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance Molecular aspects of medicine, 2019. 70: p. 3–20. Iqbal MA et al. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance Molecular aspects of medicine, 2019. 70: p. 3–20.
88.
go back to reference Feng B, et al. Non-small-cell Lung cancer and miRNAs: novel biomarkers and promising tools for treatment. Clin Sci (Lond). 2015;128(10):619–34.PubMedCrossRef Feng B, et al. Non-small-cell Lung cancer and miRNAs: novel biomarkers and promising tools for treatment. Clin Sci (Lond). 2015;128(10):619–34.PubMedCrossRef
89.
go back to reference Calin GA et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers Proceedings of the National Academy of Sciences, 2004. 101(9): p. 2999–3004. Calin GA et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers Proceedings of the National Academy of Sciences, 2004. 101(9): p. 2999–3004.
90.
go back to reference Heller G, et al. Genome-wide miRNA expression profiling identifies mir-9-3 and miR-193a as targets for DNA methylation in non–small cell lung CancersmiRNA methylation in NSCLCs. Clin Cancer Res. 2012;18(6):1619–29.PubMedCrossRef Heller G, et al. Genome-wide miRNA expression profiling identifies mir-9-3 and miR-193a as targets for DNA methylation in non–small cell lung CancersmiRNA methylation in NSCLCs. Clin Cancer Res. 2012;18(6):1619–29.PubMedCrossRef
91.
go back to reference Wang Z, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage I non-small cell Lung cancer. Cancer Biol Ther. 2011;11(5):490–6.PubMedCrossRef Wang Z, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage I non-small cell Lung cancer. Cancer Biol Ther. 2011;11(5):490–6.PubMedCrossRef
92.
go back to reference Chin LJ, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell Lung cancer risk. Cancer Res. 2008;68(20):8535–40.PubMedPubMedCentralCrossRef Chin LJ, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell Lung cancer risk. Cancer Res. 2008;68(20):8535–40.PubMedPubMedCentralCrossRef
93.
go back to reference O’Donnell KA, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.PubMedCrossRef O’Donnell KA, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.PubMedCrossRef
96.
go back to reference Mohamed A, et al. Altered glutamine metabolism and therapeutic opportunities for Lung cancer. Clin Lung Cancer. 2014;15(1):7–15.PubMedCrossRef Mohamed A, et al. Altered glutamine metabolism and therapeutic opportunities for Lung cancer. Clin Lung Cancer. 2014;15(1):7–15.PubMedCrossRef
97.
go back to reference Quirico L, et al. miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid Tumor progression. Cell Mol Life Sci. 2022;79(4):216.PubMedPubMedCentralCrossRef Quirico L, et al. miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid Tumor progression. Cell Mol Life Sci. 2022;79(4):216.PubMedPubMedCentralCrossRef
98.
go back to reference Fang R, et al. miR-143 regulates cancer glycolysis via targeting hexokinase 2. J Biol Chem. 2012;M112:jbc. Fang R, et al. miR-143 regulates cancer glycolysis via targeting hexokinase 2. J Biol Chem. 2012;M112:jbc.
99.
go back to reference Liu M, et al. Downregulating microRNA-144 mediates a metabolic shift in Lung cancer cells by regulating GLUT1 expression. Oncol Lett. 2016;11(6):3772–6.PubMedPubMedCentralCrossRef Liu M, et al. Downregulating microRNA-144 mediates a metabolic shift in Lung cancer cells by regulating GLUT1 expression. Oncol Lett. 2016;11(6):3772–6.PubMedPubMedCentralCrossRef
100.
go back to reference Zhao X, et al. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell Lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol. 2017;39(5):1010428317706215.PubMedCrossRef Zhao X, et al. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell Lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol. 2017;39(5):1010428317706215.PubMedCrossRef
101.
102.
go back to reference Puissegur M, et al. miR-210 is overexpressed in late stages of Lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011;18(3):465.PubMedCrossRef Puissegur M, et al. miR-210 is overexpressed in late stages of Lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011;18(3):465.PubMedCrossRef
104.
go back to reference Quesnelle DC, Bendena WG, Chin-Sang ID. A compilation of the diverse miRNA functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci. 2023;24(8):6963.PubMedPubMedCentralCrossRef Quesnelle DC, Bendena WG, Chin-Sang ID. A compilation of the diverse miRNA functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci. 2023;24(8):6963.PubMedPubMedCentralCrossRef
105.
go back to reference Pop-Bica C, et al. The clinical utility of miR-21 and let-7 in non-small cell Lung cancer (NSCLC). A systematic review and meta-analysis. Front Oncol. 2020;10:516850.PubMedPubMedCentralCrossRef Pop-Bica C, et al. The clinical utility of miR-21 and let-7 in non-small cell Lung cancer (NSCLC). A systematic review and meta-analysis. Front Oncol. 2020;10:516850.PubMedPubMedCentralCrossRef
106.
go back to reference Bica-Pop C, et al. Overview upon miR-21 in Lung cancer: focus on NSCLC. Cell Mol Life Sci. 2018;75:3539–51.PubMedCrossRef Bica-Pop C, et al. Overview upon miR-21 in Lung cancer: focus on NSCLC. Cell Mol Life Sci. 2018;75:3539–51.PubMedCrossRef
108.
go back to reference Yang C, et al. The MiR-17-92 gene cluster is a blood-based marker for cancer detection in non-small-cell Lung cancer. Am J Med Sci. 2020;360(3):248–60.PubMedPubMedCentralCrossRef Yang C, et al. The MiR-17-92 gene cluster is a blood-based marker for cancer detection in non-small-cell Lung cancer. Am J Med Sci. 2020;360(3):248–60.PubMedPubMedCentralCrossRef
109.
go back to reference Zhao W et al. The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun, 2022: p. 100647. Zhao W et al. The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun, 2022: p. 100647.
110.
go back to reference Zhang Y, et al. Detection of circulating exosomal mir-17-5p serves as a novel non-invasive diagnostic marker for non-small cell Lung cancer patients. Pathology-Research and Practice. 2019;215(8):152466.PubMedCrossRef Zhang Y, et al. Detection of circulating exosomal mir-17-5p serves as a novel non-invasive diagnostic marker for non-small cell Lung cancer patients. Pathology-Research and Practice. 2019;215(8):152466.PubMedCrossRef
111.
113.
go back to reference Xu H, et al. MiR-31 functions as a Tumor suppressor in Lung Adenocarcinoma mainly by Targeting HuR. Clin Lab. 2016;62(4):711–8.PubMed Xu H, et al. MiR-31 functions as a Tumor suppressor in Lung Adenocarcinoma mainly by Targeting HuR. Clin Lab. 2016;62(4):711–8.PubMed
114.
115.
116.
go back to reference Yang X, et al. miR-200b regulates epithelial-mesenchymal transition of chemo-resistant Breast cancer cells by targeting FN1. Discov Med. 2017;24(131):75–85.PubMed Yang X, et al. miR-200b regulates epithelial-mesenchymal transition of chemo-resistant Breast cancer cells by targeting FN1. Discov Med. 2017;24(131):75–85.PubMed
117.
go back to reference Sharma A, et al. Exploring the role of miR-200 family in regulating CX3CR1 and CXCR1 in lung adenocarcinoma Tumor microenvironment: implications for therapeutic intervention. Sci Rep. 2023;13(1):16333.PubMedPubMedCentralCrossRef Sharma A, et al. Exploring the role of miR-200 family in regulating CX3CR1 and CXCR1 in lung adenocarcinoma Tumor microenvironment: implications for therapeutic intervention. Sci Rep. 2023;13(1):16333.PubMedPubMedCentralCrossRef
119.
go back to reference Zhang J, et al. miR-101 represses Lung cancer by inhibiting interaction of fibroblasts and cancer cells by down-regulating CXCL12. Volume 74. Biomedicine & Pharmacotherapy; 2015. pp. 215–21. Zhang J, et al. miR-101 represses Lung cancer by inhibiting interaction of fibroblasts and cancer cells by down-regulating CXCL12. Volume 74. Biomedicine & Pharmacotherapy; 2015. pp. 215–21.
120.
go back to reference Zhang X, et al. MiR-101-3p inhibits the growth and Metastasis of non-small cell Lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1. Volume 93. Biomedicine & Pharmacotherapy; 2017. pp. 1065–73. Zhang X, et al. MiR-101-3p inhibits the growth and Metastasis of non-small cell Lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1. Volume 93. Biomedicine & Pharmacotherapy; 2017. pp. 1065–73.
122.
go back to reference Li P, et al. Upregulated miR-106a plays an oncogenic role in Pancreatic cancer. FEBS Lett. 2014;588(5):705–12.PubMedCrossRef Li P, et al. Upregulated miR-106a plays an oncogenic role in Pancreatic cancer. FEBS Lett. 2014;588(5):705–12.PubMedCrossRef
123.
go back to reference Xie X, et al. miR-106a promotes growth and Metastasis of non-small cell Lung cancer by targeting PTEN. Int J Clin Exp Pathol. 2015;8(4):3827.PubMedPubMedCentral Xie X, et al. miR-106a promotes growth and Metastasis of non-small cell Lung cancer by targeting PTEN. Int J Clin Exp Pathol. 2015;8(4):3827.PubMedPubMedCentral
124.
go back to reference Guo S, et al. Inhibition mechanism of Lung cancer cell Metastasis through targeted regulation of Smad3 by miR–15a. Oncol Lett. 2020;19(2):1516–22.PubMed Guo S, et al. Inhibition mechanism of Lung cancer cell Metastasis through targeted regulation of Smad3 by miR–15a. Oncol Lett. 2020;19(2):1516–22.PubMed
126.
go back to reference Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential Tumor suppressor and therapeutic candidate in cancer. J Experimental Clin Cancer Res. 2019;38(1):1–13.CrossRef Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential Tumor suppressor and therapeutic candidate in cancer. J Experimental Clin Cancer Res. 2019;38(1):1–13.CrossRef
127.
go back to reference Daugaard I, et al. The association between miR-34 dysregulation and distant metastases formation in lung adenocarcinoma. Exp Mol Pathol. 2017;102(3):484–91.PubMedCrossRef Daugaard I, et al. The association between miR-34 dysregulation and distant metastases formation in lung adenocarcinoma. Exp Mol Pathol. 2017;102(3):484–91.PubMedCrossRef
128.
go back to reference Tanaka N, et al. Frequent methylation and oncogenic role of microRNA-34b/c in small-cell Lung cancer. Lung Cancer. 2012;76(1):32–8.PubMedCrossRef Tanaka N, et al. Frequent methylation and oncogenic role of microRNA-34b/c in small-cell Lung cancer. Lung Cancer. 2012;76(1):32–8.PubMedCrossRef
129.
go back to reference Mizuno K, et al. The microRNA expression signature of small cell Lung cancer: Tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J Hum Genet. 2017;62(7):671–8.PubMedCrossRef Mizuno K, et al. The microRNA expression signature of small cell Lung cancer: Tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J Hum Genet. 2017;62(7):671–8.PubMedCrossRef
130.
go back to reference Li S et al. The Value of Serum Exosomal miR-184 in the Diagnosis of NSCLC 2022. 2022: p. 9713218. Li S et al. The Value of Serum Exosomal miR-184 in the Diagnosis of NSCLC 2022. 2022: p. 9713218.
131.
go back to reference Rao X, Lu Y. C1QTNF6 Targeted by MiR-184 Regulates the Proliferation, Migration, and Invasion of Lung Adenocarcinoma Cells Molecular Biotechnology, 2022. 64(11): p. 1279–1287. Rao X, Lu Y. C1QTNF6 Targeted by MiR-184 Regulates the Proliferation, Migration, and Invasion of Lung Adenocarcinoma Cells Molecular Biotechnology, 2022. 64(11): p. 1279–1287.
132.
go back to reference Lin T-C, et al. MicroRNA-184 deregulated by the MicroRNA-21 promotes Tumor malignancy and poor outcomes in non-small cell Lung cancer via targeting CDC25A and c-Myc. Ann Surg Oncol. 2015;22:1532–9.CrossRef Lin T-C, et al. MicroRNA-184 deregulated by the MicroRNA-21 promotes Tumor malignancy and poor outcomes in non-small cell Lung cancer via targeting CDC25A and c-Myc. Ann Surg Oncol. 2015;22:1532–9.CrossRef
134.
go back to reference Foss KM, et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell Lung cancer. J Thorac Oncol. 2011;6(3):482–8.PubMedCrossRef Foss KM, et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell Lung cancer. J Thorac Oncol. 2011;6(3):482–8.PubMedCrossRef
135.
go back to reference Donzelli J, et al. Small extracellular vesicle-derived miR‐574‐5p regulates PGE2‐biosynthesis via TLR7/8 in Lung cancer. J Extracell Vesicles. 2021;10(12):12143.PubMedPubMedCentralCrossRef Donzelli J, et al. Small extracellular vesicle-derived miR‐574‐5p regulates PGE2‐biosynthesis via TLR7/8 in Lung cancer. J Extracell Vesicles. 2021;10(12):12143.PubMedPubMedCentralCrossRef
136.
go back to reference Huang W et al. The Regulatory Mechanism of miR-574-5p Expression in Cancer 2022. 13(1). Huang W et al. The Regulatory Mechanism of miR-574-5p Expression in Cancer 2022. 13(1).
137.
go back to reference Ho CS, Noor SM, Nagoor NH. MiR-378 and MiR-1827 regulate Tumor Invasion, Migration and Angiogenesis in Human Lung Adenocarcinoma by Targeting RBX1 and CRKL, respectively. J Cancer. 2018;9(2):331–45.PubMedPubMedCentralCrossRef Ho CS, Noor SM, Nagoor NH. MiR-378 and MiR-1827 regulate Tumor Invasion, Migration and Angiogenesis in Human Lung Adenocarcinoma by Targeting RBX1 and CRKL, respectively. J Cancer. 2018;9(2):331–45.PubMedPubMedCentralCrossRef
138.
go back to reference Fan G, Xu P, Tu P. MiR-1827 functions as a Tumor suppressor in lung adenocarcinoma by targeting MYC and FAM83F. J Cell Biochem. 2020;121(2):1675–89.PubMedCrossRef Fan G, Xu P, Tu P. MiR-1827 functions as a Tumor suppressor in lung adenocarcinoma by targeting MYC and FAM83F. J Cell Biochem. 2020;121(2):1675–89.PubMedCrossRef
140.
go back to reference Kunz M, et al. MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact. Tumor Biology. 2017;39(7):1010428317706430.PubMedCrossRef Kunz M, et al. MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact. Tumor Biology. 2017;39(7):1010428317706430.PubMedCrossRef
142.
go back to reference Hashemi ZS, et al. Lung cancer and miRNAs: a possible remedy for anti-metastatic, therapeutic and diagnostic applications. Expert Rev Respir Med. 2017;11(2):147–57.PubMedCrossRef Hashemi ZS, et al. Lung cancer and miRNAs: a possible remedy for anti-metastatic, therapeutic and diagnostic applications. Expert Rev Respir Med. 2017;11(2):147–57.PubMedCrossRef
143.
go back to reference Zhao Z, et al. MicroRNA-25 regulates small cell Lung cancer cell development and cell cycle through cyclin E2. Int J Clin Exp Pathol. 2014;7(11):7726–34.PubMedPubMedCentral Zhao Z, et al. MicroRNA-25 regulates small cell Lung cancer cell development and cell cycle through cyclin E2. Int J Clin Exp Pathol. 2014;7(11):7726–34.PubMedPubMedCentral
144.
go back to reference Miko E, et al. miR-126 inhibits proliferation of small cell Lung cancer cells by targeting SLC7A5. FEBS Lett. 2011;585(8):1191–6.PubMedCrossRef Miko E, et al. miR-126 inhibits proliferation of small cell Lung cancer cells by targeting SLC7A5. FEBS Lett. 2011;585(8):1191–6.PubMedCrossRef
145.
go back to reference Ye L, et al. MiR-130 exerts Tumor suppressive function on the tumorigenesis of human non-small cell Lung cancer by targeting PTEN. Am J Transl Res. 2017;9(4):1856–65.PubMedPubMedCentral Ye L, et al. MiR-130 exerts Tumor suppressive function on the tumorigenesis of human non-small cell Lung cancer by targeting PTEN. Am J Transl Res. 2017;9(4):1856–65.PubMedPubMedCentral
146.
go back to reference Hou L, et al. Critical role of miR-155/FoxO1/ROS axis in the regulation of non-small cell lung carcinomas. Tumour Biol. 2016;37(4):5185–92.PubMedCrossRef Hou L, et al. Critical role of miR-155/FoxO1/ROS axis in the regulation of non-small cell lung carcinomas. Tumour Biol. 2016;37(4):5185–92.PubMedCrossRef
147.
go back to reference Huang P, et al. MicroRNA-181 functions as a Tumor suppressor in non-small cell Lung cancer (NSCLC) by targeting Bcl-2. Tumour Biol. 2015;36(5):3381–7.PubMedCrossRef Huang P, et al. MicroRNA-181 functions as a Tumor suppressor in non-small cell Lung cancer (NSCLC) by targeting Bcl-2. Tumour Biol. 2015;36(5):3381–7.PubMedCrossRef
148.
go back to reference Kumar S, et al. Analysis of miR-375-3p, miR-197-3p, and miR-15a-5p expression and their clinical relevance as biomarkers in Lung cancer. Technol Cancer Res Treat. 2022;21:15330338221080981.PubMedPubMedCentralCrossRef Kumar S, et al. Analysis of miR-375-3p, miR-197-3p, and miR-15a-5p expression and their clinical relevance as biomarkers in Lung cancer. Technol Cancer Res Treat. 2022;21:15330338221080981.PubMedPubMedCentralCrossRef
149.
go back to reference Sp N, et al. Mechanistic insights of anti-immune evasion by nobiletin through regulating miR-197/STAT3/PD-L1 signaling in non-small cell Lung cancer (NSCLC) cells. Int J Mol Sci. 2021;22(18):9843.PubMedPubMedCentralCrossRef Sp N, et al. Mechanistic insights of anti-immune evasion by nobiletin through regulating miR-197/STAT3/PD-L1 signaling in non-small cell Lung cancer (NSCLC) cells. Int J Mol Sci. 2021;22(18):9843.PubMedPubMedCentralCrossRef
150.
go back to reference Liu Y, et al. microRNA-520a-3p inhibits proliferation and cancer stem cell phenotype by targeting HOXD8 in non-small cell Lung cancer. Oncol Rep. 2016;36(6):3529–35.PubMedCrossRef Liu Y, et al. microRNA-520a-3p inhibits proliferation and cancer stem cell phenotype by targeting HOXD8 in non-small cell Lung cancer. Oncol Rep. 2016;36(6):3529–35.PubMedCrossRef
151.
go back to reference Zhou R, et al. Tumor invasion and Metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell Lung cancer. Oncotarget. 2015;6(42):44609–22.PubMedPubMedCentralCrossRef Zhou R, et al. Tumor invasion and Metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell Lung cancer. Oncotarget. 2015;6(42):44609–22.PubMedPubMedCentralCrossRef
152.
go back to reference Zhang Z, et al. Antitumor activity of anti-miR‐21 delivered through lipid nanoparticles. Adv Healthc Mater. 2023;12(6):2202412.CrossRef Zhang Z, et al. Antitumor activity of anti-miR‐21 delivered through lipid nanoparticles. Adv Healthc Mater. 2023;12(6):2202412.CrossRef
153.
go back to reference Zhang X et al. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4 Bioengineered, 2022. 13(4): p. 11281–11295. Zhang X et al. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4 Bioengineered, 2022. 13(4): p. 11281–11295.
155.
go back to reference Zhu W, et al. miR-31/QKI‐5 axis facilitates cell cycle progression of non‐small‐cell Lung cancer cells by interacting and regulating p21 and CDK4/6 expressions. Cancer Med. 2023;12(4):4590–604.PubMedCrossRef Zhu W, et al. miR-31/QKI‐5 axis facilitates cell cycle progression of non‐small‐cell Lung cancer cells by interacting and regulating p21 and CDK4/6 expressions. Cancer Med. 2023;12(4):4590–604.PubMedCrossRef
156.
go back to reference Zhang Y, Yang Q, Wang S. MicroRNAs: a new key in Lung cancer. Cancer Chemother Pharmacol. 2014;74(6):1105–11.PubMedCrossRef Zhang Y, Yang Q, Wang S. MicroRNAs: a new key in Lung cancer. Cancer Chemother Pharmacol. 2014;74(6):1105–11.PubMedCrossRef
157.
go back to reference Yu F, et al. Hypoxic tumor-derived exosomal mir-31-5p promotes lung adenocarcinoma Metastasis by negatively regulating SATB2-reversed EMT and activating MEK/ERK signaling. J Experimental Clin Cancer Res. 2021;40(1):1–15.CrossRef Yu F, et al. Hypoxic tumor-derived exosomal mir-31-5p promotes lung adenocarcinoma Metastasis by negatively regulating SATB2-reversed EMT and activating MEK/ERK signaling. J Experimental Clin Cancer Res. 2021;40(1):1–15.CrossRef
158.
go back to reference Zhu C, et al. Mir-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther Onkol. 2022;198(3):304–14.PubMedCrossRef Zhu C, et al. Mir-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther Onkol. 2022;198(3):304–14.PubMedCrossRef
159.
go back to reference Cavallari I, et al. The miR-200 family of microRNAs: fine tuners of epithelial-mesenchymal transition and circulating cancer biomarkers. Cancers. 2021;13(23):5874.PubMedPubMedCentralCrossRef Cavallari I, et al. The miR-200 family of microRNAs: fine tuners of epithelial-mesenchymal transition and circulating cancer biomarkers. Cancers. 2021;13(23):5874.PubMedPubMedCentralCrossRef
160.
go back to reference Garinet S, et al. Clinical assessment of the miR-34, miR-200, ZEB1 and SNAIL EMT regulation hub underlines the differential prognostic value of EMT miRs to drive mesenchymal transition and prognosis in resected NSCLC. Br J Cancer. 2021;125(11):1544–51.PubMedPubMedCentralCrossRef Garinet S, et al. Clinical assessment of the miR-34, miR-200, ZEB1 and SNAIL EMT regulation hub underlines the differential prognostic value of EMT miRs to drive mesenchymal transition and prognosis in resected NSCLC. Br J Cancer. 2021;125(11):1544–51.PubMedPubMedCentralCrossRef
161.
go back to reference Xue B, et al. miR-200 deficiency promotes Lung cancer Metastasis by activating notch signaling in cancer-associated fibroblasts. Genes Dev. 2021;35(15–16):1109–22.PubMedPubMedCentralCrossRef Xue B, et al. miR-200 deficiency promotes Lung cancer Metastasis by activating notch signaling in cancer-associated fibroblasts. Genes Dev. 2021;35(15–16):1109–22.PubMedPubMedCentralCrossRef
162.
go back to reference Liu C, et al. Roles of miR-200 family members in Lung cancer: more than Tumor suppressors. Future Oncol. 2018;14(27):2875–86.PubMedCrossRef Liu C, et al. Roles of miR-200 family members in Lung cancer: more than Tumor suppressors. Future Oncol. 2018;14(27):2875–86.PubMedCrossRef
163.
go back to reference Kundu ST, et al. The miR-200 family and the miR-183 ~ 96 ~ 182 cluster target Foxf2 to inhibit invasion and Metastasis in Lung Cancers. Oncogene. 2016;35(2):173–86.PubMedCrossRef Kundu ST, et al. The miR-200 family and the miR-183 ~ 96 ~ 182 cluster target Foxf2 to inhibit invasion and Metastasis in Lung Cancers. Oncogene. 2016;35(2):173–86.PubMedCrossRef
164.
go back to reference Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other Diseases. Nat Rev Drug Discov. 2017;16(3):203–22.PubMedCrossRef Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other Diseases. Nat Rev Drug Discov. 2017;16(3):203–22.PubMedCrossRef
165.
go back to reference Gan H, Xu X, Bai Y. Trametes robiniophila represses angiogenesis and Tumor growth of Lung cancer via strengthening let-7d-5p and targeting NAP1L1. Bioengineered. 2022;13(3):6698–710.PubMedPubMedCentralCrossRef Gan H, Xu X, Bai Y. Trametes robiniophila represses angiogenesis and Tumor growth of Lung cancer via strengthening let-7d-5p and targeting NAP1L1. Bioengineered. 2022;13(3):6698–710.PubMedPubMedCentralCrossRef
166.
go back to reference Xie P, et al. Sequential serum Let-7 is a Novel Biomarker to Predict Accelerated Reproliferation during Fractional Radiotherapy in Lung Cancer. Clin Lung Cancer. 2016;17(5):e95–e101.PubMedCrossRef Xie P, et al. Sequential serum Let-7 is a Novel Biomarker to Predict Accelerated Reproliferation during Fractional Radiotherapy in Lung Cancer. Clin Lung Cancer. 2016;17(5):e95–e101.PubMedCrossRef
167.
go back to reference Pulliero A, et al. Let-7a downregulation accompanied by KRAS Mutation is Predictive of Lung Cancer Onset in cigarette smoke–exposed mice. Int J Mol Sci. 2023;24(14):11778.PubMedPubMedCentralCrossRef Pulliero A, et al. Let-7a downregulation accompanied by KRAS Mutation is Predictive of Lung Cancer Onset in cigarette smoke–exposed mice. Int J Mol Sci. 2023;24(14):11778.PubMedPubMedCentralCrossRef
168.
go back to reference Izzotti A, et al. Early and late effects of aspirin and naproxen on microRNAs in the lung and blood of mice, either unexposed or exposed to cigarette smoke. Oncotarget. 2017;8(49):85716.PubMedPubMedCentralCrossRef Izzotti A, et al. Early and late effects of aspirin and naproxen on microRNAs in the lung and blood of mice, either unexposed or exposed to cigarette smoke. Oncotarget. 2017;8(49):85716.PubMedPubMedCentralCrossRef
169.
go back to reference Yin J, et al. let–7 and miR–17 promote self–renewal and drive gefitinib resistance in non–small cell Lung cancer. Oncol Rep. 2019;42(2):495–508.PubMedPubMedCentral Yin J, et al. let–7 and miR–17 promote self–renewal and drive gefitinib resistance in non–small cell Lung cancer. Oncol Rep. 2019;42(2):495–508.PubMedPubMedCentral
170.
go back to reference Shahverdi M, et al. Knockdown of myeloid cell Leukemia-1 by MicroRNA-101 increases sensitivity of A549 Lung Cancer cells to Etoposide. Iran J Med Sci. 2021;46(4):298–307.PubMedPubMedCentral Shahverdi M, et al. Knockdown of myeloid cell Leukemia-1 by MicroRNA-101 increases sensitivity of A549 Lung Cancer cells to Etoposide. Iran J Med Sci. 2021;46(4):298–307.PubMedPubMedCentral
171.
go back to reference Chen Q et al. miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6 OncoTargets and therapy, 2019. 12: p. 835. Chen Q et al. miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6 OncoTargets and therapy, 2019. 12: p. 835.
172.
go back to reference Meng X, et al. miR–101–3p sensitizes lung adenocarcinoma cells to irradiation via targeting BIRC5. Oncol Lett. 2021;21(4):1–1.CrossRef Meng X, et al. miR–101–3p sensitizes lung adenocarcinoma cells to irradiation via targeting BIRC5. Oncol Lett. 2021;21(4):1–1.CrossRef
173.
go back to reference Han L, et al. MiR-101 inhibits the proliferation and Metastasis of Lung cancer by targeting zinc finger E-box binding homeobox 1. Am J Translational Res. 2018;10(4):1172. Han L, et al. MiR-101 inhibits the proliferation and Metastasis of Lung cancer by targeting zinc finger E-box binding homeobox 1. Am J Translational Res. 2018;10(4):1172.
174.
go back to reference Guo X, et al. Cancer-associated fibroblasts promote migration and invasion of non-small cell Lung cancer cells via mir-101-3p mediated VEGFA secretion and AKT/eNOS pathway. Front Cell Dev Biology. 2021;9:3491.CrossRef Guo X, et al. Cancer-associated fibroblasts promote migration and invasion of non-small cell Lung cancer cells via mir-101-3p mediated VEGFA secretion and AKT/eNOS pathway. Front Cell Dev Biology. 2021;9:3491.CrossRef
175.
go back to reference Han L, et al. MicroRNA-106a regulates autophagy-related cell death and EMT by targeting TP53INP1 in Lung cancer with bone Metastasis. Cell Death Dis. 2021;12(11):1037.PubMedPubMedCentralCrossRef Han L, et al. MicroRNA-106a regulates autophagy-related cell death and EMT by targeting TP53INP1 in Lung cancer with bone Metastasis. Cell Death Dis. 2021;12(11):1037.PubMedPubMedCentralCrossRef
176.
go back to reference Chen CQ, et al. Histone deacetylases inhibitor trichostatin A increases the expression of Dleu2/miR-15a/16 – 1 via HDAC3 in non-small cell Lung cancer. Mol Cell Biochem. 2013;383(1–2):137–48.PubMedCrossRef Chen CQ, et al. Histone deacetylases inhibitor trichostatin A increases the expression of Dleu2/miR-15a/16 – 1 via HDAC3 in non-small cell Lung cancer. Mol Cell Biochem. 2013;383(1–2):137–48.PubMedCrossRef
177.
go back to reference Arfan A, Andarini SL. The role of miRNA in Non-small Cell Lung Carcinoma. Respiratory Sci. 2022;2(3):165–74.CrossRef Arfan A, Andarini SL. The role of miRNA in Non-small Cell Lung Carcinoma. Respiratory Sci. 2022;2(3):165–74.CrossRef
178.
go back to reference Wang H, et al. Reversal of Chemotherapy Resistance to Cisplatin in NSCLC by miRNA-195-5p via targeting the FGF2 gene. Pharmacogenomics and Personalized Medicine. 2021;14:497.PubMedPubMedCentralCrossRef Wang H, et al. Reversal of Chemotherapy Resistance to Cisplatin in NSCLC by miRNA-195-5p via targeting the FGF2 gene. Pharmacogenomics and Personalized Medicine. 2021;14:497.PubMedPubMedCentralCrossRef
179.
go back to reference van Zandwijk N, et al. MesomiR 1: a phase I study of TargomiRs in patients with refractory malignant pleural Mesothelioma (MPM) and Lung cancer (NSCLC). Ann Oncol. 2015;26:ii16.CrossRef van Zandwijk N, et al. MesomiR 1: a phase I study of TargomiRs in patients with refractory malignant pleural Mesothelioma (MPM) and Lung cancer (NSCLC). Ann Oncol. 2015;26:ii16.CrossRef
181.
go back to reference Sun D, et al. Distinct roles of miR-34 family members on suppression of lung squamous cell carcinoma. Biomed Pharmacother. 2021;142:111967.PubMedCrossRef Sun D, et al. Distinct roles of miR-34 family members on suppression of lung squamous cell carcinoma. Biomed Pharmacother. 2021;142:111967.PubMedCrossRef
182.
go back to reference Pandey M et al. Role of microRNAs in regulating cell proliferation, metastasis and chemoresistance and their applications as cancer biomarkers in small cell lung cancer Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2021. 1876(1): p. 188552. Pandey M et al. Role of microRNAs in regulating cell proliferation, metastasis and chemoresistance and their applications as cancer biomarkers in small cell lung cancer Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2021. 1876(1): p. 188552.
183.
184.
go back to reference Sun Y, et al. miR–574–5p mediates epithelial–mesenchymal transition in small cell Lung cancer by targeting vimentin via a competitive endogenous RNA network. Oncol Lett. 2021;21(6):1–9.CrossRef Sun Y, et al. miR–574–5p mediates epithelial–mesenchymal transition in small cell Lung cancer by targeting vimentin via a competitive endogenous RNA network. Oncol Lett. 2021;21(6):1–9.CrossRef
185.
go back to reference San Ho C, Noor SM, Nagoor NH. MiR-378 and MiR-1827 regulate Tumor Invasion, Migration and Angiogenesis in Human Lung Adenocarcinoma by Targeting RBX1 and CRKL, respectively. J Cancer. 2018;9(2):331.CrossRef San Ho C, Noor SM, Nagoor NH. MiR-378 and MiR-1827 regulate Tumor Invasion, Migration and Angiogenesis in Human Lung Adenocarcinoma by Targeting RBX1 and CRKL, respectively. J Cancer. 2018;9(2):331.CrossRef
186.
go back to reference Guo X, et al. The inhibitory effect of microRNA-1827 on anoikis resistance in lung adenocarcinoma A549 cells via targeting caveolin-1. Acta Biochim Biophys Sin. 2020;52(10):1148–55.PubMedCrossRef Guo X, et al. The inhibitory effect of microRNA-1827 on anoikis resistance in lung adenocarcinoma A549 cells via targeting caveolin-1. Acta Biochim Biophys Sin. 2020;52(10):1148–55.PubMedCrossRef
187.
188.
go back to reference Stahlhut C, Slack FJ. Combinatorial action of MicroRNAs let-7 and miR-34 effectively synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation. Cell Cycle. 2015;14(13):2171–80.PubMedPubMedCentralCrossRef Stahlhut C, Slack FJ. Combinatorial action of MicroRNAs let-7 and miR-34 effectively synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation. Cell Cycle. 2015;14(13):2171–80.PubMedPubMedCentralCrossRef
190.
go back to reference Fuziwara CS, Kimura ET. Insights into regulation of the mir-17-92 cluster of miRNAs in cancer. Front Med. 2015;2:64.CrossRef Fuziwara CS, Kimura ET. Insights into regulation of the mir-17-92 cluster of miRNAs in cancer. Front Med. 2015;2:64.CrossRef
191.
go back to reference Ma Y-S, et al. microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and Tumor growth of Lung cancer. Carcinogenesis. 2021;42(5):762–71.PubMedCrossRef Ma Y-S, et al. microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and Tumor growth of Lung cancer. Carcinogenesis. 2021;42(5):762–71.PubMedCrossRef
192.
go back to reference Wang H, et al. ZEB1 induces non-small cell Lung cancer development by targeting microRNA-320a to increase the expression of RAD51AP1. Exp Cell Res. 2021;405(2):112687.PubMedCrossRef Wang H, et al. ZEB1 induces non-small cell Lung cancer development by targeting microRNA-320a to increase the expression of RAD51AP1. Exp Cell Res. 2021;405(2):112687.PubMedCrossRef
193.
go back to reference Li ZH, et al. MicroRNA-506 has a suppressive effect on the tumorigenesis of nonsmall-cell Lung cancer by regulating tubby-like protein 3. Bioengineered. 2021;12(2):10176–86.PubMedPubMedCentralCrossRef Li ZH, et al. MicroRNA-506 has a suppressive effect on the tumorigenesis of nonsmall-cell Lung cancer by regulating tubby-like protein 3. Bioengineered. 2021;12(2):10176–86.PubMedPubMedCentralCrossRef
194.
go back to reference Asghariazar V, et al. Tumor suppressor microRNAs in Lung cancer: an insight to signaling pathways and drug resistance. J Cell Biochem. 2019;120(12):19274–89.PubMedCrossRef Asghariazar V, et al. Tumor suppressor microRNAs in Lung cancer: an insight to signaling pathways and drug resistance. J Cell Biochem. 2019;120(12):19274–89.PubMedCrossRef
195.
go back to reference Tang Z, et al. Abnormal gene expression regulation mechanism of myeloid Cell Nuclear differentiation Antigen in Lung Adenocarcinoma. Biology. 2022;11(7):1047.PubMedPubMedCentralCrossRef Tang Z, et al. Abnormal gene expression regulation mechanism of myeloid Cell Nuclear differentiation Antigen in Lung Adenocarcinoma. Biology. 2022;11(7):1047.PubMedPubMedCentralCrossRef
196.
go back to reference Chen Y, Gao D-Y, Huang L. Vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41.PubMedCrossRef Chen Y, Gao D-Y, Huang L. Vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41.PubMedCrossRef
197.
go back to reference Dhuri K, et al. Simultaneous targeting of multiple oncomiRs with phosphorothioate or PNA-based anti-mirs in Lymphoma cell lines. Pharm Res. 2022;39(11):2709–20.PubMedPubMedCentralCrossRef Dhuri K, et al. Simultaneous targeting of multiple oncomiRs with phosphorothioate or PNA-based anti-mirs in Lymphoma cell lines. Pharm Res. 2022;39(11):2709–20.PubMedPubMedCentralCrossRef
198.
go back to reference Weidle UH, Birzele F, Nopora A. MicroRNAs as potential targets for therapeutic intervention with Metastasis of non-small cell Lung cancer. Cancer Genomics Proteomics. 2019;16(2):99–119.PubMedPubMedCentralCrossRef Weidle UH, Birzele F, Nopora A. MicroRNAs as potential targets for therapeutic intervention with Metastasis of non-small cell Lung cancer. Cancer Genomics Proteomics. 2019;16(2):99–119.PubMedPubMedCentralCrossRef
199.
go back to reference Kim KC et al. Suppression of metastasis through inhibition of chitinase 3-like 1 expression by miR-125a-3p-mediated up-regulation of USF1. Theranostics. 2018;8(16):p. 4409. Kim KC et al. Suppression of metastasis through inhibition of chitinase 3-like 1 expression by miR-125a-3p-mediated up-regulation of USF1. Theranostics. 2018;8(16):p. 4409.
200.
go back to reference Trang P, et al. Systemic delivery of Tumor suppressor microRNA mimics using a Neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19(6):1116–22.PubMedPubMedCentralCrossRef Trang P, et al. Systemic delivery of Tumor suppressor microRNA mimics using a Neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19(6):1116–22.PubMedPubMedCentralCrossRef
201.
go back to reference Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discovery. 2013;12(11):847.PubMedCrossRef Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discovery. 2013;12(11):847.PubMedCrossRef
202.
go back to reference Sun Y, et al. Efficient delivery of Echinococcus Multilocularis miRNAs using chitosan nanoparticles. Biomed Pharmacother. 2022;150:112945.PubMedCrossRef Sun Y, et al. Efficient delivery of Echinococcus Multilocularis miRNAs using chitosan nanoparticles. Biomed Pharmacother. 2022;150:112945.PubMedCrossRef
203.
go back to reference Chaudhary S, et al. Strategic targeting of non-small‐cell Lung cancer utilizing genetic material‐based delivery platforms of nanotechnology. J Biochem Mol Toxicol. 2021;35(7):e22784.PubMedCrossRef Chaudhary S, et al. Strategic targeting of non-small‐cell Lung cancer utilizing genetic material‐based delivery platforms of nanotechnology. J Biochem Mol Toxicol. 2021;35(7):e22784.PubMedCrossRef
205.
go back to reference Lee SWL, et al. MicroRNA delivery through nanoparticles. J Controlled Release. 2019;313:80–95.CrossRef Lee SWL, et al. MicroRNA delivery through nanoparticles. J Controlled Release. 2019;313:80–95.CrossRef
206.
go back to reference Asakiya C, et al. Current progress of miRNA-derivative nucleotide Drugs: modifications, delivery systems, applications. Expert Opin Drug Deliv. 2022;19(4):435–50.PubMedCrossRef Asakiya C, et al. Current progress of miRNA-derivative nucleotide Drugs: modifications, delivery systems, applications. Expert Opin Drug Deliv. 2022;19(4):435–50.PubMedCrossRef
207.
go back to reference Yasamineh S, et al. An overview on nanoparticle-based strategies to fight viral Infections with a focus on COVID-19. J Nanobiotechnol. 2022;20(1):440.CrossRef Yasamineh S, et al. An overview on nanoparticle-based strategies to fight viral Infections with a focus on COVID-19. J Nanobiotechnol. 2022;20(1):440.CrossRef
208.
go back to reference Yasamineh S, et al. Future prospects of natural polymer-based drug Delivery systems in combating Lung Diseases, in natural polymeric materials based Drug Delivery systems in Lung Diseases. Springer; 2023. pp. 465–82. Yasamineh S, et al. Future prospects of natural polymer-based drug Delivery systems in combating Lung Diseases, in natural polymeric materials based Drug Delivery systems in Lung Diseases. Springer; 2023. pp. 465–82.
209.
go back to reference Assefi M et al. A state-of-the-art review on solid lipid nanoparticles as a nanovaccines delivery system. J Drug Deliv Sci Technol, 2023: p. 104623. Assefi M et al. A state-of-the-art review on solid lipid nanoparticles as a nanovaccines delivery system. J Drug Deliv Sci Technol, 2023: p. 104623.
210.
go back to reference Salari Sedigh S, et al. The role of bismuth nanoparticles in the inhibition of bacterial Infection. World J Microbiol Biotechnol. 2023;39(7):1–18.CrossRef Salari Sedigh S, et al. The role of bismuth nanoparticles in the inhibition of bacterial Infection. World J Microbiol Biotechnol. 2023;39(7):1–18.CrossRef
211.
go back to reference Saadh MJ et al. Progress and prospects on vaccine development against Monkeypox Infection Microbial Pathogenesis, 2023: p. 106156. Saadh MJ et al. Progress and prospects on vaccine development against Monkeypox Infection Microbial Pathogenesis, 2023: p. 106156.
212.
213.
go back to reference Yan Y et al. Non-viral vectors for RNA delivery. J Controlled Release, 2022. Yan Y et al. Non-viral vectors for RNA delivery. J Controlled Release, 2022.
215.
go back to reference Turcheniuk K, et al. Highly effective photodynamic inactivation of E. Coli using gold nanorods/SiO 2 core–shell nanostructures with embedded verteporfin. Chem Commun. 2015;51(91):16365–8.CrossRef Turcheniuk K, et al. Highly effective photodynamic inactivation of E. Coli using gold nanorods/SiO 2 core–shell nanostructures with embedded verteporfin. Chem Commun. 2015;51(91):16365–8.CrossRef
217.
go back to reference Muthiah M, Park IK, Cho CS. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv. 2013;10(9):1259–73.PubMedCrossRef Muthiah M, Park IK, Cho CS. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv. 2013;10(9):1259–73.PubMedCrossRef
218.
go back to reference Volpini L, et al. Advances in RNA cancer therapeutics: New insight into exosomes as miRNA delivery. Aspects of Molecular Medicine; 2023. p. 100005. Volpini L, et al. Advances in RNA cancer therapeutics: New insight into exosomes as miRNA delivery. Aspects of Molecular Medicine; 2023. p. 100005.
219.
go back to reference Oveili E, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different Diseases. Cell Communication and Signaling. 2023;21(1):1–26.CrossRef Oveili E, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different Diseases. Cell Communication and Signaling. 2023;21(1):1–26.CrossRef
220.
go back to reference Gholizadeh O, et al. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J. 2022;19(1):1–22.CrossRef Gholizadeh O, et al. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J. 2022;19(1):1–22.CrossRef
221.
go back to reference Yoo BH, et al. 2’-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004;32(6):2008–16.PubMedPubMedCentralCrossRef Yoo BH, et al. 2’-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004;32(6):2008–16.PubMedPubMedCentralCrossRef
222.
go back to reference Yang Z et al. CSB affected on the sensitivity of lung cancer cells to platinum-based drugs through the global decrease of let-7 and miR-29 BMc cancer, 2019. 19: p. 1–13. Yang Z et al. CSB affected on the sensitivity of lung cancer cells to platinum-based drugs through the global decrease of let-7 and miR-29 BMc cancer, 2019. 19: p. 1–13.
223.
224.
go back to reference Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets. 2016;20(6):737–53.PubMedCrossRef Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets. 2016;20(6):737–53.PubMedCrossRef
225.
go back to reference Li H, et al. miR-1254 promotes Lung cancer cell proliferation by targeting SFRP1. Biomed Pharmacother. 2017;92:913–8.PubMedCrossRef Li H, et al. miR-1254 promotes Lung cancer cell proliferation by targeting SFRP1. Biomed Pharmacother. 2017;92:913–8.PubMedCrossRef
226.
go back to reference Wu Y et al. Therapeutic delivery of microRNA-29b by cationic lipoplexes for Lung cancer. Mol Therapy-Nucleic Acids, 2013. 2. Wu Y et al. Therapeutic delivery of microRNA-29b by cationic lipoplexes for Lung cancer. Mol Therapy-Nucleic Acids, 2013. 2.
228.
go back to reference Li S, et al. Overexpression of microRNA125a3p effectively inhibits the cell growth and invasion of Lung cancer cells by regulating the mouse double minute 2 homolog/p53 signaling pathway. Mol Med Rep. 2015;12(4):5482–6.PubMedCrossRef Li S, et al. Overexpression of microRNA125a3p effectively inhibits the cell growth and invasion of Lung cancer cells by regulating the mouse double minute 2 homolog/p53 signaling pathway. Mol Med Rep. 2015;12(4):5482–6.PubMedCrossRef
230.
go back to reference Murugan D, Rangasamy L. A perspective to weaponize microRNAs against Lung cancer. Non-coding RNA Research. 2023;8(1):18–32.PubMedCrossRef Murugan D, Rangasamy L. A perspective to weaponize microRNAs against Lung cancer. Non-coding RNA Research. 2023;8(1):18–32.PubMedCrossRef
231.
go back to reference Yin X, et al. Small cell Lung cancer transformation: from pathogenesis to treatment. In seminars in Cancer Biology. Elsevier; 2022. Yin X, et al. Small cell Lung cancer transformation: from pathogenesis to treatment. In seminars in Cancer Biology. Elsevier; 2022.
232.
go back to reference Lin EH, et al. Targeting cancer stemness mediated by BMI1 and MCL1 for non-small cell Lung cancer treatment. Journal of Cellular and Molecular Medicine; 2022. Lin EH, et al. Targeting cancer stemness mediated by BMI1 and MCL1 for non-small cell Lung cancer treatment. Journal of Cellular and Molecular Medicine; 2022.
233.
go back to reference de Hoyos A, DeCamp MM. Surgery for small cell Lung cancer. Torac Surg Clin. 2014;24(4):399–409. de Hoyos A, DeCamp MM. Surgery for small cell Lung cancer. Torac Surg Clin. 2014;24(4):399–409.
234.
go back to reference Passaro A, et al. Managing resistance to immune checkpoint inhibitors in Lung cancer: treatment and novel strategies. J Clin Oncol. 2022;40(6):598–610.PubMedCrossRef Passaro A, et al. Managing resistance to immune checkpoint inhibitors in Lung cancer: treatment and novel strategies. J Clin Oncol. 2022;40(6):598–610.PubMedCrossRef
235.
go back to reference Mathieu L, et al. FDA approval Summary: Atezolizumab and Durvalumab in Combination with Platinum-based chemotherapy in extensive stage small cell Lung Cancer. Oncologist. 2021;26(5):433–8.PubMedPubMedCentralCrossRef Mathieu L, et al. FDA approval Summary: Atezolizumab and Durvalumab in Combination with Platinum-based chemotherapy in extensive stage small cell Lung Cancer. Oncologist. 2021;26(5):433–8.PubMedPubMedCentralCrossRef
236.
go back to reference Yuwen D, et al. Prognostic role of circulating exosomal mir-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomarkers Prev. 2019;28(1):163–73.PubMedCrossRef Yuwen D, et al. Prognostic role of circulating exosomal mir-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomarkers Prev. 2019;28(1):163–73.PubMedCrossRef
237.
go back to reference Zhou C, et al. Sugemalimab versus placebo, in combination with platinum-based chemotherapy, as first-line treatment of metastatic non-small-cell Lung cancer (GEMSTONE-302): interim and final analyses of a double-blind, randomised, phase 3 clinical trial. Lancet Oncol. 2022;23(2):220–33.PubMedCrossRef Zhou C, et al. Sugemalimab versus placebo, in combination with platinum-based chemotherapy, as first-line treatment of metastatic non-small-cell Lung cancer (GEMSTONE-302): interim and final analyses of a double-blind, randomised, phase 3 clinical trial. Lancet Oncol. 2022;23(2):220–33.PubMedCrossRef
238.
go back to reference Wang X, et al. Platinum (IV) Prodrugs with Cancer Stem Cell Inhibitory effects on Lung Cancer for Overcoming Drug Resistance. Journal of Medicinal Chemistry; 2022. Wang X, et al. Platinum (IV) Prodrugs with Cancer Stem Cell Inhibitory effects on Lung Cancer for Overcoming Drug Resistance. Journal of Medicinal Chemistry; 2022.
239.
go back to reference Lampis A, et al. MicroRNAs as mediators of drug resistance mechanisms. Curr Opin Pharmacol. 2020;54:44–50.PubMedCrossRef Lampis A, et al. MicroRNAs as mediators of drug resistance mechanisms. Curr Opin Pharmacol. 2020;54:44–50.PubMedCrossRef
240.
go back to reference Shahverdi M, et al. The regulatory role of autophagy-related miRNAs in Lung cancer drug resistance. Biomed Pharmacother. 2022;148:112735.PubMedCrossRef Shahverdi M, et al. The regulatory role of autophagy-related miRNAs in Lung cancer drug resistance. Biomed Pharmacother. 2022;148:112735.PubMedCrossRef
241.
go back to reference Zhang Q, et al. Construction of a dual-functional dumbbell probe-based fluorescent biosensor for cascade amplification detection of miRNAs in Lung cancer cells and tissues. Chem Commun. 2022;58(36):5538–41.CrossRef Zhang Q, et al. Construction of a dual-functional dumbbell probe-based fluorescent biosensor for cascade amplification detection of miRNAs in Lung cancer cells and tissues. Chem Commun. 2022;58(36):5538–41.CrossRef
242.
go back to reference Lai J, et al. MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell Lung cancer. BMC Cancer. 2019;19(1):1–9.CrossRef Lai J, et al. MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell Lung cancer. BMC Cancer. 2019;19(1):1–9.CrossRef
243.
go back to reference Xia M, et al. MiR-194-5p enhances the sensitivity of nonsmall-cell Lung cancer to doxorubicin through targeted inhibition of hypoxia-inducible factor-1. World J Surg Oncol. 2021;19(1):1–8.CrossRef Xia M, et al. MiR-194-5p enhances the sensitivity of nonsmall-cell Lung cancer to doxorubicin through targeted inhibition of hypoxia-inducible factor-1. World J Surg Oncol. 2021;19(1):1–8.CrossRef
244.
go back to reference Li K, Zhu X, Yuan C. Inhibition of mir-185-3p confers erlotinib resistance through upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biology, 2021: p. 1863. Li K, Zhu X, Yuan C. Inhibition of mir-185-3p confers erlotinib resistance through upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biology, 2021: p. 1863.
245.
go back to reference Li Q, Wang Y, He J. MiR-133a‐3p attenuates resistance of non‐small cell Lung cancer cells to gefitinib by targeting SPAG5. J Clin Lab Anal. 2021;35(7):e23853.PubMedPubMedCentralCrossRef Li Q, Wang Y, He J. MiR-133a‐3p attenuates resistance of non‐small cell Lung cancer cells to gefitinib by targeting SPAG5. J Clin Lab Anal. 2021;35(7):e23853.PubMedPubMedCentralCrossRef
246.
go back to reference Du H, et al. miR–139–5p enhances cisplatin sensitivity in non–small cell Lung cancer cells by inhibiting cell proliferation and promoting apoptosis via the targeting of homeobox protein Hox–B2. Mol Med Rep. 2021;23(2):1–1. Du H, et al. miR–139–5p enhances cisplatin sensitivity in non–small cell Lung cancer cells by inhibiting cell proliferation and promoting apoptosis via the targeting of homeobox protein Hox–B2. Mol Med Rep. 2021;23(2):1–1.
247.
go back to reference Liu H-N, et al. miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell Lung cancer cells by targeting Bcl-2. Archives of Medical Science. 2018;14(4):745–51.PubMedPubMedCentral Liu H-N, et al. miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell Lung cancer cells by targeting Bcl-2. Archives of Medical Science. 2018;14(4):745–51.PubMedPubMedCentral
248.
go back to reference Yang X, et al. Intensified beclin-1 mediated by low expression of mir-30a-5p promotes chemoresistance in human small cell Lung cancer. Cell Physiol Biochem. 2017;43(3):1126–39.PubMedCrossRef Yang X, et al. Intensified beclin-1 mediated by low expression of mir-30a-5p promotes chemoresistance in human small cell Lung cancer. Cell Physiol Biochem. 2017;43(3):1126–39.PubMedCrossRef
249.
go back to reference Ranade AR, et al. MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell Lung cancer. J Thorac Oncol. 2010;5(8):1273–8.PubMedCrossRef Ranade AR, et al. MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell Lung cancer. J Thorac Oncol. 2010;5(8):1273–8.PubMedCrossRef
250.
go back to reference Tan Q et al. Circular RNA circ_0000517 facilitates the growth and metastasis of non-small cell lung cancer by sponging miR-326/miR-330-5p Cell Journal (Yakhteh), 2021. 23(5): p. 552. Tan Q et al. Circular RNA circ_0000517 facilitates the growth and metastasis of non-small cell lung cancer by sponging miR-326/miR-330-5p Cell Journal (Yakhteh), 2021. 23(5): p. 552.
251.
go back to reference Li X, et al. Hsa_circ_0020850 promotes the malignant behaviors of lung adenocarcinoma by regulating miR-326/BECN1 axis. World J Surg Oncol. 2022;20(1):1–14. Li X, et al. Hsa_circ_0020850 promotes the malignant behaviors of lung adenocarcinoma by regulating miR-326/BECN1 axis. World J Surg Oncol. 2022;20(1):1–14.
252.
go back to reference El-Husseiny AA, et al. miRNAs orchestration of salivary gland cancer-Particular emphasis on diagnosis, progression, and drug resistance. Pathology-Research and Practice. 2023;248:154590.PubMedCrossRef El-Husseiny AA, et al. miRNAs orchestration of salivary gland cancer-Particular emphasis on diagnosis, progression, and drug resistance. Pathology-Research and Practice. 2023;248:154590.PubMedCrossRef
254.
go back to reference Bahrami A et al. The prognostic and therapeutic application of microRNAs in Breast cancer: tissue and circulating microRNAs. 2018. 233(2): p. 774–86. Bahrami A et al. The prognostic and therapeutic application of microRNAs in Breast cancer: tissue and circulating microRNAs. 2018. 233(2): p. 774–86.
255.
go back to reference He Y, et al. Current state of circulating MicroRNAs as Cancer biomarkers. Clin Chem. 2015;61(9):1138–55.PubMedCrossRef He Y, et al. Current state of circulating MicroRNAs as Cancer biomarkers. Clin Chem. 2015;61(9):1138–55.PubMedCrossRef
256.
go back to reference Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol. 2015;21(34):9863–86.PubMedPubMedCentralCrossRef Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol. 2015;21(34):9863–86.PubMedPubMedCentralCrossRef
258.
go back to reference Zhang H, et al. Plasma miR–145, miR–20a, miR–21 and miR–223 as novel biomarkers for screening early–stage non–small cell Lung cancer. Oncol Lett. 2017;13(2):669–76.PubMedCrossRef Zhang H, et al. Plasma miR–145, miR–20a, miR–21 and miR–223 as novel biomarkers for screening early–stage non–small cell Lung cancer. Oncol Lett. 2017;13(2):669–76.PubMedCrossRef
259.
go back to reference Zhu W, et al. Diagnostic value of serum miR-182, miR-183, miR-210, and miR-126 levels in patients with early-stage non-small cell Lung cancer. PLoS ONE. 2016;11(4):e0153046.PubMedPubMedCentralCrossRef Zhu W, et al. Diagnostic value of serum miR-182, miR-183, miR-210, and miR-126 levels in patients with early-stage non-small cell Lung cancer. PLoS ONE. 2016;11(4):e0153046.PubMedPubMedCentralCrossRef
260.
go back to reference Powrózek T, et al. The diagnostic role of plasma circulating precursors of miRNA-944 and miRNA-3662 for non-small cell Lung cancer detection. Pathology-Research and Practice. 2017;213(11):1384–7.PubMedCrossRef Powrózek T, et al. The diagnostic role of plasma circulating precursors of miRNA-944 and miRNA-3662 for non-small cell Lung cancer detection. Pathology-Research and Practice. 2017;213(11):1384–7.PubMedCrossRef
261.
go back to reference Sromek M, et al. Changes in plasma miR-9, miR-16, miR-205 and miR-486 levels after non-small cell Lung cancer resection. Cell Oncol. 2017;40(5):529–36.CrossRef Sromek M, et al. Changes in plasma miR-9, miR-16, miR-205 and miR-486 levels after non-small cell Lung cancer resection. Cell Oncol. 2017;40(5):529–36.CrossRef
262.
go back to reference Ge X, et al. MicroRNA-106a-5p alleviated the resistance of cisplatin in Lung cancer cells by targeting Jumonji domain containing 6. Transpl Immunol. 2021;69:101478.PubMedCrossRef Ge X, et al. MicroRNA-106a-5p alleviated the resistance of cisplatin in Lung cancer cells by targeting Jumonji domain containing 6. Transpl Immunol. 2021;69:101478.PubMedCrossRef
263.
go back to reference Wang H, et al. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell Lung cancer. Bioengineered. 2022;13(4):8937–49.PubMedPubMedCentralCrossRef Wang H, et al. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell Lung cancer. Bioengineered. 2022;13(4):8937–49.PubMedPubMedCentralCrossRef
264.
go back to reference El-Daly SM, Gouhar SA, Abd Elmageed ZY. Circulating microRNAs as reliable Tumor biomarkers: opportunities and challenges facing clinical application. J Pharmacol Exp Ther. 2023;384(1):35–51.PubMedCrossRef El-Daly SM, Gouhar SA, Abd Elmageed ZY. Circulating microRNAs as reliable Tumor biomarkers: opportunities and challenges facing clinical application. J Pharmacol Exp Ther. 2023;384(1):35–51.PubMedCrossRef
265.
go back to reference Uso M, et al. miRNA detection methods and clinical implications in Lung cancer. Future Oncol. 2014;10(14):2279–92.PubMedCrossRef Uso M, et al. miRNA detection methods and clinical implications in Lung cancer. Future Oncol. 2014;10(14):2279–92.PubMedCrossRef
266.
go back to reference Chen H et al. Modified exosomes: a good transporter for miRNAs within stem cells to treat Ischemic Heart Disease. J Cardiovasc Transl Res, 2022: p. 1–10. Chen H et al. Modified exosomes: a good transporter for miRNAs within stem cells to treat Ischemic Heart Disease. J Cardiovasc Transl Res, 2022: p. 1–10.
267.
go back to reference Zhang Y, et al. Inflammasome-derived exosomes activate NF-κB signaling in macrophages. J Proteome Res. 2016;16(1):170–8.PubMedCrossRef Zhang Y, et al. Inflammasome-derived exosomes activate NF-κB signaling in macrophages. J Proteome Res. 2016;16(1):170–8.PubMedCrossRef
268.
go back to reference Li C, et al. The role of Exosomal miRNAs in cancer. J Translational Med. 2022;20(1):1–15.CrossRef Li C, et al. The role of Exosomal miRNAs in cancer. J Translational Med. 2022;20(1):1–15.CrossRef
269.
go back to reference Yasamineh S, et al. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral Infections with a focus on COVID-19. Stem Cell Res Ther. 2022;13(1):1–23.CrossRef Yasamineh S, et al. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral Infections with a focus on COVID-19. Stem Cell Res Ther. 2022;13(1):1–23.CrossRef
270.
go back to reference Bouzari B, et al. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother. 2022;148:112760.PubMedCrossRef Bouzari B, et al. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother. 2022;148:112760.PubMedCrossRef
271.
go back to reference Paskeh MDA, et al. Emerging role of exosomes in cancer progression and Tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1):1–39.CrossRef Paskeh MDA, et al. Emerging role of exosomes in cancer progression and Tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1):1–39.CrossRef
272.
go back to reference Fabbri M et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response Proceedings of the National Academy of Sciences, 2012. 109(31): p. E2110-E2116. Fabbri M et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response Proceedings of the National Academy of Sciences, 2012. 109(31): p. E2110-E2116.
273.
go back to reference Rabinowits G, et al. Exosomal microRNA: a diagnostic marker for Lung cancer. Clin Lung Cancer. 2009;10(1):42–6.PubMedCrossRef Rabinowits G, et al. Exosomal microRNA: a diagnostic marker for Lung cancer. Clin Lung Cancer. 2009;10(1):42–6.PubMedCrossRef
274.
go back to reference Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of Lung cancer. Am J Respir Cell Mol Biol. 2014;50(1):1–6.PubMedPubMedCentralCrossRef Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of Lung cancer. Am J Respir Cell Mol Biol. 2014;50(1):1–6.PubMedPubMedCentralCrossRef
275.
go back to reference Kadota T, et al. Extracellular vesicles in Lung cancer—from bench to bedside. In seminars in cell & developmental biology. Elsevier; 2017. Kadota T, et al. Extracellular vesicles in Lung cancer—from bench to bedside. In seminars in cell & developmental biology. Elsevier; 2017.
276.
go back to reference Dejima H, et al. Exosomal microRNA in plasma as a non–invasive biomarker for the recurrence of non–small cell Lung cancer. Oncol Lett. 2017;13(3):1256–63.PubMedPubMedCentralCrossRef Dejima H, et al. Exosomal microRNA in plasma as a non–invasive biomarker for the recurrence of non–small cell Lung cancer. Oncol Lett. 2017;13(3):1256–63.PubMedPubMedCentralCrossRef
278.
go back to reference Cazzoli R, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing Lung cancer. J Thorac Oncol. 2013;8(9):1156–62.PubMedPubMedCentralCrossRef Cazzoli R, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing Lung cancer. J Thorac Oncol. 2013;8(9):1156–62.PubMedPubMedCentralCrossRef
279.
go back to reference Florczuk M, Szpechcinski A, Chorostowska-Wynimko J. miRNAs as biomarkers and therapeutic targets in non-small cell Lung cancer: current perspectives. Target Oncol. 2017;12(2):179–200.PubMedCrossRef Florczuk M, Szpechcinski A, Chorostowska-Wynimko J. miRNAs as biomarkers and therapeutic targets in non-small cell Lung cancer: current perspectives. Target Oncol. 2017;12(2):179–200.PubMedCrossRef
280.
go back to reference Gao F, et al. Potential diagnostic value of miR-155 in serum from lung adenocarcinoma patients. Oncol Rep. 2014;31(1):351–7.PubMedCrossRef Gao F, et al. Potential diagnostic value of miR-155 in serum from lung adenocarcinoma patients. Oncol Rep. 2014;31(1):351–7.PubMedCrossRef
281.
go back to reference Zhou Y et al. Exosomal transfer of mir-195-5p restrains lung adenocarcinoma progression. Exp Cell Res, 2023: p. 113485. Zhou Y et al. Exosomal transfer of mir-195-5p restrains lung adenocarcinoma progression. Exp Cell Res, 2023: p. 113485.
282.
go back to reference Lin J et al. Exosomes: novel biomarkers for clinical diagnosis ScientificWorldJournal, 2015. 2015: p. 657086. Lin J et al. Exosomes: novel biomarkers for clinical diagnosis ScientificWorldJournal, 2015. 2015: p. 657086.
283.
go back to reference Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev Mol Diagn. 2015;15(9):1159–69.PubMedCrossRef Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev Mol Diagn. 2015;15(9):1159–69.PubMedCrossRef
284.
go back to reference Gusachenko O, Zenkova M, Vlassov V. Nucleic acids in exosomes: Disease markers and intercellular communication molecules. Biochem (Moscow). 2013;78(1):1–7.CrossRef Gusachenko O, Zenkova M, Vlassov V. Nucleic acids in exosomes: Disease markers and intercellular communication molecules. Biochem (Moscow). 2013;78(1):1–7.CrossRef
285.
go back to reference Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRef
286.
go back to reference Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and Disease. Vet Pathol. 2014;51(4):759–74.PubMedCrossRef Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and Disease. Vet Pathol. 2014;51(4):759–74.PubMedCrossRef
287.
go back to reference Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol. 2013;48(1):51–68.PubMedCrossRef Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol. 2013;48(1):51–68.PubMedCrossRef
288.
go back to reference Zhu Y, et al. Identification of potential circular RNA biomarkers in lung adenocarcinoma: a bioinformatics analysis and retrospective clinical study. Oncol Lett. 2022;23(5):1–13.CrossRef Zhu Y, et al. Identification of potential circular RNA biomarkers in lung adenocarcinoma: a bioinformatics analysis and retrospective clinical study. Oncol Lett. 2022;23(5):1–13.CrossRef
289.
go back to reference Tang S, et al. MicroRNAs: emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in Lung cancer. Cancer Lett. 2021;502:71–83.PubMedCrossRef Tang S, et al. MicroRNAs: emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in Lung cancer. Cancer Lett. 2021;502:71–83.PubMedCrossRef
290.
go back to reference Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discovery. 2014;13(8):622.PubMedCrossRef Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discovery. 2014;13(8):622.PubMedCrossRef
293.
go back to reference Gerber DE et al. Randomized Phase 2 Study of Tivantinib plus Erlotinib versus Single-agent Chemotherapy in Previously Treated KRAS Mutant Advanced Non-small Cell Lung Cancer Lung Cancer, 2018. Gerber DE et al. Randomized Phase 2 Study of Tivantinib plus Erlotinib versus Single-agent Chemotherapy in Previously Treated KRAS Mutant Advanced Non-small Cell Lung Cancer Lung Cancer, 2018.
295.
go back to reference Usó M, et al. miRNA detection methods and clinical implications in Lung cancer. Future Oncol. 2014;10(14):2279–92.PubMedCrossRef Usó M, et al. miRNA detection methods and clinical implications in Lung cancer. Future Oncol. 2014;10(14):2279–92.PubMedCrossRef
296.
297.
go back to reference Van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age EMBO molecular medicine, 2014: p. e201100899. Van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age EMBO molecular medicine, 2014: p. e201100899.
299.
go back to reference van Zandwijk N et al. P1: 02 MESOMIR 1: A PHASE I STUDY OF TARGOMIRS IN PATIENTS WITH REFRACTORY MALIGNANT PLEURAL MESOTHELIOMA (MPM) AND LUNG CANCER (NSCLC). Ann Oncol, 2015. 26. van Zandwijk N et al. P1: 02 MESOMIR 1: A PHASE I STUDY OF TARGOMIRS IN PATIENTS WITH REFRACTORY MALIGNANT PLEURAL MESOTHELIOMA (MPM) AND LUNG CANCER (NSCLC). Ann Oncol, 2015. 26.
300.
go back to reference St Clair EW. Targeted EDV™ Nanocells carrying small interfering RNA (siRNA) molecules to overcome drug resistance in Non-small cell lung cancer. 2021. St Clair EW. Targeted EDV™ Nanocells carrying small interfering RNA (siRNA) molecules to overcome drug resistance in Non-small cell lung cancer. 2021.
301.
go back to reference Reid G, et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 2016;8(8):1079–85.PubMedCrossRef Reid G, et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 2016;8(8):1079–85.PubMedCrossRef
302.
go back to reference Deb D, Moore AC, Roy UB. The 2021 global Lung cancer therapy landscape. J Thorac Oncol. 2022;17(7):931–6.PubMedCrossRef Deb D, Moore AC, Roy UB. The 2021 global Lung cancer therapy landscape. J Thorac Oncol. 2022;17(7):931–6.PubMedCrossRef
303.
go back to reference Tan AC, Tan DS. Targeted therapies for Lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611–25.PubMedCrossRef Tan AC, Tan DS. Targeted therapies for Lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611–25.PubMedCrossRef
304.
go back to reference Liang X, et al. MicroRNAs as early diagnostic biomarkers for non–small cell Lung cancer. Oncol Rep. 2023;49(1):1–12. Liang X, et al. MicroRNAs as early diagnostic biomarkers for non–small cell Lung cancer. Oncol Rep. 2023;49(1):1–12.
305.
go back to reference Murugan D, Rangasamy L. A perspective to weaponize microRNAs against Lung cancer. Non-coding RNA Research; 2022. Murugan D, Rangasamy L. A perspective to weaponize microRNAs against Lung cancer. Non-coding RNA Research; 2022.
306.
go back to reference Yan H, et al. MiRNAs in anti-cancer drug resistance of non-small cell Lung cancer: recent advances and future potential. Front Pharmacol. 2022;13:949566.PubMedPubMedCentralCrossRef Yan H, et al. MiRNAs in anti-cancer drug resistance of non-small cell Lung cancer: recent advances and future potential. Front Pharmacol. 2022;13:949566.PubMedPubMedCentralCrossRef
308.
go back to reference Han Y, Li H. miRNAs as biomarkers and for the early detection of non-small cell Lung cancer (NSCLC). J Thorac Disease. 2018;10(5):3119.CrossRef Han Y, Li H. miRNAs as biomarkers and for the early detection of non-small cell Lung cancer (NSCLC). J Thorac Disease. 2018;10(5):3119.CrossRef
309.
go back to reference Wang W, et al. MicroRNA-21 as a diagnostic and prognostic biomarker of Lung cancer: a systematic review and meta-analysis. Biosci Rep. 2022;42(5):BSR20211653.PubMedPubMedCentralCrossRef Wang W, et al. MicroRNA-21 as a diagnostic and prognostic biomarker of Lung cancer: a systematic review and meta-analysis. Biosci Rep. 2022;42(5):BSR20211653.PubMedPubMedCentralCrossRef
310.
go back to reference Chen C, et al. Early detection of Lung cancer via biointerference-free, target microRNA-triggered core–satellite nanocomposites. Nanoscale. 2022;14(22):8103–11.PubMedCrossRef Chen C, et al. Early detection of Lung cancer via biointerference-free, target microRNA-triggered core–satellite nanocomposites. Nanoscale. 2022;14(22):8103–11.PubMedCrossRef
Metadata
Title
Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review
Authors
Mohammad Saleh Sadeghi
Mohadeseh lotfi
Narges Soltani
Elahe Farmani
Jaime Humberto Ortiz Fernandez
Sheida Akhlaghitehrani
Safaa Hallol Mohammed
Saman Yasamineh
Hesam Ghafouri Kalajahi
Omid Gholizadeh
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-03133-z

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine