Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Hepatocellular Carcinoma | Review

Three-dimensional (3D) cell culture: a valuable step in advancing treatments for human hepatocellular carcinoma

Authors: Asmaa F. Khafaga, Shaker A. Mousa, Lotfi Aleya, Mohamed M. Abdel-Daim

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common malignant cancer and the third most frequent cause of tumour-related mortality worldwide. Currently, several surgical and medical therapeutic strategies are available for HCCs; however, the interaction between neoplastic cells and non-neoplastic stromal cells within the tumour microenvironment (TME) results in strong therapeutic resistance of HCCs to conventional treatment. Therefore, the development of novel treatments is urgently needed to improve the survival of patients with HCC. The first step in developing efficient chemotherapeutic drugs is the establishment of an appropriate system for studying complex tumour culture and microenvironment interactions. Three-dimensional (3D) culture model might be a crucial bridge between in vivo and in vitro due to its ability to mimic the naturally complicated in vivo TME compared to conventional two-dimensional (2D) cultures. In this review, we shed light on various established 3D culture models of HCC and their role in the investigation of tumour-TME interactions and HCC-related therapeutic resistance.

Graphical Abstract

Literature
1.
go back to reference El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology. 2004;127(5):27–34.CrossRef El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology. 2004;127(5):27–34.CrossRef
2.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J cancer. 2015;136(5):359–86.CrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J cancer. 2015;136(5):359–86.CrossRef
3.
go back to reference De Toni EN, Schlesinger-Raab A, Fuchs M, Schepp W, Ehmer U, Geisler F, Ricke J, Paprottka P, Friess H, Werner J, Gerbes AL. Age independent survival benefit for patients with hepatocellular carcinoma (HCC) without metastases at diagnosis: a population-based study. Gut. 2020;69(1):168–76.PubMedCrossRef De Toni EN, Schlesinger-Raab A, Fuchs M, Schepp W, Ehmer U, Geisler F, Ricke J, Paprottka P, Friess H, Werner J, Gerbes AL. Age independent survival benefit for patients with hepatocellular carcinoma (HCC) without metastases at diagnosis: a population-based study. Gut. 2020;69(1):168–76.PubMedCrossRef
4.
go back to reference Song Y, Kim JS, Kim SH, Park YK, Yu E, Kim KH, Seo HR. Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):1–13.CrossRef Song Y, Kim JS, Kim SH, Park YK, Yu E, Kim KH, Seo HR. Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):1–13.CrossRef
5.
go back to reference Pietras K, Östman A. Hallmarks of cancer: interactions with the tumor stroma. Exp cell res. 2010;316(8):1324–31.PubMedCrossRef Pietras K, Östman A. Hallmarks of cancer: interactions with the tumor stroma. Exp cell res. 2010;316(8):1324–31.PubMedCrossRef
6.
go back to reference McMillin DW, Negri JM, Mitsiades CS. The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discovery. 2013;12(3):217–28.PubMedCrossRef McMillin DW, Negri JM, Mitsiades CS. The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discovery. 2013;12(3):217–28.PubMedCrossRef
7.
go back to reference Zanconato F, Cordenonsi M, Piccolo S. YAP and TAZ: a signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019;19(8):454–64.PubMedCrossRef Zanconato F, Cordenonsi M, Piccolo S. YAP and TAZ: a signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019;19(8):454–64.PubMedCrossRef
8.
go back to reference Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J molec sci. 2018;19(1):181.CrossRef Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J molec sci. 2018;19(1):181.CrossRef
9.
go back to reference Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10.PubMedCrossRef Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10.PubMedCrossRef
10.
go back to reference Saglam-Metiner P, Sultan G, Cigir BA. Bioengineering-inspired three-dimensional culture systems: organoids to create tumor microenvironment. Gene. 2019;686:203–12.PubMedCrossRef Saglam-Metiner P, Sultan G, Cigir BA. Bioengineering-inspired three-dimensional culture systems: organoids to create tumor microenvironment. Gene. 2019;686:203–12.PubMedCrossRef
11.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.PubMedCrossRef
12.
go back to reference Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61.PubMedCrossRef Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61.PubMedCrossRef
13.
go back to reference Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36.PubMedCrossRef Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36.PubMedCrossRef
14.
go back to reference Khawar IA, Park JK, Jung ES, Lee MA, Chang S, Kuh HJ. Three dimensional mixed-cell spheroids mimic stroma-mediated chemoresistance and invasive migration in hepatocellular carcinoma. Neoplasia. 2018;20(8):800–12.PubMedPubMedCentralCrossRef Khawar IA, Park JK, Jung ES, Lee MA, Chang S, Kuh HJ. Three dimensional mixed-cell spheroids mimic stroma-mediated chemoresistance and invasive migration in hepatocellular carcinoma. Neoplasia. 2018;20(8):800–12.PubMedPubMedCentralCrossRef
15.
go back to reference Bruix J, Colombo M. Hepatocellular carcinoma: current state of the art in diagnosis and treatment. Best Pract Res Clin Gastroenterol. 2014;28(5):751.PubMedCrossRef Bruix J, Colombo M. Hepatocellular carcinoma: current state of the art in diagnosis and treatment. Best Pract Res Clin Gastroenterol. 2014;28(5):751.PubMedCrossRef
16.
17.
go back to reference Sia D, Llovet JM. Translating’–omics’ results into precision medicine for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2017;14(10):571–2.PubMedCrossRef Sia D, Llovet JM. Translating’–omics’ results into precision medicine for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2017;14(10):571–2.PubMedCrossRef
18.
go back to reference Llovet JM. Burroughs A, and Bruix. J Hepatocellular carcinoma Lancet. 2003;362:1907–17. Llovet JM. Burroughs A, and Bruix. J Hepatocellular carcinoma Lancet. 2003;362:1907–17.
22.
23.
go back to reference Couri T, Anjana P. Goals and targets for personalized therapy for HCC. Hep Intl. 2019;13(2):125–37.CrossRef Couri T, Anjana P. Goals and targets for personalized therapy for HCC. Hep Intl. 2019;13(2):125–37.CrossRef
24.
go back to reference Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, De Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.PubMedCrossRef Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, De Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.PubMedCrossRef
25.
go back to reference Nishida N, Kitano M, Sakurai T, Kudo M. Molecular mechanism and prediction of sorafenib chemoresistance in human hepatocellular carcinoma. Dig Dis. 2015;33(6):771–9.PubMedCrossRef Nishida N, Kitano M, Sakurai T, Kudo M. Molecular mechanism and prediction of sorafenib chemoresistance in human hepatocellular carcinoma. Dig Dis. 2015;33(6):771–9.PubMedCrossRef
26.
go back to reference Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.PubMedCrossRef Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.PubMedCrossRef
27.
go back to reference Khawar IA, Kim JH, Kuh HJ. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release. 2015;201:78–89.PubMedCrossRef Khawar IA, Kim JH, Kuh HJ. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release. 2015;201:78–89.PubMedCrossRef
28.
go back to reference Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–27.PubMedCrossRef Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–27.PubMedCrossRef
29.
go back to reference Chen F, Zhong Z, Tan HY, Wang N, Feng Y. The Significance of circulating tumor cells in patients with hepatocellular carcinoma: real-time monitoring and moving targets for cancer therapy. Cancers. 2020;12(7):1734.PubMedCentralCrossRef Chen F, Zhong Z, Tan HY, Wang N, Feng Y. The Significance of circulating tumor cells in patients with hepatocellular carcinoma: real-time monitoring and moving targets for cancer therapy. Cancers. 2020;12(7):1734.PubMedCentralCrossRef
30.
go back to reference Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos DA, Libra M. The tumor microenvironment in hepatocellular carcinoma. Int J Oncol. 2012;40(6):1733–47.PubMed Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos DA, Libra M. The tumor microenvironment in hepatocellular carcinoma. Int J Oncol. 2012;40(6):1733–47.PubMed
31.
go back to reference Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol Mech Dis. 2006;1:119–50.CrossRef Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol Mech Dis. 2006;1:119–50.CrossRef
32.
go back to reference Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRef Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRef
34.
go back to reference Affo S, Yu LX, Schwabe RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol. 2017;12:153–86.PubMedCrossRef Affo S, Yu LX, Schwabe RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol. 2017;12:153–86.PubMedCrossRef
35.
go back to reference Carloni V, Luong TV, Rombouts K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever. Liver Int. 2014;34(6):834–43.PubMedCrossRef Carloni V, Luong TV, Rombouts K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever. Liver Int. 2014;34(6):834–43.PubMedCrossRef
36.
go back to reference Coulouarn C, Clément B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol. 2014;60(6):1306–9.PubMedCrossRef Coulouarn C, Clément B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol. 2014;60(6):1306–9.PubMedCrossRef
37.
go back to reference Yang MC, Wang CJ, Liao PC, Yen CJ, Shan YS. Hepatic stellate cells secretes type I collagen to trigger epithelial mesenchymal transition of hepatoma cells. Am J Cancer Res. 2014;4(6):751.PubMedPubMedCentral Yang MC, Wang CJ, Liao PC, Yen CJ, Shan YS. Hepatic stellate cells secretes type I collagen to trigger epithelial mesenchymal transition of hepatoma cells. Am J Cancer Res. 2014;4(6):751.PubMedPubMedCentral
38.
go back to reference Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16(5):282–95.PubMedCrossRef Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16(5):282–95.PubMedCrossRef
40.
go back to reference Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor β blocks the tumor–stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology. 2010;51(2):523–34.PubMedCrossRef Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor β blocks the tumor–stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology. 2010;51(2):523–34.PubMedCrossRef
42.
go back to reference Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Dev Ther. 1911;2014:8. Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Dev Ther. 1911;2014:8.
43.
go back to reference Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9(11):4227–39.PubMed Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res. 2003;9(11):4227–39.PubMed
45.
go back to reference Majety M, Pradel LP, Gies M, Ries CH. Fibroblasts influence survival and therapeutic response in a 3D co-culture model. PLoS ONE. 2015;10(6): e0127948.PubMedPubMedCentralCrossRef Majety M, Pradel LP, Gies M, Ries CH. Fibroblasts influence survival and therapeutic response in a 3D co-culture model. PLoS ONE. 2015;10(6): e0127948.PubMedPubMedCentralCrossRef
46.
go back to reference Song Y, Kim SH, Kim KM, Choi EK, Kim J, Seo HR. Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci Rep. 2016;6(1):1–14. Song Y, Kim SH, Kim KM, Choi EK, Kim J, Seo HR. Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci Rep. 2016;6(1):1–14.
47.
go back to reference Ware MJ, Keshishian V, Law JJ, Ho JC, Favela CA, Rees P, Mith B, Mohammad S, Hwang RF, Rajapakshe K, Coarfa C, Curley SA. Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials. 2016;108:129–42.PubMedPubMedCentralCrossRef Ware MJ, Keshishian V, Law JJ, Ho JC, Favela CA, Rees P, Mith B, Mohammad S, Hwang RF, Rajapakshe K, Coarfa C, Curley SA. Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials. 2016;108:129–42.PubMedPubMedCentralCrossRef
48.
go back to reference Jung HR, Kang HM, Ryu JW, Kim DS, Noh KH, Kim ES, Lee HJ, Chung KS, Cho HS, Kim NS, Im DS. Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo. Sci Rep. 2017;7(1):1–14.CrossRef Jung HR, Kang HM, Ryu JW, Kim DS, Noh KH, Kim ES, Lee HJ, Chung KS, Cho HS, Kim NS, Im DS. Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo. Sci Rep. 2017;7(1):1–14.CrossRef
49.
go back to reference Yang TM, Barbone D, Fennell DA, Broaddus VC. Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids. Am J Respir Cell Mol Biol. 2009;41(1):14–23.PubMedCrossRef Yang TM, Barbone D, Fennell DA, Broaddus VC. Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids. Am J Respir Cell Mol Biol. 2009;41(1):14–23.PubMedCrossRef
50.
go back to reference Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.PubMedCrossRef Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.PubMedCrossRef
51.
go back to reference Yip D, Cho CH. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem Biophys Res Commun. 2013;433(3):327–32.PubMedCrossRef Yip D, Cho CH. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem Biophys Res Commun. 2013;433(3):327–32.PubMedCrossRef
52.
go back to reference Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015–24.PubMedPubMedCentral Baker BM, Chen CS. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(13):3015–24.PubMedPubMedCentral
53.
go back to reference Hickman JA, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, van der Kuip H. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J. 2014;9(9):1115–28.PubMedCrossRef Hickman JA, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, van der Kuip H. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J. 2014;9(9):1115–28.PubMedCrossRef
54.
go back to reference Krishnamurthy S, Nör JE. Orosphere assay: a method for propagation of head and neck cancer stem cells. Head Neck. 2013;35(7):1015–21.PubMedCrossRef Krishnamurthy S, Nör JE. Orosphere assay: a method for propagation of head and neck cancer stem cells. Head Neck. 2013;35(7):1015–21.PubMedCrossRef
55.
go back to reference Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24.PubMedCrossRef Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24.PubMedCrossRef
56.
go back to reference Cawkill D, Eaglestone SS. Evolution of cell-based reagent provision. Drug Discovery Today. 2007;12(19–20):820–5.PubMedCrossRef Cawkill D, Eaglestone SS. Evolution of cell-based reagent provision. Drug Discovery Today. 2007;12(19–20):820–5.PubMedCrossRef
57.
go back to reference Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14(1):61–86.PubMedCrossRef Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14(1):61–86.PubMedCrossRef
58.
go back to reference Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329(5995):1078–81.PubMedPubMedCentralCrossRef Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329(5995):1078–81.PubMedPubMedCentralCrossRef
59.
go back to reference Mseka T, Bamburg JR, Cramer LP. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J Cell Sci. 2007;120(24):4332–44.PubMedCrossRef Mseka T, Bamburg JR, Cramer LP. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J Cell Sci. 2007;120(24):4332–44.PubMedCrossRef
60.
go back to reference Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci. 2010;107(11):4872–7.PubMedPubMedCentralCrossRef Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci. 2010;107(11):4872–7.PubMedPubMedCentralCrossRef
61.
go back to reference Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V. An integrated computational/experimental model of tumor invasion. Can Res. 2006;66(3):1597–604.CrossRef Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V. An integrated computational/experimental model of tumor invasion. Can Res. 2006;66(3):1597–604.CrossRef
62.
go back to reference Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today. 2013;18(5–6):240–9.PubMedCrossRef Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today. 2013;18(5–6):240–9.PubMedCrossRef
64.
go back to reference Ghosh S, Spagnoli GC, Martin I, Ploegert S, Demougin P, Heberer M, Reschner A. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol. 2005;204(2):522–31. PubMedCrossRef Ghosh S, Spagnoli GC, Martin I, Ploegert S, Demougin P, Heberer M, Reschner A. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol. 2005;204(2):522–31. PubMedCrossRef
65.
go back to reference Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci. 2018;19(1):181.PubMedCentralCrossRef Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci. 2018;19(1):181.PubMedCentralCrossRef
66.
go back to reference Nii T, Makino K, Tabata Y. Three-dimensional culture system of cancer cells combined with biomaterials for drug screening. Cancers. 2020;12(10):2754.PubMedCentralCrossRef Nii T, Makino K, Tabata Y. Three-dimensional culture system of cancer cells combined with biomaterials for drug screening. Cancers. 2020;12(10):2754.PubMedCentralCrossRef
67.
go back to reference Fridman IB, Kostas J, Gregus M, Ray S, Sullivan MR, Ivanov AR, Cohen S, Konry T. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment. Acta Biomater. 2021;132:473–88.CrossRef Fridman IB, Kostas J, Gregus M, Ray S, Sullivan MR, Ivanov AR, Cohen S, Konry T. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment. Acta Biomater. 2021;132:473–88.CrossRef
68.
go back to reference Turtoi M, Anghelache M, Bucatariu SM, Deleanu M, Voicu G, Safciuc F, Manduteanu I, Fundueanu G, Simionescu M, Calin M. A novel platform for drug testing: Biomimetic three-dimensional hyaluronic acid-based scaffold seeded with human hepatocarcinoma cells. Int J Biol Macromol 2021;185:604-619. Turtoi M, Anghelache M, Bucatariu SM, Deleanu M, Voicu G, Safciuc F, Manduteanu I, Fundueanu G, Simionescu M, Calin M. A novel platform for drug testing: Biomimetic three-dimensional hyaluronic acid-based scaffold seeded with human hepatocarcinoma cells. Int J Biol Macromol 2021;185:604-619.
69.
go back to reference Nii T, Toshie K, Kimiko M, Yasuhiko T. A co-culture system of three-dimensional tumor-associated macrophages and three-dimensional cancer-associated fibroblasts combined with biomolecule release for cancer cell migration. Tissue Eng Part A. 2020;26(23–24):1272–82.PubMedCrossRef Nii T, Toshie K, Kimiko M, Yasuhiko T. A co-culture system of three-dimensional tumor-associated macrophages and three-dimensional cancer-associated fibroblasts combined with biomolecule release for cancer cell migration. Tissue Eng Part A. 2020;26(23–24):1272–82.PubMedCrossRef
70.
go back to reference Le MCN, Xu K, Wang Z, Beverung S, Steward RL, Florczyk SJ. Evaluation of the effect of 3D porous Chitosan-alginate scaffold stiffness on breast cancer proliferation and migration. J Biomed Mater Res, Part A. 2021;109(10):1990–2000.CrossRef Le MCN, Xu K, Wang Z, Beverung S, Steward RL, Florczyk SJ. Evaluation of the effect of 3D porous Chitosan-alginate scaffold stiffness on breast cancer proliferation and migration. J Biomed Mater Res, Part A. 2021;109(10):1990–2000.CrossRef
72.
go back to reference Park Y, Huh KM, Kang SW. Applications of biomaterials in 3D cell culture and contributions of 3D cell culture to drug development and basic biomedical research. Int J Mol Sci. 2021;22(5):2491.PubMedPubMedCentralCrossRef Park Y, Huh KM, Kang SW. Applications of biomaterials in 3D cell culture and contributions of 3D cell culture to drug development and basic biomedical research. Int J Mol Sci. 2021;22(5):2491.PubMedPubMedCentralCrossRef
73.
go back to reference Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 2014;15(79):3–18.CrossRef Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 2014;15(79):3–18.CrossRef
74.
go back to reference Xue H, Hu L, Xiong Y, Zhu X, Wei C, Cao F, Zhou W, Sun Y, Endo Y, Liu M, Liu Y. Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohyd Polym. 2019;15(226): 115302.CrossRef Xue H, Hu L, Xiong Y, Zhu X, Wei C, Cao F, Zhou W, Sun Y, Endo Y, Liu M, Liu Y. Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohyd Polym. 2019;15(226): 115302.CrossRef
75.
go back to reference Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. Tumor-on-a-chip: From bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7(1):1–23.PubMedPubMedCentralCrossRef Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. Tumor-on-a-chip: From bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7(1):1–23.PubMedPubMedCentralCrossRef
76.
go back to reference Cox MC, Reese LM, Bickford LR, Verbridge SS. Toward the broad adoption of 3D tumor models in the cancer drug pipeline. ACS Biomater Sci Eng. 2015;1(10):877–94.PubMedCrossRef Cox MC, Reese LM, Bickford LR, Verbridge SS. Toward the broad adoption of 3D tumor models in the cancer drug pipeline. ACS Biomater Sci Eng. 2015;1(10):877–94.PubMedCrossRef
77.
go back to reference Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86.PubMedPubMedCentralCrossRef Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86.PubMedPubMedCentralCrossRef
78.
go back to reference Radhakrishnan J, Varadaraj S, Dash SK, Sharma A, Verma RS. Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discov Today. 2020;25(5):879–90.PubMedCrossRef Radhakrishnan J, Varadaraj S, Dash SK, Sharma A, Verma RS. Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discov Today. 2020;25(5):879–90.PubMedCrossRef
79.
go back to reference Buess M, Rajski M, Vogel-Durrer BM, Herrmann R, Rochlitz C. Tumor-Endothelial interaction links the CD44+/CD24-phenotype with poor prognosis in early-stage breast cancer. Neoplasia. 2009;11(10):987–1002.PubMedPubMedCentralCrossRef Buess M, Rajski M, Vogel-Durrer BM, Herrmann R, Rochlitz C. Tumor-Endothelial interaction links the CD44+/CD24-phenotype with poor prognosis in early-stage breast cancer. Neoplasia. 2009;11(10):987–1002.PubMedPubMedCentralCrossRef
80.
go back to reference Yeo M, Chae S, Kim G. An in vitro model using spheroids-laden nanofibrous structures for attaining high degree of myoblast alignment and differentiation. Theranostics. 2021;11(7):3331.PubMedPubMedCentralCrossRef Yeo M, Chae S, Kim G. An in vitro model using spheroids-laden nanofibrous structures for attaining high degree of myoblast alignment and differentiation. Theranostics. 2021;11(7):3331.PubMedPubMedCentralCrossRef
81.
go back to reference Duguay D, Foty RA, Steinberg MS. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol. 2003;253(2):309–23.PubMedCrossRef Duguay D, Foty RA, Steinberg MS. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol. 2003;253(2):309–23.PubMedCrossRef
82.
83.
go back to reference Kim E, Lisby A, Ma C, Lo N, Ehmer U, Hayer KE, Furth EE, Viatour P. Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun. 2019;10(1):1–17. Kim E, Lisby A, Ma C, Lo N, Ehmer U, Hayer KE, Furth EE, Viatour P. Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun. 2019;10(1):1–17.
84.
go back to reference Tang J, Cui J, Chen R, Guo K, Kang X, Li Y, Gao D, Sun L, Xu C, Chen J, Tang Z. A three-dimensional cell biology model of human hepatocellular carcinoma in vitro. Tumor Biol. 2011;32(3):469–79.CrossRef Tang J, Cui J, Chen R, Guo K, Kang X, Li Y, Gao D, Sun L, Xu C, Chen J, Tang Z. A three-dimensional cell biology model of human hepatocellular carcinoma in vitro. Tumor Biol. 2011;32(3):469–79.CrossRef
85.
go back to reference Liu C, Liu Y, Xie HG, Zhao S, Xu XX, Fan LX, Guo X, Lu T, Sun GW, Ma XJ. Role of three-dimensional matrix stiffness in regulating the chemoresistance of hepatocellular carcinoma cells. Biotechnol Appl Biochem. 2015;62(4):556–62.PubMedCrossRef Liu C, Liu Y, Xie HG, Zhao S, Xu XX, Fan LX, Guo X, Lu T, Sun GW, Ma XJ. Role of three-dimensional matrix stiffness in regulating the chemoresistance of hepatocellular carcinoma cells. Biotechnol Appl Biochem. 2015;62(4):556–62.PubMedCrossRef
86.
go back to reference Terashima J, Goto S, Hattori H, Hoshi S, Ushirokawa M, Kudo K, Habano W, Ozawa S. CYP1A1 and CYP1A2 expression levels are differentially regulated in three-dimensional spheroids of liver cancer cells compared to two-dimensional monolayer cultures. Drug Metab Pharmacokinet. 2015;30(6):434–40.PubMedCrossRef Terashima J, Goto S, Hattori H, Hoshi S, Ushirokawa M, Kudo K, Habano W, Ozawa S. CYP1A1 and CYP1A2 expression levels are differentially regulated in three-dimensional spheroids of liver cancer cells compared to two-dimensional monolayer cultures. Drug Metab Pharmacokinet. 2015;30(6):434–40.PubMedCrossRef
87.
go back to reference Takai A, Fako V, Dang H, Forgues M, Yu Z, Budhu A, Wang XW. Three-dimensional organotypic culture models of human hepatocellular carcinoma. Sci Rep. 2016;6(1):1–11.CrossRef Takai A, Fako V, Dang H, Forgues M, Yu Z, Budhu A, Wang XW. Three-dimensional organotypic culture models of human hepatocellular carcinoma. Sci Rep. 2016;6(1):1–11.CrossRef
88.
go back to reference Sun D, Liu Y, Wang H, Deng F, Zhang Y, Zhao S, Ma X, Wu H, Sun G. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells. Int J Biol Macromol. 2018;109:1154–63.PubMedCrossRef Sun D, Liu Y, Wang H, Deng F, Zhang Y, Zhao S, Ma X, Wu H, Sun G. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells. Int J Biol Macromol. 2018;109:1154–63.PubMedCrossRef
89.
go back to reference Le BD, Kang D, Yun S, Jeong YH, Kwak JY, Yoon S, Jin S. Three-dimensional hepatocellular carcinoma/fibroblast model on a nanofibrous membrane mimics tumor cell phenotypic changes and anticancer drug resistance. Nanomaterials. 2018;8(2):64.PubMedCentralCrossRef Le BD, Kang D, Yun S, Jeong YH, Kwak JY, Yoon S, Jin S. Three-dimensional hepatocellular carcinoma/fibroblast model on a nanofibrous membrane mimics tumor cell phenotypic changes and anticancer drug resistance. Nanomaterials. 2018;8(2):64.PubMedCentralCrossRef
90.
go back to reference Ma XL, Sun YF, Wang BL, Shen MN, Zhou Y, Chen JW, Hu B, Gong ZJ, Zhang X, Cao Y, Pan BS. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer. 2019;19(1):1–12.CrossRef Ma XL, Sun YF, Wang BL, Shen MN, Zhou Y, Chen JW, Hu B, Gong ZJ, Zhang X, Cao Y, Pan BS. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer. 2019;19(1):1–12.CrossRef
91.
go back to reference Xie F, Sun L, Pang Y, Xu G, Jin B, Xu H, Lu X, Xu Y, Du S, Wang Y, Feng S. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265: 120416.PubMedCrossRef Xie F, Sun L, Pang Y, Xu G, Jin B, Xu H, Lu X, Xu Y, Du S, Wang Y, Feng S. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265: 120416.PubMedCrossRef
Metadata
Title
Three-dimensional (3D) cell culture: a valuable step in advancing treatments for human hepatocellular carcinoma
Authors
Asmaa F. Khafaga
Shaker A. Mousa
Lotfi Aleya
Mohamed M. Abdel-Daim
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02662-3

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine