Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Lung Cancer | Research article

MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell lung cancer

Authors: Jinzhi Lai, Hainan Yang, Yanyang Zhu, Mei Ruan, Yayu Huang, Qiuyu Zhang

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Chemo-resistance is one of the major challenges in the therapy of small cell lung cancer (SCLC). Multiple mechanisms are thought to be involved in chemo-resistance during SCLC treatment, but unfortunately, these mechanisms have not been well elucidated. Herein, we investigated the role of miRNA in the resistance of SCLC cells to doxorubicin (Dox).

Methods

MiRNA microarray analysis revealed that several miRNAs, including miR-7-5p, were specifically decreased in Dox-resistant SCLC cells (H69AR) compared to parental cells (H69). The expression level of miR-7-5p was confirmed by qRT-PCR in Dox-resistant cells (H69AR and H446AR cells) and their parental cells. Bioinformatic analysis indicated that poly ADP-ribose polymerase 1 (PARP1) is a direct target of miR-7-5p. The binding sites of miR-7-5p in the PARP1 3′ UTR were verified by luciferase reporter and Western blot assays. To investigate the role of miR-7-5p in the chemo-resistance of SCLC cells to doxorubicin, mimic or inhibitor of miR-7-5p was transfected into SCLC cells, and the effect of miR-7-5p on homologous recombination (HR) repair was analyzed by HR reporter assays. Furthermore, the expression of HR repair factors (Rad51 and BRCA1) induced by doxorubicin was detected by Western blot and immunofluorescent staining in H446AR cells transfected with miR-7-5p mimic.

Results

The expression level of miR-7-5p was remarkably reduced (4-fold) in Dox-resistant SCLC cells (H69AR and H446AR cells) compared with that in parental cells (H69 and H446 cells). Poly ADP-ribose polymerase 1 (PARP1) is a direct target of miR-7-5p, and PARP1 expression was downregulated by miR-7-5p. MiR-7-5p impeded Dox-induced HR repair by inhibiting the expression of HR repair factors (Rad51 and BRCA1) that resulted in resensitizing SCLC cells to doxorubicin.

Conclusions

Our findings provide evidence that miR-7-5p targets PARP1 to exert its suppressive effects on HR repair, indicating that the alteration of the expression of miR-7-5p may be a promising strategy for overcoming chemo-resistance in SCLC therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef
2.
go back to reference Sana S, Mackinnon AC, Nicolaos A, Mark B, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65.CrossRef Sana S, Mackinnon AC, Nicolaos A, Mark B, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554–65.CrossRef
3.
go back to reference Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in Cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648–59.CrossRef Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in Cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648–59.CrossRef
4.
go back to reference Moyal L, Goldfeiz N, Gorovitz B, Rephaeli A, Tal E, Tarasenko N, et al. AN-7, a butyric acid prodrug, sensitizes cutaneous T-cell lymphoma cell lines to doxorubicin via inhibition of DNA double strand breaks repair. Investig New Drugs. 2018;36(1):1–9.CrossRef Moyal L, Goldfeiz N, Gorovitz B, Rephaeli A, Tal E, Tarasenko N, et al. AN-7, a butyric acid prodrug, sensitizes cutaneous T-cell lymphoma cell lines to doxorubicin via inhibition of DNA double strand breaks repair. Investig New Drugs. 2018;36(1):1–9.CrossRef
5.
go back to reference Nagel ZD, Kitange GJ, Gupta SK, Joughin BA, Chaim IA, Mazzucato P, et al. DNA repair capacity in multiple pathways predicts Chemoresistance in glioblastoma Multiforme. Cancer Res. 2017;77(1):198–206.CrossRef Nagel ZD, Kitange GJ, Gupta SK, Joughin BA, Chaim IA, Mazzucato P, et al. DNA repair capacity in multiple pathways predicts Chemoresistance in glioblastoma Multiforme. Cancer Res. 2017;77(1):198–206.CrossRef
6.
go back to reference Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–45.CrossRef Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–45.CrossRef
7.
go back to reference Klein HL, Ang KKH, Arkin MR, Beckwitt EC, Chang YH, Fan J, et al. Guidelines for DNA recombination and repair studies: mechanistic assays of DNA repair processes. Microb Cell (Graz, Austria). 2019;6(1):65–101.CrossRef Klein HL, Ang KKH, Arkin MR, Beckwitt EC, Chang YH, Fan J, et al. Guidelines for DNA recombination and repair studies: mechanistic assays of DNA repair processes. Microb Cell (Graz, Austria). 2019;6(1):65–101.CrossRef
8.
go back to reference Sakthivel KM, Hariharan S. Regulatory players of DNA damage repair mechanisms: role in Cancer Chemoresistance. Biomed Pharmacother. 2017;93:1238–45.CrossRef Sakthivel KM, Hariharan S. Regulatory players of DNA damage repair mechanisms: role in Cancer Chemoresistance. Biomed Pharmacother. 2017;93:1238–45.CrossRef
9.
go back to reference Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011;41(2):210–20.CrossRef Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011;41(2):210–20.CrossRef
10.
go back to reference Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst. 2013;105(22):1750–8.CrossRef Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst. 2013;105(22):1750–8.CrossRef
11.
go back to reference Hailiang H, Gatti RA. MicroRNAs: new players in the DNA damage response. J Mol Cell Biol. 2011;3(3):151–8.CrossRef Hailiang H, Gatti RA. MicroRNAs: new players in the DNA damage response. J Mol Cell Biol. 2011;3(3):151–8.CrossRef
12.
go back to reference Zhao L, Lu X, Cao Y. MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal. 2013;25(7):1625–34.CrossRef Zhao L, Lu X, Cao Y. MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal. 2013;25(7):1625–34.CrossRef
13.
go back to reference Giles KM, Brown RA, Epis MR, Kalinowski FC, Leedman PJ. miRNA-7-5p inhibits melanoma cell migration and invasion. Biochem Biophys Res Commun. 2013;430(2):706–10.CrossRef Giles KM, Brown RA, Epis MR, Kalinowski FC, Leedman PJ. miRNA-7-5p inhibits melanoma cell migration and invasion. Biochem Biophys Res Commun. 2013;430(2):706–10.CrossRef
14.
go back to reference Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem. 2009;284(9):5731–41.CrossRef Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem. 2009;284(9):5731–41.CrossRef
15.
go back to reference Anuja M, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6(9):a016428.CrossRef Anuja M, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6(9):a016428.CrossRef
16.
go back to reference Satoh MS, Lindahl T. Role of poly (ADP-ribose) formation in DNA repair. Nature. 1992;356(6367):356–8.CrossRef Satoh MS, Lindahl T. Role of poly (ADP-ribose) formation in DNA repair. Nature. 1992;356(6367):356–8.CrossRef
17.
go back to reference Zhang Y, Lai J, Zhang J, Du Z, Gao J, Yang S, et al. Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress. Oncotarget. 2016;7(23):34688–702. Zhang Y, Lai J, Zhang J, Du Z, Gao J, Yang S, et al. Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress. Oncotarget. 2016;7(23):34688–702.
18.
go back to reference Zhang J, Ma Z, Treszezamsky A, Powell SN. MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol. 2005;12(10):902–9.CrossRef Zhang J, Ma Z, Treszezamsky A, Powell SN. MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol. 2005;12(10):902–9.CrossRef
19.
go back to reference Angela H, Wiegant WW, Thijssen PE, Vertegaal AC, Luijsterburg MS, Haico VA. Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining. Cell Cycle. 2013;12(18):3070–82.CrossRef Angela H, Wiegant WW, Thijssen PE, Vertegaal AC, Luijsterburg MS, Haico VA. Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining. Cell Cycle. 2013;12(18):3070–82.CrossRef
20.
go back to reference Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999;13(20):2633.CrossRef Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999;13(20):2633.CrossRef
21.
go back to reference Seluanov A, Mao Z, Gorbunova V. Analysis of DNA double-strand break (DSB) repair in mammalian cells. J Vis Exp. 2010(43):1–6. Seluanov A, Mao Z, Gorbunova V. Analysis of DNA double-strand break (DSB) repair in mammalian cells. J Vis Exp. 2010(43):1–6.
22.
go back to reference van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet (London, England). 2011;378(9804):1741–55.CrossRef van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet (London, England). 2011;378(9804):1741–55.CrossRef
23.
go back to reference Xiao M, Cai J, Cai L, Jia J, Xie L, Zhu Y, et al. Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res. 2017;10(1):24.CrossRef Xiao M, Cai J, Cai L, Jia J, Xie L, Zhu Y, et al. Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res. 2017;10(1):24.CrossRef
24.
go back to reference Zhu W, Wang Y, Zhang D, Yu X, Leng X. MiR-7-5p functions as a tumor supp ressor by targeting SOX18 in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun. 2018;497(4):963–70.CrossRef Zhu W, Wang Y, Zhang D, Yu X, Leng X. MiR-7-5p functions as a tumor supp ressor by targeting SOX18 in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun. 2018;497(4):963–70.CrossRef
25.
go back to reference Luo H, Liang H, Chen Y, Chen S, Xu Y, Xu L, et al. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone. Chem Biol Interact. 2018;283:84–90.CrossRef Luo H, Liang H, Chen Y, Chen S, Xu Y, Xu L, et al. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone. Chem Biol Interact. 2018;283:84–90.CrossRef
26.
go back to reference Jia B, Liu W, Gu J, Wang J, Lv W, Zhang W, et al. MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting yin Yang 1. Exp Cell Res. 2019;375(1):73–81.CrossRef Jia B, Liu W, Gu J, Wang J, Lv W, Zhang W, et al. MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting yin Yang 1. Exp Cell Res. 2019;375(1):73–81.CrossRef
27.
go back to reference Liu H, Wu X, Huang J, Peng J, Guo L. miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP1/ABCC1. Int J Exp Pathol. 2015;96(4):240–7.CrossRef Liu H, Wu X, Huang J, Peng J, Guo L. miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP1/ABCC1. Int J Exp Pathol. 2015;96(4):240–7.CrossRef
28.
go back to reference Liu H, Huang J, Peng J, Wu X, Zhang Y, Zhu W, et.al. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer. 2015;14(1):1–19. Liu H, Huang J, Peng J, Wu X, Zhang Y, Zhu W, et.al. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer. 2015;14(1):1–19.
29.
30.
go back to reference Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610–21.CrossRef Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610–21.CrossRef
31.
go back to reference Teloni F, Altmeyer M. Readers of poly (ADP-ribose): designed to be fit for purpose. Nucleic Acids Res. 2016;44(3):993–1006.CrossRef Teloni F, Altmeyer M. Readers of poly (ADP-ribose): designed to be fit for purpose. Nucleic Acids Res. 2016;44(3):993–1006.CrossRef
32.
go back to reference Mary Ellen M, Maria J. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196–207.CrossRef Mary Ellen M, Maria J. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196–207.CrossRef
33.
go back to reference Mo L, Xiaochun Y. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell. 2013;23(5):693–704.CrossRef Mo L, Xiaochun Y. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell. 2013;23(5):693–704.CrossRef
34.
go back to reference Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, et al. PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov. 2014;4(12):1430–47.CrossRef Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, et al. PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov. 2014;4(12):1430–47.CrossRef
35.
go back to reference Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010;141(2):243–54.CrossRef Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010;141(2):243–54.CrossRef
Metadata
Title
MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell lung cancer
Authors
Jinzhi Lai
Hainan Yang
Yanyang Zhu
Mei Ruan
Yayu Huang
Qiuyu Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5798-7

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine