Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2014

Open Access 01-12-2014 | Original investigation

Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis

Authors: Linnéa Eriksson, Thomas Nyström

Published in: Cardiovascular Diabetology | Issue 1/2014

Login to get access

Abstract

Background

The prevalence of type 2 diabetes (T2D) among adults worldwide is rapidly increasing, and in patients with diabetes the major cause of death is macrovascular disease. Endothelial cells play an important role in maintaining vascular homeostasis. Free fatty acids, which are elevated in T2D, have previously been shown to induce endothelial dysfunction and apoptosis of endothelial cells, which is considered as an important and early factor in the onset of atherosclerosis and cardiovascular disease. Metformin, which is used as first line treatment of T2D patients, is believed to exert its pharmacological effects through activation of AMP-activated protein kinase, which has emerged as a new potential target in reversing endothelial dysfunction.

Methods

Here we studied the protective effect of metformin against free fatty acid-induced apoptosis of human coronary artery endothelial cells (HCAECs) by assessing DNA fragmentation and cleaved caspase 3 levels. We also attempted to elucidate the underlying mechanisms by investigating the involvement of AMP-activated protein kinase, p38 MAPK and eNOS. Generation of reactive oxygen species by free fatty acid exposure was also examined.

Results

Our results suggest that metformin protects HCAECs from lipoapoptosis, an effect that involves eNOS and p38 MAPK, downstream of AMPK signaling, but not as previously suggested through suppression of reactive oxygen species.

Conclusion

The protective effect of metformin against free fatty acid induced apoptosis is potentially clinically relevant as metformin is first line treatment for patients with T2D, a patient group which is rapidly increasing and carries a high burden of cardiovascular disease.
Appendix
Available only for authorised users
Literature
2.
go back to reference Dandona P, Ghanim H, Chaudhuri A, Mohanty P: Thiazolidinediones-improving endothelial function and potential long-term benefits on cardiovascular disease in subjects with type 2 diabetes. J Diabetes Complications. 2008, 22 (1): 62-75. 10.1016/j.jdiacomp.2006.10.009.CrossRefPubMed Dandona P, Ghanim H, Chaudhuri A, Mohanty P: Thiazolidinediones-improving endothelial function and potential long-term benefits on cardiovascular disease in subjects with type 2 diabetes. J Diabetes Complications. 2008, 22 (1): 62-75. 10.1016/j.jdiacomp.2006.10.009.CrossRefPubMed
3.
go back to reference Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998, 352 (9131): 837-853. 10.1016/S0140-6736(98)07019-6. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998, 352 (9131): 837-853. 10.1016/S0140-6736(98)07019-6.
4.
go back to reference Rask-Madsen C, King GL: Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007, 3 (1): 46-56. 10.1038/ncpendmet0366.CrossRefPubMed Rask-Madsen C, King GL: Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007, 3 (1): 46-56. 10.1038/ncpendmet0366.CrossRefPubMed
5.
go back to reference Xu J, Zou MH: Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation. 2009, 120 (13): 1266-1286. 10.1161/CIRCULATIONAHA.108.835223.PubMedCentralCrossRefPubMed Xu J, Zou MH: Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation. 2009, 120 (13): 1266-1286. 10.1161/CIRCULATIONAHA.108.835223.PubMedCentralCrossRefPubMed
6.
go back to reference Nathanson D, Nystrom T: Hypoglycemic pharmacological treatment of type 2 diabetes: targeting the endothelium. Mol Cell Endocrinol. 2009, 297 (1-2): 112-126. 10.1016/j.mce.2008.11.016.CrossRefPubMed Nathanson D, Nystrom T: Hypoglycemic pharmacological treatment of type 2 diabetes: targeting the endothelium. Mol Cell Endocrinol. 2009, 297 (1-2): 112-126. 10.1016/j.mce.2008.11.016.CrossRefPubMed
7.
go back to reference Lundman P, Tornvall P, Nilsson L, Pernow J: A triglyceride-rich fat emulsion and free fatty acids but not very low density lipoproteins impair endothelium-dependent vasorelaxation. Atherosclerosis. 2001, 159 (1): 35-41. 10.1016/S0021-9150(01)00478-6.CrossRefPubMed Lundman P, Tornvall P, Nilsson L, Pernow J: A triglyceride-rich fat emulsion and free fatty acids but not very low density lipoproteins impair endothelium-dependent vasorelaxation. Atherosclerosis. 2001, 159 (1): 35-41. 10.1016/S0021-9150(01)00478-6.CrossRefPubMed
8.
go back to reference Chai W, Liu Z: p38 mitogen-activated protein kinase mediates palmitate-induced apoptosis but not inhibitor of nuclear factor-kappaB degradation in human coronary artery endothelial cells. Endocrinology. 2007, 148 (4): 1622-1628. 10.1210/en.2006-1068.CrossRefPubMed Chai W, Liu Z: p38 mitogen-activated protein kinase mediates palmitate-induced apoptosis but not inhibitor of nuclear factor-kappaB degradation in human coronary artery endothelial cells. Endocrinology. 2007, 148 (4): 1622-1628. 10.1210/en.2006-1068.CrossRefPubMed
9.
go back to reference Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998, 352 (9131): 854-865. 10.1016/S0140-6736(98)07037-8. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998, 352 (9131): 854-865. 10.1016/S0140-6736(98)07037-8.
10.
go back to reference Davis BJ, Xie Z, Viollet B, Zou MH: Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006, 55 (2): 496-505. 10.2337/diabetes.55.02.06.db05-1064.CrossRefPubMed Davis BJ, Xie Z, Viollet B, Zou MH: Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006, 55 (2): 496-505. 10.2337/diabetes.55.02.06.db05-1064.CrossRefPubMed
11.
go back to reference Kim JE, Kim YW, Lee IK, Kim JY, Kang YJ, Park SY: AMP-activated protein kinase activation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) inhibits palmitate-induced endothelial cell apoptosis through reactive oxygen species suppression. J Pharmacol Sci. 2008, 106 (3): 394-403. 10.1254/jphs.FP0071857.CrossRefPubMed Kim JE, Kim YW, Lee IK, Kim JY, Kang YJ, Park SY: AMP-activated protein kinase activation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) inhibits palmitate-induced endothelial cell apoptosis through reactive oxygen species suppression. J Pharmacol Sci. 2008, 106 (3): 394-403. 10.1254/jphs.FP0071857.CrossRefPubMed
12.
go back to reference Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH: Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem. 2004, 279 (42): 43940-43951. 10.1074/jbc.M404421200.CrossRefPubMed Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH: Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem. 2004, 279 (42): 43940-43951. 10.1074/jbc.M404421200.CrossRefPubMed
13.
go back to reference Bhatt MP, Lim YC, Kim YM, Ha KS: C-peptide activates AMPKalpha and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes. 2013, 62 (11): 3851-3862. 10.2337/db13-0039.PubMedCentralCrossRefPubMed Bhatt MP, Lim YC, Kim YM, Ha KS: C-peptide activates AMPKalpha and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes. 2013, 62 (11): 3851-3862. 10.2337/db13-0039.PubMedCentralCrossRefPubMed
14.
go back to reference Suh KS, Chon S, Oh S, Kim SW, Kim JW, Kim YS, Woo JT: Prooxidative effects of green tea polyphenol (-)-epigallocatechin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol Toxicol. 2010, 26 (3): 189-199. 10.1007/s10565-009-9137-7.CrossRefPubMed Suh KS, Chon S, Oh S, Kim SW, Kim JW, Kim YS, Woo JT: Prooxidative effects of green tea polyphenol (-)-epigallocatechin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol Toxicol. 2010, 26 (3): 189-199. 10.1007/s10565-009-9137-7.CrossRefPubMed
15.
go back to reference Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A: Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013, 48 (3): 322-332. 10.1007/s00535-012-0637-5.CrossRefPubMed Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A: Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013, 48 (3): 322-332. 10.1007/s00535-012-0637-5.CrossRefPubMed
16.
go back to reference Erdogdu O, Eriksson L, Xu H, Sjoholm A, Zhang Q, Nystrom T: Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J Mol Endocrinol. 2013, 50 (2): 229-241. 10.1530/JME-12-0166.CrossRefPubMed Erdogdu O, Eriksson L, Xu H, Sjoholm A, Zhang Q, Nystrom T: Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J Mol Endocrinol. 2013, 50 (2): 229-241. 10.1530/JME-12-0166.CrossRefPubMed
17.
go back to reference Rajagopalan S, Somers EC, Brook RD, Kehrer C, Pfenninger D, Lewis E, Chakrabarti A, Richardson BC, Shelden E, McCune WJ, Kaplan MJ: Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood. 2004, 103 (10): 3677-3683. 10.1182/blood-2003-09-3198.CrossRefPubMed Rajagopalan S, Somers EC, Brook RD, Kehrer C, Pfenninger D, Lewis E, Chakrabarti A, Richardson BC, Shelden E, McCune WJ, Kaplan MJ: Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood. 2004, 103 (10): 3677-3683. 10.1182/blood-2003-09-3198.CrossRefPubMed
18.
go back to reference Asai K, Kudej RK, Shen YT, Yang GP, Takagi G, Kudej AB, Geng YJ, Sato N, Nazareno JB, Vatner DE, Natividad F, Bishop SP, Vatner SF: Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler Thromb Vasc Biol. 2000, 20 (6): 1493-1499. 10.1161/01.ATV.20.6.1493.CrossRefPubMed Asai K, Kudej RK, Shen YT, Yang GP, Takagi G, Kudej AB, Geng YJ, Sato N, Nazareno JB, Vatner DE, Natividad F, Bishop SP, Vatner SF: Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler Thromb Vasc Biol. 2000, 20 (6): 1493-1499. 10.1161/01.ATV.20.6.1493.CrossRefPubMed
19.
go back to reference Dimmeler S, Hermann C, Zeiher AM: Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis?. Eur Cytokine Netw. 1998, 9 (4): 697-698.PubMed Dimmeler S, Hermann C, Zeiher AM: Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis?. Eur Cytokine Netw. 1998, 9 (4): 697-698.PubMed
20.
go back to reference Eskens BJ, Zuurbier CJ, van Haare J, Vink H, van Teeffelen JW: Effects of two weeks of metformin treatment on whole-body glycocalyx barrier properties in db/db mice. Cardiovasc Diabetol. 2013, 12: 175-10.1186/1475-2840-12-175.PubMedCentralCrossRefPubMed Eskens BJ, Zuurbier CJ, van Haare J, Vink H, van Teeffelen JW: Effects of two weeks of metformin treatment on whole-body glycocalyx barrier properties in db/db mice. Cardiovasc Diabetol. 2013, 12: 175-10.1186/1475-2840-12-175.PubMedCentralCrossRefPubMed
21.
go back to reference Lu J, Ji J, Meng H, Wang D, Jiang B, Liu L, Randell E, Adeli K, Meng QH: The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc Diabetol. 2013, 12: 58-10.1186/1475-2840-12-58.PubMedCentralCrossRefPubMed Lu J, Ji J, Meng H, Wang D, Jiang B, Liu L, Randell E, Adeli K, Meng QH: The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc Diabetol. 2013, 12: 58-10.1186/1475-2840-12-58.PubMedCentralCrossRefPubMed
22.
go back to reference Eriksson L, Erdogdu O, Nystrom T, Zhang Q, Sjoholm A: Effects of some anti-diabetic and cardioprotective agents on proliferation and apoptosis of human coronary artery endothelial cells. Cardiovasc Diabetol. 2012, 11 (1): 27-10.1186/1475-2840-11-27.PubMedCentralCrossRefPubMed Eriksson L, Erdogdu O, Nystrom T, Zhang Q, Sjoholm A: Effects of some anti-diabetic and cardioprotective agents on proliferation and apoptosis of human coronary artery endothelial cells. Cardiovasc Diabetol. 2012, 11 (1): 27-10.1186/1475-2840-11-27.PubMedCentralCrossRefPubMed
23.
go back to reference Watt MJ, Steinberg GR, Chen ZP, Kemp BE, Febbraio MA: Fatty acids stimulate AMP-activated protein kinase and enhance fatty acid oxidation in L6 myotubes. J Physiol. 2006, 574 (Pt 1): 139-147. 10.1113/jphysiol.2006.107318.PubMedCentralCrossRefPubMed Watt MJ, Steinberg GR, Chen ZP, Kemp BE, Febbraio MA: Fatty acids stimulate AMP-activated protein kinase and enhance fatty acid oxidation in L6 myotubes. J Physiol. 2006, 574 (Pt 1): 139-147. 10.1113/jphysiol.2006.107318.PubMedCentralCrossRefPubMed
24.
go back to reference Zou MH, Hou XY, Shi CM, Kirkpatick S, Liu F, Goldman MH, Cohen RA: Activation of 5′-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. Role of peroxynitrite. J Biol Chem. 2003, 278 (36): 34003-34010. 10.1074/jbc.M300215200.CrossRefPubMed Zou MH, Hou XY, Shi CM, Kirkpatick S, Liu F, Goldman MH, Cohen RA: Activation of 5′-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. Role of peroxynitrite. J Biol Chem. 2003, 278 (36): 34003-34010. 10.1074/jbc.M300215200.CrossRefPubMed
25.
go back to reference Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA: Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem. 2002, 277 (36): 32552-32557. 10.1074/jbc.M204512200.CrossRefPubMed Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA: Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem. 2002, 277 (36): 32552-32557. 10.1074/jbc.M204512200.CrossRefPubMed
26.
go back to reference Boyle JG, Salt IP, McKay GA: Metformin action on AMP-activated protein kinase: a translational research approach to understanding a potential new therapeutic target. Diabet Med. 2010, 27 (10): 1097-1106. 10.1111/j.1464-5491.2010.03098.x.CrossRefPubMed Boyle JG, Salt IP, McKay GA: Metformin action on AMP-activated protein kinase: a translational research approach to understanding a potential new therapeutic target. Diabet Med. 2010, 27 (10): 1097-1106. 10.1111/j.1464-5491.2010.03098.x.CrossRefPubMed
27.
go back to reference Fediuc S, Gaidhu MP, Ceddia RB: Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. J Lipid Res. 2006, 47 (2): 412-420. 10.1194/jlr.M500438-JLR200.CrossRefPubMed Fediuc S, Gaidhu MP, Ceddia RB: Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. J Lipid Res. 2006, 47 (2): 412-420. 10.1194/jlr.M500438-JLR200.CrossRefPubMed
28.
go back to reference Cao J, Meng S, Chang E, Beckwith-Fickas K, Xiong L, Cole RN, Radovick S, Wondisford FE, He L: Low Concentrations of Metformin Suppress Glucose Production in Hepatocytes through AMP-activated Protein Kinase (AMPK). J Biol Chem. 2014, 289 (30): 20435-20446. 10.1074/jbc.M114.567271.PubMedCentralCrossRefPubMed Cao J, Meng S, Chang E, Beckwith-Fickas K, Xiong L, Cole RN, Radovick S, Wondisford FE, He L: Low Concentrations of Metformin Suppress Glucose Production in Hepatocytes through AMP-activated Protein Kinase (AMPK). J Biol Chem. 2014, 289 (30): 20435-20446. 10.1074/jbc.M114.567271.PubMedCentralCrossRefPubMed
29.
go back to reference Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, Baas AS, Paramsothy P, Giachelli CM, Corson MA, Raines EW: Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005, 25 (5): 989-994. 10.1161/01.ATV.0000160549.60980.a8.CrossRefPubMed Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, Baas AS, Paramsothy P, Giachelli CM, Corson MA, Raines EW: Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005, 25 (5): 989-994. 10.1161/01.ATV.0000160549.60980.a8.CrossRefPubMed
30.
go back to reference Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD: Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000, 49 (7): 1231-1238. 10.2337/diabetes.49.7.1231.CrossRefPubMed Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD: Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000, 49 (7): 1231-1238. 10.2337/diabetes.49.7.1231.CrossRefPubMed
31.
go back to reference Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H: ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001, 2 (3): 222-228. 10.1093/embo-reports/kve046.PubMedCentralCrossRefPubMed Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H: ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001, 2 (3): 222-228. 10.1093/embo-reports/kve046.PubMedCentralCrossRefPubMed
32.
go back to reference Grankvist N, Amable L, Honkanen RE, Sjoholm A, Ortsater H: Serine/threonine protein phosphatase 5 regulates glucose homeostasis in vivo and apoptosis signalling in mouse pancreatic islets and clonal MIN6 cells. Diabetologia. 2012, 55 (7): 2005-2015. 10.1007/s00125-012-2541-1.CrossRefPubMed Grankvist N, Amable L, Honkanen RE, Sjoholm A, Ortsater H: Serine/threonine protein phosphatase 5 regulates glucose homeostasis in vivo and apoptosis signalling in mouse pancreatic islets and clonal MIN6 cells. Diabetologia. 2012, 55 (7): 2005-2015. 10.1007/s00125-012-2541-1.CrossRefPubMed
33.
go back to reference Hattori K, Naguro I, Runchel C, Ichijo H: The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal. 2009, 7: 9-10.1186/1478-811X-7-9.PubMedCentralCrossRefPubMed Hattori K, Naguro I, Runchel C, Ichijo H: The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal. 2009, 7: 9-10.1186/1478-811X-7-9.PubMedCentralCrossRefPubMed
34.
go back to reference Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, Miura D, Takayanagi R: Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014, 232 (1): 156-164. 10.1016/j.atherosclerosis.2013.10.025.CrossRefPubMed Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, Miura D, Takayanagi R: Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014, 232 (1): 156-164. 10.1016/j.atherosclerosis.2013.10.025.CrossRefPubMed
35.
go back to reference Lorenzo O, Ramirez E, Picatoste B, Egido J, Tunon J: Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediators Inflamm. 2013, 2013: 461967-10.1155/2013/461967.PubMedCentralCrossRefPubMed Lorenzo O, Ramirez E, Picatoste B, Egido J, Tunon J: Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediators Inflamm. 2013, 2013: 461967-10.1155/2013/461967.PubMedCentralCrossRefPubMed
36.
go back to reference De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, Braeckman BP, Schoofs L, Temmerman L: Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A. 2014, 111 (24): E2501-2509. 10.1073/pnas.1321776111.PubMedCentralCrossRefPubMed De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, Braeckman BP, Schoofs L, Temmerman L: Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A. 2014, 111 (24): E2501-2509. 10.1073/pnas.1321776111.PubMedCentralCrossRefPubMed
37.
go back to reference Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, Colombani AL, Ktorza A, Casteilla L, Penicaud L: Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009, 58 (3): 673-681. 10.2337/db07-1056.PubMedCentralCrossRefPubMed Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, Colombani AL, Ktorza A, Casteilla L, Penicaud L: Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009, 58 (3): 673-681. 10.2337/db07-1056.PubMedCentralCrossRefPubMed
Metadata
Title
Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis
Authors
Linnéa Eriksson
Thomas Nyström
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2014
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-014-0152-5

Other articles of this Issue 1/2014

Cardiovascular Diabetology 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine