Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Diabetes | Research

Circulating exosomal mir-16-2-3p is associated with coronary microvascular dysfunction in diabetes through regulating the fatty acid degradation of endothelial cells

Authors: Yihai Liu, Chongxia Zhong, Shan Chen, Yanan Xue, Zhonghai Wei, Li Dong, Lina Kang

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Background

Coronary microvascular dysfunction (CMD) is a frequent complication of diabetes mellitus (DM) characterized by challenges in both diagnosis and intervention. Circulating levels of microRNAs are increasingly recognized as potential biomarkers for cardiovascular diseases.

Methods

Serum exosomes from patients with DM, DM with coronary microvascular dysfunction (DM-CMD) or DM with coronary artery disease (DM-CAD) were extracted for miRNA sequencing. The expression of miR-16-2-3p was assessed in high glucose-treated human aortic endothelial cells and human cardiac microvascular endothelial cells. Fluorescence in situ hybridization (FISH) was used to detect miR-16-2-3p within the myocardium of db/db mice. Intramyocardial injection of lentivirus overexpressing miR-16-2-3p was used to explore the function of the resulting gene in vivo. Bioinformatic analysis and in vitro assays were carried out to explore the downstream function and mechanism of miR-16-2-3p. Wound healing and tube formation assays were used to explore the effect of miR-16-2-3p on endothelial cell function.

Results

miR-16-2-3p was upregulated in circulating exosomes from DM-CMD, high glucose-treated human cardiac microvascular endothelial cells and the hearts of db/db mice. Cardiac miR-16-2-3p overexpression improved cardiac systolic and diastolic function and coronary microvascular reperfusion. In vitro experiments revealed that miR-16-2-3p could regulate fatty acid degradation in endothelial cells, and ACADM was identified as a potential downstream target. MiR-16-2-3p increased cell migration and tube formation in microvascular endothelial cells.

Conclusions

Our findings suggest that circulating miR-16-2-3p may serve as a biomarker for individuals with DM-CMD. Additionally, miR-16-2-3p appears to alleviate coronary microvascular dysfunction in diabetes by modulating ACADM-mediated fatty acid degradation in endothelial cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.CrossRefPubMed Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.CrossRefPubMed
2.
5.
go back to reference Lunder M, Janic M, Sabovic M. Prevention of Vascular complications in Diabetes Mellitus patients: Focus on the arterial wall. Curr Vasc Pharmacol. 2019;17(1):6–15.CrossRefPubMed Lunder M, Janic M, Sabovic M. Prevention of Vascular complications in Diabetes Mellitus patients: Focus on the arterial wall. Curr Vasc Pharmacol. 2019;17(1):6–15.CrossRefPubMed
6.
go back to reference Paolo G, Camici MD, Filippo Crea MD. Coronary microvascular dysfunction. N Engl J Med 2007. Paolo G, Camici MD, Filippo Crea MD. Coronary microvascular dysfunction. N Engl J Med 2007.
7.
go back to reference Taqueti VR. Coronary flow reserve: a versatile tool for interrogating pathophysiology, and a reliable marker of cardiovascular outcomes and mortality. Eur Heart J. 2022;43(16):1594–6.CrossRefPubMed Taqueti VR. Coronary flow reserve: a versatile tool for interrogating pathophysiology, and a reliable marker of cardiovascular outcomes and mortality. Eur Heart J. 2022;43(16):1594–6.CrossRefPubMed
8.
go back to reference Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, Niccoli G, Crea F. Coronary microvascular dysfunction across the Spectrum of Cardiovascular diseases: JACC State-of-the-art review. J Am Coll Cardiol. 2021;78(13):1352–71.CrossRefPubMedPubMedCentral Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, Niccoli G, Crea F. Coronary microvascular dysfunction across the Spectrum of Cardiovascular diseases: JACC State-of-the-art review. J Am Coll Cardiol. 2021;78(13):1352–71.CrossRefPubMedPubMedCentral
9.
go back to reference Barile L, Moccetti T, Marban E, Vassalli G. Roles of exosomes in cardioprotection. Eur Heart J. 2017;38(18):1372–9.PubMed Barile L, Moccetti T, Marban E, Vassalli G. Roles of exosomes in cardioprotection. Eur Heart J. 2017;38(18):1372–9.PubMed
10.
go back to reference Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, Shao Y, Zheng S. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020;5(1):144.CrossRefPubMedPubMedCentral Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, Shao Y, Zheng S. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020;5(1):144.CrossRefPubMedPubMedCentral
11.
go back to reference Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.CrossRefPubMed Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.CrossRefPubMed
12.
go back to reference Hosen MR, Goody PR, Zietzer A, Xiang X, Niepmann ST, Sedaghat A, Tiyerili V, Chennupati R, Moore JBt, Boon RA, et al. Circulating MicroRNA-122-5p is Associated with a lack of improvement in left ventricular function after transcatheter aortic valve replacement and regulates viability of Cardiomyocytes through Extracellular vesicles. Circulation. 2022;146(24):1836–54.CrossRefPubMed Hosen MR, Goody PR, Zietzer A, Xiang X, Niepmann ST, Sedaghat A, Tiyerili V, Chennupati R, Moore JBt, Boon RA, et al. Circulating MicroRNA-122-5p is Associated with a lack of improvement in left ventricular function after transcatheter aortic valve replacement and regulates viability of Cardiomyocytes through Extracellular vesicles. Circulation. 2022;146(24):1836–54.CrossRefPubMed
13.
go back to reference Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1_ diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1_ diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998.
14.
go back to reference Ni J, Liu Y, Kang L, Wang L, Han Z, Wang K, Xu B, Gu R. Human trophoblast-derived exosomes attenuate doxorubicin-induced cardiac injury by regulating miR-200b and downstream Zeb1. J Nanobiotechnol. 2020;18(1):171.CrossRef Ni J, Liu Y, Kang L, Wang L, Han Z, Wang K, Xu B, Gu R. Human trophoblast-derived exosomes attenuate doxorubicin-induced cardiac injury by regulating miR-200b and downstream Zeb1. J Nanobiotechnol. 2020;18(1):171.CrossRef
15.
go back to reference Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.CrossRefPubMed Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.CrossRefPubMed
16.
go back to reference Massaro JD, Polli CD, Costa ESM, Alves CC, Passos GA, Sakamoto-Hojo ET, Rodrigues de Holanda Miranda W, Bispo Cezar NJ, Rassi DM, Crispim F, et al. Post-transcriptional markers associated with clinical complications in type 1 and type 2 diabetes mellitus. Mol Cell Endocrinol. 2019;490:1–14.CrossRefPubMed Massaro JD, Polli CD, Costa ESM, Alves CC, Passos GA, Sakamoto-Hojo ET, Rodrigues de Holanda Miranda W, Bispo Cezar NJ, Rassi DM, Crispim F, et al. Post-transcriptional markers associated with clinical complications in type 1 and type 2 diabetes mellitus. Mol Cell Endocrinol. 2019;490:1–14.CrossRefPubMed
17.
go back to reference Vancheri F, Longo G, Vancheri S, Henein M. Coronary microvascular dysfunction. J Clin Med 2020, 9(9). Vancheri F, Longo G, Vancheri S, Henein M. Coronary microvascular dysfunction. J Clin Med 2020, 9(9).
18.
go back to reference Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS, Beussink-Nelson L, Ljung Faxen U, Fermer ML, Broberg MA, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439–50.CrossRefPubMedPubMedCentral Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS, Beussink-Nelson L, Ljung Faxen U, Fermer ML, Broberg MA, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439–50.CrossRefPubMedPubMedCentral
19.
go back to reference Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Dorbala S, Blankstein R, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9.CrossRefPubMed Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Dorbala S, Blankstein R, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9.CrossRefPubMed
20.
go back to reference Rush CJ, Berry C, Oldroyd KG, Rocchiccioli JP, Lindsay MM, Touyz RM, Murphy CL, Ford TJ, Sidik N, McEntegart MB, et al. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 2021;6(10):1130–43.CrossRefPubMed Rush CJ, Berry C, Oldroyd KG, Rocchiccioli JP, Lindsay MM, Touyz RM, Murphy CL, Ford TJ, Sidik N, McEntegart MB, et al. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 2021;6(10):1130–43.CrossRefPubMed
21.
go back to reference Yang JH, Obokata M, Reddy YNV, Redfield MM, Lerman A, Borlaug BA. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22(3):432–41.CrossRefPubMed Yang JH, Obokata M, Reddy YNV, Redfield MM, Lerman A, Borlaug BA. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22(3):432–41.CrossRefPubMed
22.
go back to reference Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.CrossRefPubMed Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.CrossRefPubMed
23.
go back to reference Foley JE. Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus. Diabetes Care 1992. Foley JE. Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus. Diabetes Care 1992.
24.
go back to reference Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, Gropler RJ. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47(3):598–604.CrossRefPubMed Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, Gropler RJ. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47(3):598–604.CrossRefPubMed
25.
go back to reference Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH. Lipotoxic heart disease in obese rats_ implications for human obesity. Proc Natl Acad Sci U S A 2000. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH. Lipotoxic heart disease in obese rats_ implications for human obesity. Proc Natl Acad Sci U S A 2000.
26.
go back to reference Tsuji T, Mizushige K, Noma T, Murakami K, Ohmori K, Miyatake A, Kohno M. Pioglitazone improves left ventricular diastolic function and decreases collagen Accumulation in Prediabetic Stage of a type II Diabetic Rat. J Cardiovasc Pharmacol 2001. Tsuji T, Mizushige K, Noma T, Murakami K, Ohmori K, Miyatake A, Kohno M. Pioglitazone improves left ventricular diastolic function and decreases collagen Accumulation in Prediabetic Stage of a type II Diabetic Rat. J Cardiovasc Pharmacol 2001.
27.
go back to reference van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 2000. van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 2000.
28.
go back to reference Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197–210.CrossRefPubMed Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197–210.CrossRefPubMed
29.
go back to reference Zhang Z, Zhang S, Wang Y, Yang M, Zhang N, Jin Z, Ding L, Jiang W, Yang J, Sun Z, et al. Autophagy inhibits high glucose induced cardiac microvascular endothelial cells apoptosis by mTOR signal pathway. Apoptosis. 2017;22(12):1510–23.CrossRefPubMed Zhang Z, Zhang S, Wang Y, Yang M, Zhang N, Jin Z, Ding L, Jiang W, Yang J, Sun Z, et al. Autophagy inhibits high glucose induced cardiac microvascular endothelial cells apoptosis by mTOR signal pathway. Apoptosis. 2017;22(12):1510–23.CrossRefPubMed
30.
go back to reference Qi XF, Chen ZY, Xia JB, Zheng L, Zhao H, Pi LQ, Park KS, Kim SK, Lee KJ, Cai DQ. FoxO3a suppresses the senescence of cardiac microvascular endothelial cells by regulating the ROS-mediated cell cycle. J Mol Cell Cardiol. 2015;81:114–26.CrossRefPubMed Qi XF, Chen ZY, Xia JB, Zheng L, Zhao H, Pi LQ, Park KS, Kim SK, Lee KJ, Cai DQ. FoxO3a suppresses the senescence of cardiac microvascular endothelial cells by regulating the ROS-mediated cell cycle. J Mol Cell Cardiol. 2015;81:114–26.CrossRefPubMed
31.
go back to reference Marroquin OC, Kip KE, Mulukutla SR, Ridker PM, Pepine CJ, Tjandrawan T, Kelsey SF, Mankad S, Rogers WJ, Merz CN, et al. Inflammation, endothelial cell activation, and coronary microvascular dysfunction in women with chest pain and no obstructive coronary artery disease. Am Heart J. 2005;150(1):109–15.CrossRefPubMed Marroquin OC, Kip KE, Mulukutla SR, Ridker PM, Pepine CJ, Tjandrawan T, Kelsey SF, Mankad S, Rogers WJ, Merz CN, et al. Inflammation, endothelial cell activation, and coronary microvascular dysfunction in women with chest pain and no obstructive coronary artery disease. Am Heart J. 2005;150(1):109–15.CrossRefPubMed
32.
go back to reference De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–63.CrossRefPubMed De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–63.CrossRefPubMed
33.
go back to reference Koziel A, Woyda-Ploszczyca A, Kicinska A, Jarmuszkiewicz W. The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells. Pflugers Arch. 2012;464(6):657–69.CrossRefPubMedPubMedCentral Koziel A, Woyda-Ploszczyca A, Kicinska A, Jarmuszkiewicz W. The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells. Pflugers Arch. 2012;464(6):657–69.CrossRefPubMedPubMedCentral
34.
go back to reference Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116(4):1071–80.CrossRefPubMedPubMedCentral Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116(4):1071–80.CrossRefPubMedPubMedCentral
36.
go back to reference Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin. 2019;40(1):1–8.CrossRefPubMed Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin. 2019;40(1):1–8.CrossRefPubMed
37.
go back to reference Kalucka J, Bierhansl L, Conchinha NV, Missiaen R, Elia I, Bruning U, Scheinok S, Treps L, Cantelmo AR, Dubois C, et al. Quiescent endothelial cells upregulate fatty acid beta-oxidation for Vasculoprotection via Redox Homeostasis. Cell Metab. 2018;28(6):881–894e813.CrossRefPubMed Kalucka J, Bierhansl L, Conchinha NV, Missiaen R, Elia I, Bruning U, Scheinok S, Treps L, Cantelmo AR, Dubois C, et al. Quiescent endothelial cells upregulate fatty acid beta-oxidation for Vasculoprotection via Redox Homeostasis. Cell Metab. 2018;28(6):881–894e813.CrossRefPubMed
38.
go back to reference Renate T, de Jongh EH, Serné RG, Ijzerman. Greetje de Vries, Stehouwer CDA: Free fatty acid levels modulate microvascular function_ relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 2004. Renate T, de Jongh EH, Serné RG, Ijzerman. Greetje de Vries, Stehouwer CDA: Free fatty acid levels modulate microvascular function_ relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 2004.
39.
go back to reference Francesca Patella, Zachary T, Schug E, Persi LJ, Neilson Z, Erami D, Avanzato F, Maione JR, Hernandez-Fernaud et al. Gillian Mackay, Liang Zheng : Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol Cell Proteomics 2015. Francesca Patella, Zachary T, Schug E, Persi LJ, Neilson Z, Erami D, Avanzato F, Maione JR, Hernandez-Fernaud et al. Gillian Mackay, Liang Zheng : Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol Cell Proteomics 2015.
40.
go back to reference Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022;21(1):31.CrossRefPubMedPubMedCentral Veitch S, Njock MS, Chandy M, Siraj MA, Chi L, Mak H, Yu K, Rathnakumar K, Perez-Romero CA, Chen Z, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022;21(1):31.CrossRefPubMedPubMedCentral
Metadata
Title
Circulating exosomal mir-16-2-3p is associated with coronary microvascular dysfunction in diabetes through regulating the fatty acid degradation of endothelial cells
Authors
Yihai Liu
Chongxia Zhong
Shan Chen
Yanan Xue
Zhonghai Wei
Li Dong
Lina Kang
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Diabetes
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-024-02142-0

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.