Skip to main content
Top
Published in: Cancer Cell International 1/2023

Open Access 01-12-2023 | Hepatocellular Carcinoma | Research

AP4M1 as a prognostic biomarker associated with cell proliferation, migration and immune regulation in hepatocellular carcinoma

Authors: Yuanhao Peng, Xuanxuan Li, Kuo Kang, Yangying Zhou

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Background

AP4M1 is a protein-coding gene that plays a crucial role in transporter activity, recognition, and hereditary-associated diseases, but it’s largely unknown in cancers.

Methods

The expression level of AP4M1 in cancers was investigated by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the correlation between AP4M1 and hepatocellular carcinoma (HCC) clinicopathological parameters were analyzed. Univariate and multifactorial COX regression analyses were performed to clarify the prognostic value of AP4M1 in HCC. The correlation between AP4M1 and immune cell infiltration was analyzed using single-sample Gene Set Enrichment Analysis (ssGSEA). Besides, we verified the biological function of AP4M1 by applying Cell Counting Kit-8 (CCK8), colony formation, and transwell assays.

Results

The expression of AP4M1 was significantly elevated in HCC and was correlated with patients’ pathological grades, AFP, and BMI. Kaplan-Meier survival curves indicated that patients with AP4M1 overexpression had worse overall survival. Univariate and multivariate COX regression analyses showed that AP4M1 was an independent risk factor affecting the prognosis of HCC. In addition, we observed that AP4M1 positively correlated with most immune checkpoint suppressor genes in HCC. Moreover, in vitro experiments further confirmed that AP4M1 could promote the proliferation and invasion of HCC.

Conclusions

AP4M1 is highly expressed and associated with poor prognosis in HCC. AP4M1 is closely related to cancer-immune regulation and could be a novel target for HCC, and guiding new strategies for the diagnosis and treatment of HCC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology. 2017;152(4):745–61.CrossRefPubMed Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology. 2017;152(4):745–61.CrossRefPubMed
2.
go back to reference Zhou Y, Li X, Long G, Tao Y, Zhou L, Tang J. Identification and validation of a tyrosine metabolism-related prognostic prediction model and characterization of the tumor microenvironment infiltration in hepatocellular carcinoma. Front Immunol. 2022;13:994259.CrossRefPubMedPubMedCentral Zhou Y, Li X, Long G, Tao Y, Zhou L, Tang J. Identification and validation of a tyrosine metabolism-related prognostic prediction model and characterization of the tumor microenvironment infiltration in hepatocellular carcinoma. Front Immunol. 2022;13:994259.CrossRefPubMedPubMedCentral
3.
go back to reference Schoenberg MB, Hao J, Bucher JN, Miksch RC, Anger HJW, Mayer B et al. Perivascular tumor-infiltrating leukocyte scoring for prognosis of Resected Hepatocellular Carcinoma Patients. Cancers (Basel). 2018;10(10). Schoenberg MB, Hao J, Bucher JN, Miksch RC, Anger HJW, Mayer B et al. Perivascular tumor-infiltrating leukocyte scoring for prognosis of Resected Hepatocellular Carcinoma Patients. Cancers (Basel). 2018;10(10).
4.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-a Cancer Journal for Clinicians. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-a Cancer Journal for Clinicians. 2021;71(3):209–49.CrossRefPubMed
5.
go back to reference Yang P, Liu H, Li Y, Gao Q, Chen X, Chang J, et al. Overexpression of TCERG1 as a prognostic marker in hepatocellular carcinoma: a TCGA data-based analysis. Front Genet. 2022;13:959832.CrossRefPubMedPubMedCentral Yang P, Liu H, Li Y, Gao Q, Chen X, Chang J, et al. Overexpression of TCERG1 as a prognostic marker in hepatocellular carcinoma: a TCGA data-based analysis. Front Genet. 2022;13:959832.CrossRefPubMedPubMedCentral
7.
go back to reference Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, et al. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ. 2023;30(1):137–51.CrossRefPubMed Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, et al. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ. 2023;30(1):137–51.CrossRefPubMed
8.
10.
go back to reference Bettencourt C, Salpietro V, Efthymiou S, Chelban V, Hughes D, Pittman AM, et al. Genotype-phenotype correlations and expansion of the molecular spectrum of AP4M1-related hereditary spastic paraplegia. Orphanet J Rare Dis. 2017;12(1):172.CrossRefPubMedPubMedCentral Bettencourt C, Salpietro V, Efthymiou S, Chelban V, Hughes D, Pittman AM, et al. Genotype-phenotype correlations and expansion of the molecular spectrum of AP4M1-related hereditary spastic paraplegia. Orphanet J Rare Dis. 2017;12(1):172.CrossRefPubMedPubMedCentral
11.
go back to reference Tüysüz B, Bilguvar K, Koçer N, Yalçınkaya C, Çağlayan O, Gül E, et al. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. Am J Med Genet A. 2014;164A(7):1677–85.CrossRefPubMed Tüysüz B, Bilguvar K, Koçer N, Yalçınkaya C, Çağlayan O, Gül E, et al. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. Am J Med Genet A. 2014;164A(7):1677–85.CrossRefPubMed
12.
go back to reference Mattera R, Park SY, De Pace R, Guardia CM, Bonifacino JS. AP-4 mediates export of ATG9A from the trans-golgi network to promote autophagosome formation. Proc Natl Acad Sci U S A. 2017;114(50):E10697–E706.CrossRefPubMedPubMedCentral Mattera R, Park SY, De Pace R, Guardia CM, Bonifacino JS. AP-4 mediates export of ATG9A from the trans-golgi network to promote autophagosome formation. Proc Natl Acad Sci U S A. 2017;114(50):E10697–E706.CrossRefPubMedPubMedCentral
13.
go back to reference Davies AK, Itzhak DN, Edgar JR, Archuleta TL, Hirst J, Jackson LP, et al. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun. 2018;9(1):3958.CrossRefPubMedPubMedCentral Davies AK, Itzhak DN, Edgar JR, Archuleta TL, Hirst J, Jackson LP, et al. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun. 2018;9(1):3958.CrossRefPubMedPubMedCentral
14.
go back to reference De Pace R, Skirzewski M, Damme M, Mattera R, Mercurio J, Foster AM, et al. Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLoS Genet. 2018;14(4):e1007363.CrossRefPubMedPubMedCentral De Pace R, Skirzewski M, Damme M, Mattera R, Mercurio J, Foster AM, et al. Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLoS Genet. 2018;14(4):e1007363.CrossRefPubMedPubMedCentral
15.
go back to reference Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S, et al. The CPTAC Data Portal: a resource for Cancer Proteomics Research. J Proteome Res. 2015;14(6):2707–13.CrossRefPubMed Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S, et al. The CPTAC Data Portal: a resource for Cancer Proteomics Research. J Proteome Res. 2015;14(6):2707–13.CrossRefPubMed
16.
go back to reference Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN: a portal for facilitating Tumor Subgroup Gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.CrossRefPubMedPubMedCentral Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN: a portal for facilitating Tumor Subgroup Gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.CrossRefPubMedPubMedCentral
17.
go back to reference Wen F, Meng F, Li X, Li Q, Liu J, Zhang R, et al. Characterization of prognostic value and immunological roles of RAB22A in hepatocellular carcinoma. Front Immunol. 2023;14:1086342.CrossRefPubMedPubMedCentral Wen F, Meng F, Li X, Li Q, Liu J, Zhang R, et al. Characterization of prognostic value and immunological roles of RAB22A in hepatocellular carcinoma. Front Immunol. 2023;14:1086342.CrossRefPubMedPubMedCentral
18.
go back to reference Liu F, Liang J, Long P, Zhu L, Hou W, Wu X, et al. ZCCHC17 served as a predictive biomarker for prognosis and immunotherapy in Hepatocellular Carcinoma. Front Oncol. 2021;11:799566.CrossRefPubMed Liu F, Liang J, Long P, Zhu L, Hou W, Wu X, et al. ZCCHC17 served as a predictive biomarker for prognosis and immunotherapy in Hepatocellular Carcinoma. Front Oncol. 2021;11:799566.CrossRefPubMed
19.
go back to reference Lanczky A, Gyorffy B. Web-based Survival Analysis Tool tailored for Medical Research (KMplot): development and implementation. J Med Internet Res. 2021;23(7). Lanczky A, Gyorffy B. Web-based Survival Analysis Tool tailored for Medical Research (KMplot): development and implementation. J Med Internet Res. 2021;23(7).
20.
go back to reference Li X, Kang K, Peng Y, Shen L, Shen L, Zhou Y. Comprehensive analysis of the expression profile and clinical implications of regulator of chromosome condensation 2 in pan-cancers. Aging. 2022;14(22):9221–42.CrossRefPubMedPubMedCentral Li X, Kang K, Peng Y, Shen L, Shen L, Zhou Y. Comprehensive analysis of the expression profile and clinical implications of regulator of chromosome condensation 2 in pan-cancers. Aging. 2022;14(22):9221–42.CrossRefPubMedPubMedCentral
21.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: an Open platform for exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer Genomics Portal: an Open platform for exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed
22.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of Complex Cancer Genomics and Clinical Profiles using the cBioPortal. Sci Signal. 2013;6(269). Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of Complex Cancer Genomics and Clinical Profiles using the cBioPortal. Sci Signal. 2013;6(269).
23.
24.
go back to reference Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2.CrossRefPubMed Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2.CrossRefPubMed
25.
go back to reference Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–D63.CrossRefPubMed Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–D63.CrossRefPubMed
26.
go back to reference Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, et al. EGLN1/c-Myc Induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 2017;7(13):3293–305.CrossRefPubMedPubMedCentral Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, et al. EGLN1/c-Myc Induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 2017;7(13):3293–305.CrossRefPubMedPubMedCentral
27.
go back to reference Zhou Y, Lih TM, Pan J, Höti N, Dong M, Cao L, et al. Proteomic signatures of 16 major types of human cancer reveal universal and cancer-type-specific proteins for the identification of potential therapeutic targets. J Hematol Oncol. 2020;13(1):170.CrossRefPubMedPubMedCentral Zhou Y, Lih TM, Pan J, Höti N, Dong M, Cao L, et al. Proteomic signatures of 16 major types of human cancer reveal universal and cancer-type-specific proteins for the identification of potential therapeutic targets. J Hematol Oncol. 2020;13(1):170.CrossRefPubMedPubMedCentral
28.
go back to reference Suda T, Yamashita T, Sunagozaka H, Okada H, Nio K, Sakai Y et al. Dickkopf-1 promotes angiogenesis and is a biomarker for hepatic stem cell-like Hepatocellular Carcinoma. Int J Mol Sci. 2022;23(5). Suda T, Yamashita T, Sunagozaka H, Okada H, Nio K, Sakai Y et al. Dickkopf-1 promotes angiogenesis and is a biomarker for hepatic stem cell-like Hepatocellular Carcinoma. Int J Mol Sci. 2022;23(5).
29.
go back to reference Sun Y, Gao G, Cai J, Wang Y, Qu X, He L, et al. Annexin A2 is a discriminative serological candidate in early hepatocellular carcinoma. Carcinogenesis. 2013;34(3):595–604.CrossRefPubMed Sun Y, Gao G, Cai J, Wang Y, Qu X, He L, et al. Annexin A2 is a discriminative serological candidate in early hepatocellular carcinoma. Carcinogenesis. 2013;34(3):595–604.CrossRefPubMed
31.
go back to reference Zhao K, Zhou X, Xiao Y, Wang Y, Wen L. Research Progress in Alpha-fetoprotein-induced immunosuppression of Liver Cancer. Mini Rev Med Chem. 2022;22(17):2237–43.CrossRefPubMed Zhao K, Zhou X, Xiao Y, Wang Y, Wen L. Research Progress in Alpha-fetoprotein-induced immunosuppression of Liver Cancer. Mini Rev Med Chem. 2022;22(17):2237–43.CrossRefPubMed
32.
go back to reference Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer. 2019;18(1):130.CrossRefPubMedPubMedCentral Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer. 2019;18(1):130.CrossRefPubMedPubMedCentral
33.
go back to reference Hofmann M, Tauber C, Hensel N, Thimme R. CD8 + T cell responses during HCV infection and HCC. J Clin Med. 2021;10(5). Hofmann M, Tauber C, Hensel N, Thimme R. CD8 + T cell responses during HCV infection and HCC. J Clin Med. 2021;10(5).
34.
go back to reference Kent LN, Leone G. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer. 2019;19(6):326–38.CrossRefPubMed Kent LN, Leone G. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer. 2019;19(6):326–38.CrossRefPubMed
36.
go back to reference Huang Y-L, Ning G, Chen L-B, Lian Y-F, Gu Y-R, Wang J-L, et al. Promising diagnostic and prognostic value of E2Fs in human hepatocellular carcinoma. Cancer Manag Res. 2019;11:1725–40.CrossRefPubMedPubMedCentral Huang Y-L, Ning G, Chen L-B, Lian Y-F, Gu Y-R, Wang J-L, et al. Promising diagnostic and prognostic value of E2Fs in human hepatocellular carcinoma. Cancer Manag Res. 2019;11:1725–40.CrossRefPubMedPubMedCentral
Metadata
Title
AP4M1 as a prognostic biomarker associated with cell proliferation, migration and immune regulation in hepatocellular carcinoma
Authors
Yuanhao Peng
Xuanxuan Li
Kuo Kang
Yangying Zhou
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-03089-0

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine