Skip to main content
Top
Published in: Respiratory Research 1/2023

Open Access 01-12-2023 | Rhinovirus | Review

Rhinovirus induces airway remodeling: what are the physiological consequences?

Authors: Cassandra Spector, Camden M. De Sanctis, Reynold A. Panettieri Jr., Cynthia J. Koziol-White

Published in: Respiratory Research | Issue 1/2023

Login to get access

Abstract

Background

Rhinovirus infections commonly evoke asthma exacerbations in children and adults. Recurrent asthma exacerbations are associated with injury-repair responses in the airways that collectively contribute to airway remodeling. The physiological consequences of airway remodeling can manifest as irreversible airway obstruction and diminished responsiveness to bronchodilators. Structural cells of the airway, including epithelial cells, smooth muscle, fibroblasts, myofibroblasts, and adjacent lung vascular endothelial cells represent an understudied and emerging source of cellular and extracellular soluble mediators and matrix components that contribute to airway remodeling in a rhinovirus-evoked inflammatory environment.

Main body

While mechanistic pathways associated with rhinovirus-induced airway remodeling are still not fully characterized, infected airway epithelial cells robustly produce type 2 cytokines and chemokines, as well as pro-angiogenic and fibroblast activating factors that act in a paracrine manner on neighboring airway cells to stimulate remodeling responses. Morphological transformation of structural cells in response to rhinovirus promotes remodeling phenotypes including induction of mucus hypersecretion, epithelial-to-mesenchymal transition, and fibroblast-to-myofibroblast transdifferentiation. Rhinovirus exposure elicits airway hyperresponsiveness contributing to irreversible airway obstruction. This obstruction can occur as a consequence of sub-epithelial thickening mediated by smooth muscle migration and myofibroblast activity, or through independent mechanisms mediated by modulation of the β2 agonist receptor activation and its responsiveness to bronchodilators. Differential cellular responses emerge in response to rhinovirus infection that predispose asthmatic individuals to persistent signatures of airway remodeling, including exaggerated type 2 inflammation, enhanced extracellular matrix deposition, and robust production of pro-angiogenic mediators.

Conclusions

Few therapies address symptoms of rhinovirus-induced airway remodeling, though understanding the contribution of structural cells to these processes may elucidate future translational targets to alleviate symptoms of rhinovirus-induced exacerbations.
Literature
1.
go back to reference Ljubin-Sternak S, Mestrovic T, Ivkovic-Jurekovic I, Kolaric B, Slovic A, Forcic D, et al. The emerging role of Rhinoviruses in Lower Respiratory Tract Infections in Children - Clinical and Molecular Epidemiological Study from Croatia, 2017–2019. Front Microbiol. 2019;10:2737.PubMedPubMedCentral Ljubin-Sternak S, Mestrovic T, Ivkovic-Jurekovic I, Kolaric B, Slovic A, Forcic D, et al. The emerging role of Rhinoviruses in Lower Respiratory Tract Infections in Children - Clinical and Molecular Epidemiological Study from Croatia, 2017–2019. Front Microbiol. 2019;10:2737.PubMedPubMedCentral
2.
go back to reference Linder JE, Kraft DC, Mohamed Y, Lu Z, Heil L, Tollefson S, et al. Human rhinovirus C: age, season, and lower respiratory illness over the past 3 decades. J Allergy Clin Immunol. 2013;131(1):69–77. e1-6.PubMed Linder JE, Kraft DC, Mohamed Y, Lu Z, Heil L, Tollefson S, et al. Human rhinovirus C: age, season, and lower respiratory illness over the past 3 decades. J Allergy Clin Immunol. 2013;131(1):69–77. e1-6.PubMed
3.
go back to reference Denlinger LC, Sorkness RL, Lee WM, Evans MD, Wolff MJ, Mathur SK, et al. Lower airway rhinovirus burden and the seasonal risk of asthma exacerbation. Am J Respir Crit Care Med. 2011;184(9):1007–14.PubMedPubMedCentral Denlinger LC, Sorkness RL, Lee WM, Evans MD, Wolff MJ, Mathur SK, et al. Lower airway rhinovirus burden and the seasonal risk of asthma exacerbation. Am J Respir Crit Care Med. 2011;184(9):1007–14.PubMedPubMedCentral
4.
5.
go back to reference Megremis S, Niespodziana K, Cabauatan C, Xepapadaki P, Kowalski ML, Jartti T, et al. Rhinovirus Species-Specific antibodies differentially reflect clinical outcomes in Health and Asthma. Am J Respir Crit Care Med. 2018;198(12):1490–9.PubMedPubMedCentral Megremis S, Niespodziana K, Cabauatan C, Xepapadaki P, Kowalski ML, Jartti T, et al. Rhinovirus Species-Specific antibodies differentially reflect clinical outcomes in Health and Asthma. Am J Respir Crit Care Med. 2018;198(12):1490–9.PubMedPubMedCentral
6.
go back to reference Zheng SY, Wang LL, Ren L, Luo J, Liao W, Liu EM. Epidemiological analysis and follow-up of human rhinovirus infection in children with asthma exacerbation. J Med Virol. 2018;90(2):219–28.PubMed Zheng SY, Wang LL, Ren L, Luo J, Liao W, Liu EM. Epidemiological analysis and follow-up of human rhinovirus infection in children with asthma exacerbation. J Med Virol. 2018;90(2):219–28.PubMed
7.
go back to reference Coleman AT, Jackson DJ, Gangnon RE, Evans MD, Lemanske RF Jr, Gern JE. Comparison of risk factors for viral and nonviral asthma exacerbations. J Allergy Clin Immunol. 2015;136(4):1127–9. e4.PubMedPubMedCentral Coleman AT, Jackson DJ, Gangnon RE, Evans MD, Lemanske RF Jr, Gern JE. Comparison of risk factors for viral and nonviral asthma exacerbations. J Allergy Clin Immunol. 2015;136(4):1127–9. e4.PubMedPubMedCentral
8.
go back to reference Jartti T, Lehtinen P, Vuorinen T, Ruuskanen O. Bronchiolitis: age and previous wheezing episodes are linked to viral etiology and atopic characteristics. Pediatr Infect Dis J. 2009;28(4):311–7.PubMed Jartti T, Lehtinen P, Vuorinen T, Ruuskanen O. Bronchiolitis: age and previous wheezing episodes are linked to viral etiology and atopic characteristics. Pediatr Infect Dis J. 2009;28(4):311–7.PubMed
9.
go back to reference Liu L, Pan Y, Zhu Y, Song Y, Su X, Yang L, Li M. Association between rhinovirus wheezing illness and the development of childhood asthma: a meta-analysis. BMJ Open. 2017;7(4):e013034.PubMedPubMedCentral Liu L, Pan Y, Zhu Y, Song Y, Su X, Yang L, Li M. Association between rhinovirus wheezing illness and the development of childhood asthma: a meta-analysis. BMJ Open. 2017;7(4):e013034.PubMedPubMedCentral
10.
go back to reference de Kluijver J, Evertse CE, Sont JK, Schrumpf JA, van Zeijl-van der Ham CJ, Dick CR, et al. Are rhinovirus-induced airway responses in asthma aggravated by chronic allergen exposure? Am J Respir Crit Care Med. 2003;168(10):1174–80.PubMed de Kluijver J, Evertse CE, Sont JK, Schrumpf JA, van Zeijl-van der Ham CJ, Dick CR, et al. Are rhinovirus-induced airway responses in asthma aggravated by chronic allergen exposure? Am J Respir Crit Care Med. 2003;168(10):1174–80.PubMed
11.
go back to reference Choi T, Devries M, Bacharier LB, Busse W, Camargo CA Jr, Cohen R, et al. Enhanced neutralizing antibody responses to rhinovirus C and age-dependent patterns of infection. Am J Respir Crit Care Med. 2021;203(7):822–30.PubMedPubMedCentral Choi T, Devries M, Bacharier LB, Busse W, Camargo CA Jr, Cohen R, et al. Enhanced neutralizing antibody responses to rhinovirus C and age-dependent patterns of infection. Am J Respir Crit Care Med. 2021;203(7):822–30.PubMedPubMedCentral
12.
go back to reference Nakagome K, Bochkov YA, Ashraf S, Brockman-Schneider RA, Evans MD, Pasic TR, Gern JE. Effects of rhinovirus species on viral replication and cytokine production. J Allergy Clin Immunol. 2014;134(2):332–41.PubMedPubMedCentral Nakagome K, Bochkov YA, Ashraf S, Brockman-Schneider RA, Evans MD, Pasic TR, Gern JE. Effects of rhinovirus species on viral replication and cytokine production. J Allergy Clin Immunol. 2014;134(2):332–41.PubMedPubMedCentral
13.
go back to reference Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 2013;14:282–93.PubMed Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 2013;14:282–93.PubMed
14.
go back to reference van der Zalm MM, Wilbrink B, van Ewijk BE, Overduin P, Wolfs TF, van der Ent CK. Highly frequent infections with human rhinovirus in healthy young children: a longitudinal cohort study. J Clin Virol. 2011;52(4):317–20.PubMed van der Zalm MM, Wilbrink B, van Ewijk BE, Overduin P, Wolfs TF, van der Ent CK. Highly frequent infections with human rhinovirus in healthy young children: a longitudinal cohort study. J Clin Virol. 2011;52(4):317–20.PubMed
15.
go back to reference Kling S, Donninger H, Williams Z, Vermeulen J, Weinberg E, Latiff K, et al. Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy. 2005;35(5):672–8.PubMed Kling S, Donninger H, Williams Z, Vermeulen J, Weinberg E, Latiff K, et al. Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy. 2005;35(5):672–8.PubMed
16.
go back to reference Zlateva KT, de Vries JJ, Coenjaerts FE, van Loon AM, Verheij T, Little P, et al. Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness. Eur Respir J. 2014;44(1):169–77.PubMed Zlateva KT, de Vries JJ, Coenjaerts FE, van Loon AM, Verheij T, Little P, et al. Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness. Eur Respir J. 2014;44(1):169–77.PubMed
17.
go back to reference Halmo Hurdum S, Zhang G, Khoo SK, Bizzintino J, Franks KM, Lindsay K, et al. Recurrent rhinovirus detections in children following a rhinovirus-induced wheezing exacerbation: a retrospective study. Int J Pediatr Child Health. 2015;3(1):10–8.PubMedPubMedCentral Halmo Hurdum S, Zhang G, Khoo SK, Bizzintino J, Franks KM, Lindsay K, et al. Recurrent rhinovirus detections in children following a rhinovirus-induced wheezing exacerbation: a retrospective study. Int J Pediatr Child Health. 2015;3(1):10–8.PubMedPubMedCentral
18.
go back to reference Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I et al. Viral respiratory Pathogens and Lung Injury. Clin Microbiol Rev. 2021;34(3). Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I et al. Viral respiratory Pathogens and Lung Injury. Clin Microbiol Rev. 2021;34(3).
19.
go back to reference Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011;24(1):210–29.PubMedPubMedCentral Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011;24(1):210–29.PubMedPubMedCentral
20.
go back to reference Granados A, Goodall EC, Luinstra K, Smieja M, Mahony J. Comparison of asymptomatic and symptomatic rhinovirus infections in university students: incidence, species diversity, and viral load. Diagn Microbiol Infect Dis. 2015;82(4):292–6.PubMedPubMedCentral Granados A, Goodall EC, Luinstra K, Smieja M, Mahony J. Comparison of asymptomatic and symptomatic rhinovirus infections in university students: incidence, species diversity, and viral load. Diagn Microbiol Infect Dis. 2015;82(4):292–6.PubMedPubMedCentral
21.
go back to reference Jartti T, Lehtinen P, Vuorinen T, Koskenvuo M, Ruuskanen O. Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children. J Med Virol. 2004;72(4):695–9.PubMed Jartti T, Lehtinen P, Vuorinen T, Koskenvuo M, Ruuskanen O. Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children. J Med Virol. 2004;72(4):695–9.PubMed
22.
go back to reference Bergeron C, Boulet LP. Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest. 2006;129(4):1068–87.PubMed Bergeron C, Boulet LP. Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest. 2006;129(4):1068–87.PubMed
23.
go back to reference Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: from benchside to clinical practice. Can Respir J. 2010;17(4):e85–93.PubMedPubMedCentral Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: from benchside to clinical practice. Can Respir J. 2010;17(4):e85–93.PubMedPubMedCentral
24.
go back to reference Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M, Bellia V, Bonsignore G. Airway remodeling in asthma. Chest. 2003;123(3 Suppl):417S–22S.PubMed Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M, Bellia V, Bonsignore G. Airway remodeling in asthma. Chest. 2003;123(3 Suppl):417S–22S.PubMed
25.
go back to reference Chetta A, Foresi A, Del Donno M, Bertorelli G, Pesci A, Olivieri D. Airways remodeling is a distinctive feature of asthma and is related to severity of disease. Chest. 1997;111(4):852–7.PubMed Chetta A, Foresi A, Del Donno M, Bertorelli G, Pesci A, Olivieri D. Airways remodeling is a distinctive feature of asthma and is related to severity of disease. Chest. 1997;111(4):852–7.PubMed
26.
go back to reference Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol. 2023;14:1113100.PubMedPubMedCentral Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol. 2023;14:1113100.PubMedPubMedCentral
27.
go back to reference Guo Z, Wu J, Zhao J, Liu F, Chen Y, Bi L, et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity. J Asthma. 2014;51(8):863–9.PubMed Guo Z, Wu J, Zhao J, Liu F, Chen Y, Bi L, et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity. J Asthma. 2014;51(8):863–9.PubMed
28.
go back to reference Liu F, Wu JX, Zhao JP, Li HJ, Liu W, Bi WX, Dong L. [IL-25 derived from epithelial cells has the potential to promote airway remodeling in asthma]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012;28(6):633–6.PubMed Liu F, Wu JX, Zhao JP, Li HJ, Liu W, Bi WX, Dong L. [IL-25 derived from epithelial cells has the potential to promote airway remodeling in asthma]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012;28(6):633–6.PubMed
29.
go back to reference Loh Z, Simpson J, Ullah A, Zhang V, Gan WJ, Lynch JP, et al. HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. PLoS Pathog. 2020;16(7):e1008651.PubMedPubMedCentral Loh Z, Simpson J, Ullah A, Zhang V, Gan WJ, Lynch JP, et al. HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. PLoS Pathog. 2020;16(7):e1008651.PubMedPubMedCentral
30.
go back to reference Saglani S, Lui S, Ullmann N, Campbell GA, Sherburn RT, Mathie SA, et al. IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma. J Allergy Clin Immunol. 2013;132(3):676–85. e13.PubMedPubMedCentral Saglani S, Lui S, Ullmann N, Campbell GA, Sherburn RT, Mathie SA, et al. IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma. J Allergy Clin Immunol. 2013;132(3):676–85. e13.PubMedPubMedCentral
31.
go back to reference Zhang FQ, Han XP, Zhang F, Ma X, Xiang D, Yang XM, et al. Therapeutic efficacy of a co-blockade of IL-13 and IL-25 on airway inflammation and remodeling in a mouse model of asthma. Int Immunopharmacol. 2017;46:133–40.PubMed Zhang FQ, Han XP, Zhang F, Ma X, Xiang D, Yang XM, et al. Therapeutic efficacy of a co-blockade of IL-13 and IL-25 on airway inflammation and remodeling in a mouse model of asthma. Int Immunopharmacol. 2017;46:133–40.PubMed
32.
go back to reference Hong JY, Bentley JK, Chung Y, Lei J, Steenrod JM, Chen Q, et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol. 2014;134(2):429–39.PubMedPubMedCentral Hong JY, Bentley JK, Chung Y, Lei J, Steenrod JM, Chen Q, et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol. 2014;134(2):429–39.PubMedPubMedCentral
33.
go back to reference Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med. 2014;190(12):1373–82.PubMedPubMedCentral Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med. 2014;190(12):1373–82.PubMedPubMedCentral
34.
go back to reference Southworth T, Pattwell C, Khan N, Mowbray SF, Strieter RM, Erpenbeck VJ, Singh D. Increased type 2 inflammation post rhinovirus infection in patients with moderate asthma. Cytokine. 2020;125:154857.PubMed Southworth T, Pattwell C, Khan N, Mowbray SF, Strieter RM, Erpenbeck VJ, Singh D. Increased type 2 inflammation post rhinovirus infection in patients with moderate asthma. Cytokine. 2020;125:154857.PubMed
35.
go back to reference Koziol-White CJ, Panettieri RA. Jr. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol Rev. 2011;242(1):178–85.PubMed Koziol-White CJ, Panettieri RA. Jr. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol Rev. 2011;242(1):178–85.PubMed
36.
go back to reference Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–92.PubMed Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–92.PubMed
37.
go back to reference Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38(4):471–82.PubMedPubMedCentral Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38(4):471–82.PubMedPubMedCentral
38.
go back to reference Proud D, Leigh R. Epithelial cells and airway diseases. Immunol Rev. 2011;242(1):186–204.PubMed Proud D, Leigh R. Epithelial cells and airway diseases. Immunol Rev. 2011;242(1):186–204.PubMed
39.
go back to reference Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue Barriers. 2017;5(4):e1367458.PubMedPubMedCentral Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue Barriers. 2017;5(4):e1367458.PubMedPubMedCentral
40.
go back to reference Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol. 2020;124(4):333–41.PubMed Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol. 2020;124(4):333–41.PubMed
41.
go back to reference Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 2021;14(5):978–90.PubMedPubMedCentral Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 2021;14(5):978–90.PubMedPubMedCentral
42.
go back to reference Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol (1985). 2013;114(7):834–43.PubMed Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol (1985). 2013;114(7):834–43.PubMed
43.
go back to reference Hackett TL, Osei ET. Modeling extracellular matrix-cell interactions in lung repair and chronic disease. Cells. 2021;10(8). Hackett TL, Osei ET. Modeling extracellular matrix-cell interactions in lung repair and chronic disease. Cells. 2021;10(8).
44.
go back to reference Jendzjowsky NG, Kelly MM. The role of Airway Myofibroblasts in Asthma. Chest. 2019;156(6):1254–67.PubMed Jendzjowsky NG, Kelly MM. The role of Airway Myofibroblasts in Asthma. Chest. 2019;156(6):1254–67.PubMed
45.
go back to reference Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR. Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc. 2008;5(7):783–91.PubMedPubMedCentral Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR. Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc. 2008;5(7):783–91.PubMedPubMedCentral
46.
go back to reference Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2(1):675–709.PubMedPubMedCentral Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2(1):675–709.PubMedPubMedCentral
47.
go back to reference Ganjian H, Rajput C, Elzoheiry M, Sajjan U. Rhinovirus and Innate Immune function of Airway Epithelium. Front Cell Infect Microbiol. 2020;10:277.PubMedPubMedCentral Ganjian H, Rajput C, Elzoheiry M, Sajjan U. Rhinovirus and Innate Immune function of Airway Epithelium. Front Cell Infect Microbiol. 2020;10:277.PubMedPubMedCentral
48.
go back to reference Nakagome K, Nagata M. Innate Immune responses by respiratory viruses, including Rhinovirus, during Asthma Exacerbation. Front Immunol. 2022;13:865973.PubMedPubMedCentral Nakagome K, Nagata M. Innate Immune responses by respiratory viruses, including Rhinovirus, during Asthma Exacerbation. Front Immunol. 2022;13:865973.PubMedPubMedCentral
49.
go back to reference Warner SM, Wiehler S, Michi AN, Proud D. Rhinovirus replication and innate immunity in highly differentiated human airway epithelial cells. Respir Res. 2019;20(1):150.PubMedPubMedCentral Warner SM, Wiehler S, Michi AN, Proud D. Rhinovirus replication and innate immunity in highly differentiated human airway epithelial cells. Respir Res. 2019;20(1):150.PubMedPubMedCentral
50.
go back to reference Cakebread JA, Haitchi HM, Xu Y, Holgate ST, Roberts G, Davies DE. Rhinovirus-16 induced release of IP-10 and IL-8 is augmented by Th2 cytokines in a pediatric bronchial epithelial cell model. PLoS ONE. 2014;9(4):e94010.PubMedPubMedCentral Cakebread JA, Haitchi HM, Xu Y, Holgate ST, Roberts G, Davies DE. Rhinovirus-16 induced release of IP-10 and IL-8 is augmented by Th2 cytokines in a pediatric bronchial epithelial cell model. PLoS ONE. 2014;9(4):e94010.PubMedPubMedCentral
51.
go back to reference Parikh V, Scala J, Patel R, Corbi C, Lo D, Bochkov YA, et al. Rhinovirus C15 induces Airway Hyperresponsiveness via Calcium mobilization in Airway smooth muscle. Am J Respir Cell Mol Biol. 2020;62(3):310–8.PubMedPubMedCentral Parikh V, Scala J, Patel R, Corbi C, Lo D, Bochkov YA, et al. Rhinovirus C15 induces Airway Hyperresponsiveness via Calcium mobilization in Airway smooth muscle. Am J Respir Cell Mol Biol. 2020;62(3):310–8.PubMedPubMedCentral
52.
go back to reference Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol. 2005;289(1):L85–95.PubMed Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol. 2005;289(1):L85–95.PubMed
53.
go back to reference Zaheer RS, Proud D. Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1. Am J Respir Cell Mol Biol. 2010;43(4):413–21.PubMed Zaheer RS, Proud D. Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1. Am J Respir Cell Mol Biol. 2010;43(4):413–21.PubMed
54.
go back to reference Aizawa H, Koarai A, Shishikura Y, Yanagisawa S, Yamaya M, Sugiura H, et al. Oxidative stress enhances the expression of IL-33 in human airway epithelial cells. Respir Res. 2018;19(1):52.PubMedPubMedCentral Aizawa H, Koarai A, Shishikura Y, Yanagisawa S, Yamaya M, Sugiura H, et al. Oxidative stress enhances the expression of IL-33 in human airway epithelial cells. Respir Res. 2018;19(1):52.PubMedPubMedCentral
55.
go back to reference Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(6):1469–85.PubMed Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(6):1469–85.PubMed
56.
go back to reference Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol. 2010;3(1):69–80.PubMed Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol. 2010;3(1):69–80.PubMed
57.
go back to reference Jakiela B, Rebane A, Soja J, Bazan-Socha S, Laanesoo A, Plutecka H, et al. Remodeling of bronchial epithelium caused by asthmatic inflammation affects its response to rhinovirus infection. Sci Rep. 2021;11(1):12821.PubMedPubMedCentral Jakiela B, Rebane A, Soja J, Bazan-Socha S, Laanesoo A, Plutecka H, et al. Remodeling of bronchial epithelium caused by asthmatic inflammation affects its response to rhinovirus infection. Sci Rep. 2021;11(1):12821.PubMedPubMedCentral
58.
go back to reference Kuo C, Lim S, King NJ, Bartlett NW, Walton RP, Zhu J, et al. Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. Respirology. 2011;16(2):367–77.PubMed Kuo C, Lim S, King NJ, Bartlett NW, Walton RP, Zhu J, et al. Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. Respirology. 2011;16(2):367–77.PubMed
59.
go back to reference Reeves SR, Kolstad T, Lien TY, Elliott M, Ziegler SF, Wight TN, Debley JS. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol. 2014;134(3):663–70. e1.PubMedPubMedCentral Reeves SR, Kolstad T, Lien TY, Elliott M, Ziegler SF, Wight TN, Debley JS. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol. 2014;134(3):663–70. e1.PubMedPubMedCentral
60.
go back to reference Tacon CE, Wiehler S, Holden NS, Newton R, Proud D, Leigh R. Human rhinovirus infection up-regulates MMP-9 production in airway epithelial cells via NF-kappaB. Am J Respir Cell Mol Biol. 2010;43(2):201–9.PubMed Tacon CE, Wiehler S, Holden NS, Newton R, Proud D, Leigh R. Human rhinovirus infection up-regulates MMP-9 production in airway epithelial cells via NF-kappaB. Am J Respir Cell Mol Biol. 2010;43(2):201–9.PubMed
61.
go back to reference Skevaki CL, Psarras S, Volonaki E, Pratsinis H, Spyridaki IS, Gaga M, et al. Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features. Clin Transl Allergy. 2012;2(1):14.PubMedPubMedCentral Skevaki CL, Psarras S, Volonaki E, Pratsinis H, Spyridaki IS, Gaga M, et al. Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features. Clin Transl Allergy. 2012;2(1):14.PubMedPubMedCentral
62.
go back to reference Tacon CE, Newton R, Proud D, Leigh R. Rhinovirus-induced MMP-9 expression is dependent on Fra-1, which is modulated by formoterol and dexamethasone. J Immunol. 2012;188(9):4621–30.PubMed Tacon CE, Newton R, Proud D, Leigh R. Rhinovirus-induced MMP-9 expression is dependent on Fra-1, which is modulated by formoterol and dexamethasone. J Immunol. 2012;188(9):4621–30.PubMed
63.
go back to reference Leigh R, Oyelusi W, Wiehler S, Koetzler R, Zaheer RS, Newton R, Proud D. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling. J Allergy Clin Immunol. 2008;121(5):1238–45e4.PubMed Leigh R, Oyelusi W, Wiehler S, Koetzler R, Zaheer RS, Newton R, Proud D. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling. J Allergy Clin Immunol. 2008;121(5):1238–45e4.PubMed
64.
go back to reference Enomoto Y, Orihara K, Takamasu T, Matsuda A, Gon Y, Saito H, et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol. 2009;124(5):913–20. e1-7.PubMed Enomoto Y, Orihara K, Takamasu T, Matsuda A, Gon Y, Saito H, et al. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol. 2009;124(5):913–20. e1-7.PubMed
65.
go back to reference Kanazawa H. VEGF, angiopoietin-1 and – 2 in bronchial asthma: new molecular targets in airway angiogenesis and microvascular remodeling. Recent Pat Inflamm Allergy Drug Discov. 2007;1(1):1–8.PubMed Kanazawa H. VEGF, angiopoietin-1 and – 2 in bronchial asthma: new molecular targets in airway angiogenesis and microvascular remodeling. Recent Pat Inflamm Allergy Drug Discov. 2007;1(1):1–8.PubMed
66.
go back to reference Karagiannidis C, Hense G, Martin C, Epstein M, Ruckert B, Mantel PY, et al. Activin A is an acute allergen-responsive cytokine and provides a link to TGF-beta-mediated airway remodeling in asthma. J Allergy Clin Immunol. 2006;117(1):111–8.PubMed Karagiannidis C, Hense G, Martin C, Epstein M, Ruckert B, Mantel PY, et al. Activin A is an acute allergen-responsive cytokine and provides a link to TGF-beta-mediated airway remodeling in asthma. J Allergy Clin Immunol. 2006;117(1):111–8.PubMed
67.
go back to reference XuChen X, Weinstock J, Arroyo M, Salka K, Chorvinsky E, Abutaleb K, et al. Airway remodeling factors during early-life rhinovirus infection and the effect of premature birth. Front Pediatr. 2021;9:610478.PubMedPubMedCentral XuChen X, Weinstock J, Arroyo M, Salka K, Chorvinsky E, Abutaleb K, et al. Airway remodeling factors during early-life rhinovirus infection and the effect of premature birth. Front Pediatr. 2021;9:610478.PubMedPubMedCentral
68.
go back to reference Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE, et al. Nasal lavage VEGF and TNF-alpha levels during a natural cold predict asthma exacerbations. Clin Exp Allergy. 2014;44(12):1484–93.PubMedPubMedCentral Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE, et al. Nasal lavage VEGF and TNF-alpha levels during a natural cold predict asthma exacerbations. Clin Exp Allergy. 2014;44(12):1484–93.PubMedPubMedCentral
69.
go back to reference Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.PubMedPubMedCentral Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.PubMedPubMedCentral
70.
go back to reference Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:18.PubMedPubMedCentral Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:18.PubMedPubMedCentral
71.
72.
go back to reference Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341–52.PubMedPubMedCentral Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341–52.PubMedPubMedCentral
73.
go back to reference Cai LM, Zhou YQ, Yang LF, Qu JX, Dai ZY, Li HT, et al. Thymic stromal lymphopoietin induced early stage of epithelial-mesenchymal transition in human bronchial epithelial cells through upregulation of transforming growth factor beta 1. Exp Lung Res. 2019;45(8):221–35.PubMed Cai LM, Zhou YQ, Yang LF, Qu JX, Dai ZY, Li HT, et al. Thymic stromal lymphopoietin induced early stage of epithelial-mesenchymal transition in human bronchial epithelial cells through upregulation of transforming growth factor beta 1. Exp Lung Res. 2019;45(8):221–35.PubMed
74.
go back to reference Feng KN, Meng P, Zou XL, Zhang M, Li HK, Yang HL, et al. IL-37 protects against airway remodeling by reversing bronchial epithelial-mesenchymal transition via IL-24 signaling pathway in chronic asthma. Respir Res. 2022;23(1):244.PubMedPubMedCentral Feng KN, Meng P, Zou XL, Zhang M, Li HK, Yang HL, et al. IL-37 protects against airway remodeling by reversing bronchial epithelial-mesenchymal transition via IL-24 signaling pathway in chronic asthma. Respir Res. 2022;23(1):244.PubMedPubMedCentral
75.
go back to reference Ji X, Li J, Xu L, Wang W, Luo M, Luo S, et al. IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-beta1 to induce bronchial epithelial-mesenchymal transition (EMT). Int J Clin Exp Pathol. 2013;6(8):1481–92.PubMedPubMedCentral Ji X, Li J, Xu L, Wang W, Luo M, Luo S, et al. IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-beta1 to induce bronchial epithelial-mesenchymal transition (EMT). Int J Clin Exp Pathol. 2013;6(8):1481–92.PubMedPubMedCentral
76.
go back to reference Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-mesenchymal transition in Asthma Airway Remodeling is regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598.PubMedPubMedCentral Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-mesenchymal transition in Asthma Airway Remodeling is regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598.PubMedPubMedCentral
77.
go back to reference Minor DM, Proud D. Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition. Respir Res. 2017;18(1):110.PubMedPubMedCentral Minor DM, Proud D. Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition. Respir Res. 2017;18(1):110.PubMedPubMedCentral
78.
go back to reference Faris AN, Ganesan S, Chattoraj A, Chattoraj SS, Comstock AT, Unger BL, et al. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium. Am J Respir Cell Mol Biol. 2016;55(4):487–99.PubMedPubMedCentral Faris AN, Ganesan S, Chattoraj A, Chattoraj SS, Comstock AT, Unger BL, et al. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium. Am J Respir Cell Mol Biol. 2016;55(4):487–99.PubMedPubMedCentral
79.
go back to reference Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest. 1992;101(4):916–21.PubMed Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest. 1992;101(4):916–21.PubMed
80.
go back to reference Carroll N, Elliot J, Morton A, James A. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis. 1993;147(2):405–10.PubMed Carroll N, Elliot J, Morton A, James A. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis. 1993;147(2):405–10.PubMed
81.
go back to reference Fahy JV. Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med. 2001;164(10 Pt 2):46–51. Fahy JV. Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med. 2001;164(10 Pt 2):46–51.
82.
go back to reference Kuyper LM, Pare PD, Hogg JC, Lambert RK, Ionescu D, Woods R, Bai TR. Characterization of airway plugging in fatal asthma. Am J Med. 2003;115(1):6–11.PubMed Kuyper LM, Pare PD, Hogg JC, Lambert RK, Ionescu D, Woods R, Bai TR. Characterization of airway plugging in fatal asthma. Am J Med. 2003;115(1):6–11.PubMed
83.
go back to reference Zhou-Suckow Z, Duerr J, Hagner M, Agrawal R, Mall MA. Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res. 2017;367(3):537–50.PubMed Zhou-Suckow Z, Duerr J, Hagner M, Agrawal R, Mall MA. Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res. 2017;367(3):537–50.PubMed
84.
go back to reference Jackson ND, Everman JL, Chioccioli M, Feriani L, Goldfarbmuren KC, Sajuthi SP, et al. Single-cell and Population Transcriptomics reveal pan-epithelial remodeling in type 2-High asthma. Cell Rep. 2020;32(1):107872.PubMedPubMedCentral Jackson ND, Everman JL, Chioccioli M, Feriani L, Goldfarbmuren KC, Sajuthi SP, et al. Single-cell and Population Transcriptomics reveal pan-epithelial remodeling in type 2-High asthma. Cell Rep. 2020;32(1):107872.PubMedPubMedCentral
85.
go back to reference Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001;163(2):517–23.PubMed Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001;163(2):517–23.PubMed
86.
go back to reference Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH. Interleukin-13-induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2010;43(6):652–61.PubMedPubMedCentral Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH. Interleukin-13-induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2010;43(6):652–61.PubMedPubMedCentral
87.
go back to reference Park KS, Korfhagen TR, Bruno MD, Kitzmiller JA, Wan H, Wert SE, et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest. 2007;117(4):978–88.PubMedPubMedCentral Park KS, Korfhagen TR, Bruno MD, Kitzmiller JA, Wan H, Wert SE, et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest. 2007;117(4):978–88.PubMedPubMedCentral
88.
go back to reference Shi N, Zhang J, Chen SY. Runx2, a novel regulator for goblet cell differentiation and asthma development. FASEB J. 2017;31(1):412–20.PubMed Shi N, Zhang J, Chen SY. Runx2, a novel regulator for goblet cell differentiation and asthma development. FASEB J. 2017;31(1):412–20.PubMed
89.
go back to reference Bai J, Smock SL, Jackson GR Jr, MacIsaac KD, Huang Y, Mankus C, et al. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus. PLoS ONE. 2015;10(2):e0118286.PubMedPubMedCentral Bai J, Smock SL, Jackson GR Jr, MacIsaac KD, Huang Y, Mankus C, et al. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus. PLoS ONE. 2015;10(2):e0118286.PubMedPubMedCentral
90.
go back to reference Jakiela B, Gielicz A, Plutecka H, Hubalewska-Mazgaj M, Mastalerz L, Bochenek G, et al. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2014;51(2):229–41.PubMed Jakiela B, Gielicz A, Plutecka H, Hubalewska-Mazgaj M, Mastalerz L, Bochenek G, et al. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2014;51(2):229–41.PubMed
91.
go back to reference Hewson CA, Haas JJ, Bartlett NW, Message SD, Laza-Stanca V, Kebadze T, et al. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-kappaB and EGFR pathways. Eur Respir J. 2010;36(6):1425–35.PubMed Hewson CA, Haas JJ, Bartlett NW, Message SD, Laza-Stanca V, Kebadze T, et al. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-kappaB and EGFR pathways. Eur Respir J. 2010;36(6):1425–35.PubMed
92.
go back to reference Zhu L, Lee PK, Lee WM, Zhao Y, Yu D, Chen Y. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol. 2009;40(5):610–9.PubMed Zhu L, Lee PK, Lee WM, Zhao Y, Yu D, Chen Y. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol. 2009;40(5):610–9.PubMed
93.
go back to reference Inoue D, Yamaya M, Kubo H, Sasaki T, Hosoda M, Numasaki M, et al. Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells. Respir Physiol Neurobiol. 2006;154(3):484–99.PubMed Inoue D, Yamaya M, Kubo H, Sasaki T, Hosoda M, Numasaki M, et al. Mechanisms of mucin production by rhinovirus infection in cultured human airway epithelial cells. Respir Physiol Neurobiol. 2006;154(3):484–99.PubMed
94.
go back to reference Rajput C, Han M, Ishikawa T, Lei J, Goldsmith AM, Jazaeri S, et al. Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation. Front Immunol. 2021;12:649520.PubMedPubMedCentral Rajput C, Han M, Ishikawa T, Lei J, Goldsmith AM, Jazaeri S, et al. Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation. Front Immunol. 2021;12:649520.PubMedPubMedCentral
95.
go back to reference Bushardt RL. Leadership case study: Martha Flores, PA-C. JAAPA. 2012;25(8):53–4.PubMed Bushardt RL. Leadership case study: Martha Flores, PA-C. JAAPA. 2012;25(8):53–4.PubMed
96.
go back to reference Chen G, Korfhagen TR, Karp CL, Impey S, Xu Y, Randell SH, et al. Foxa3 induces goblet cell metaplasia and inhibits innate antiviral immunity. Am J Respir Crit Care Med. 2014;189(3):301–13.PubMedPubMedCentral Chen G, Korfhagen TR, Karp CL, Impey S, Xu Y, Randell SH, et al. Foxa3 induces goblet cell metaplasia and inhibits innate antiviral immunity. Am J Respir Crit Care Med. 2014;189(3):301–13.PubMedPubMedCentral
97.
98.
go back to reference Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018;11(6):1551–7.PubMedPubMedCentral Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018;11(6):1551–7.PubMedPubMedCentral
99.
go back to reference Kondo M, Tamaoki J, Takeyama K, Isono K, Kawatani K, Izumo T, Nagai A. Elimination of IL-13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture. Allergol Int. 2006;55(3):329–36.PubMed Kondo M, Tamaoki J, Takeyama K, Isono K, Kawatani K, Izumo T, Nagai A. Elimination of IL-13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture. Allergol Int. 2006;55(3):329–36.PubMed
100.
go back to reference Kaminska M, Foley S, Maghni K, Storness-Bliss C, Coxson H, Ghezzo H, et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J Allergy Clin Immunol. 2009;124(1):45–51. e1-4.PubMed Kaminska M, Foley S, Maghni K, Storness-Bliss C, Coxson H, Ghezzo H, et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J Allergy Clin Immunol. 2009;124(1):45–51. e1-4.PubMed
101.
go back to reference Gillis HL, Lutchen KR. Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness. J Appl Physiol (1985). 1999;86(6):2001–12.PubMed Gillis HL, Lutchen KR. Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness. J Appl Physiol (1985). 1999;86(6):2001–12.PubMed
102.
go back to reference Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets. 2023;27(1):19–29.PubMedPubMedCentral Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets. 2023;27(1):19–29.PubMedPubMedCentral
103.
go back to reference Park JA, Tschumperlin DJ. Chronic intermittent mechanical stress increases MUC5AC protein expression. Am J Respir Cell Mol Biol. 2009;41(4):459–66.PubMedPubMedCentral Park JA, Tschumperlin DJ. Chronic intermittent mechanical stress increases MUC5AC protein expression. Am J Respir Cell Mol Biol. 2009;41(4):459–66.PubMedPubMedCentral
104.
go back to reference Shariff S, Shelfoon C, Holden NS, Traves SL, Wiehler S, Kooi C, et al. Human rhinovirus infection of epithelial cells modulates Airway smooth muscle Migration. Am J Respir Cell Mol Biol. 2017;56(6):796–803.PubMed Shariff S, Shelfoon C, Holden NS, Traves SL, Wiehler S, Kooi C, et al. Human rhinovirus infection of epithelial cells modulates Airway smooth muscle Migration. Am J Respir Cell Mol Biol. 2017;56(6):796–803.PubMed
105.
go back to reference Celle A, Esteves P, Cardouat G, Beaufils F, Eyraud E, Dupin I, et al. Rhinovirus infection of bronchial epithelium induces specific bronchial smooth muscle cell migration of severe asthmatic patients. J Allergy Clin Immunol. 2022;150(1):104–13.PubMed Celle A, Esteves P, Cardouat G, Beaufils F, Eyraud E, Dupin I, et al. Rhinovirus infection of bronchial epithelium induces specific bronchial smooth muscle cell migration of severe asthmatic patients. J Allergy Clin Immunol. 2022;150(1):104–13.PubMed
106.
go back to reference Mehta AK, Doherty T, Broide D, Croft M. Tumor necrosis factor family member LIGHT acts with IL-1beta and TGF-beta to promote airway remodeling during rhinovirus infection. Allergy. 2018;73(7):1415–24.PubMed Mehta AK, Doherty T, Broide D, Croft M. Tumor necrosis factor family member LIGHT acts with IL-1beta and TGF-beta to promote airway remodeling during rhinovirus infection. Allergy. 2018;73(7):1415–24.PubMed
107.
go back to reference Werder RB, Zhang V, Lynch JP, Snape N, Upham JW, Spann K, Phipps S. Chronic IL-33 expression predisposes to virus-induced asthma exacerbations by increasing type 2 inflammation and dampening antiviral immunity. J Allergy Clin Immunol. 2018;141(5):1607–19. e9.PubMed Werder RB, Zhang V, Lynch JP, Snape N, Upham JW, Spann K, Phipps S. Chronic IL-33 expression predisposes to virus-induced asthma exacerbations by increasing type 2 inflammation and dampening antiviral immunity. J Allergy Clin Immunol. 2018;141(5):1607–19. e9.PubMed
108.
go back to reference Lynch JP, Werder RB, Simpson J, Loh Z, Zhang V, Haque A, et al. Aeroallergen-induced IL-33 predisposes to respiratory virus-induced asthma by dampening antiviral immunity. J Allergy Clin Immunol. 2016;138(5):1326–37.PubMed Lynch JP, Werder RB, Simpson J, Loh Z, Zhang V, Haque A, et al. Aeroallergen-induced IL-33 predisposes to respiratory virus-induced asthma by dampening antiviral immunity. J Allergy Clin Immunol. 2016;138(5):1326–37.PubMed
109.
go back to reference Calven J, Akbarshahi H, Menzel M, Ayata CK, Idzko M, Bjermer L, Uller L. Rhinoviral stimuli, epithelial factors and ATP signalling contribute to bronchial smooth muscle production of IL-33. J Transl Med. 2015;13:281.PubMedPubMedCentral Calven J, Akbarshahi H, Menzel M, Ayata CK, Idzko M, Bjermer L, Uller L. Rhinoviral stimuli, epithelial factors and ATP signalling contribute to bronchial smooth muscle production of IL-33. J Transl Med. 2015;13:281.PubMedPubMedCentral
110.
go back to reference Ramu S, Calven J, Michaeloudes C, Menzel M, Akbarshahi H, Chung KF, Uller L. TLR3/TAK1 signalling regulates rhinovirus-induced interleukin-33 in bronchial smooth muscle cells. ERJ Open Res. 2020;6(4). Ramu S, Calven J, Michaeloudes C, Menzel M, Akbarshahi H, Chung KF, Uller L. TLR3/TAK1 signalling regulates rhinovirus-induced interleukin-33 in bronchial smooth muscle cells. ERJ Open Res. 2020;6(4).
111.
go back to reference Stalnaker SH, Aoki K, Lim JM, Porterfield M, Liu M, Satz JS, et al. Glycomic analyses of mouse models of congenital muscular dystrophy. J Biol Chem. 2011;286(24):21180–90.PubMedPubMedCentral Stalnaker SH, Aoki K, Lim JM, Porterfield M, Liu M, Satz JS, et al. Glycomic analyses of mouse models of congenital muscular dystrophy. J Biol Chem. 2011;286(24):21180–90.PubMedPubMedCentral
112.
go back to reference Bourke JE, Li X, Foster SR, Wee E, Dagher H, Ziogas J, et al. Collagen remodelling by airway smooth muscle is resistant to steroids and beta(2)-agonists. Eur Respir J. 2011;37(1):173–82.PubMed Bourke JE, Li X, Foster SR, Wee E, Dagher H, Ziogas J, et al. Collagen remodelling by airway smooth muscle is resistant to steroids and beta(2)-agonists. Eur Respir J. 2011;37(1):173–82.PubMed
113.
go back to reference Gebski EB, Anaspure O, Panettieri RA, Koziol-White CJ. Airway smooth muscle and airway hyperresponsiveness in asthma: mechanisms of airway smooth muscle dysfunction. Minerva Med. 2022;113(1):4–16.PubMed Gebski EB, Anaspure O, Panettieri RA, Koziol-White CJ. Airway smooth muscle and airway hyperresponsiveness in asthma: mechanisms of airway smooth muscle dysfunction. Minerva Med. 2022;113(1):4–16.PubMed
114.
go back to reference Lo D, Kennedy JL, Kurten RC, Panettieri RA Jr, Koziol-White CJ. Modulation of airway hyperresponsiveness by rhinovirus exposure. Respir Res. 2018;19(1):208.PubMedPubMedCentral Lo D, Kennedy JL, Kurten RC, Panettieri RA Jr, Koziol-White CJ. Modulation of airway hyperresponsiveness by rhinovirus exposure. Respir Res. 2018;19(1):208.PubMedPubMedCentral
115.
go back to reference Hakonarson H, Maskeri N, Carter C, Hodinka RL, Campbell D, Grunstein MM. Mechanism of rhinovirus-induced changes in airway smooth muscle responsiveness. J Clin Invest. 1998;102(9):1732–41.PubMedPubMedCentral Hakonarson H, Maskeri N, Carter C, Hodinka RL, Campbell D, Grunstein MM. Mechanism of rhinovirus-induced changes in airway smooth muscle responsiveness. J Clin Invest. 1998;102(9):1732–41.PubMedPubMedCentral
116.
go back to reference Bai TR. Beta 2 adrenergic receptors in asthma: a current perspective. Lung. 1992;170(3):125–41.PubMed Bai TR. Beta 2 adrenergic receptors in asthma: a current perspective. Lung. 1992;170(3):125–41.PubMed
117.
go back to reference Trian T, Moir LM, Ge Q, Burgess JK, Kuo C, King NJ, et al. Rhinovirus-induced exacerbations of asthma: how is the beta2-adrenoceptor implicated? Am J Respir Cell Mol Biol. 2010;43(2):227–33.PubMed Trian T, Moir LM, Ge Q, Burgess JK, Kuo C, King NJ, et al. Rhinovirus-induced exacerbations of asthma: how is the beta2-adrenoceptor implicated? Am J Respir Cell Mol Biol. 2010;43(2):227–33.PubMed
118.
go back to reference Gebski EB, Parikh V, Lam H, Kim N, Bochkov YA, Cao G, et al. Rhinovirus C15 attenuates relaxation and cAMP production in Human Airways and smooth muscle. Am J Respir Cell Mol Biol. 2023;69(2):172–81.PubMed Gebski EB, Parikh V, Lam H, Kim N, Bochkov YA, Cao G, et al. Rhinovirus C15 attenuates relaxation and cAMP production in Human Airways and smooth muscle. Am J Respir Cell Mol Biol. 2023;69(2):172–81.PubMed
119.
go back to reference Grunstein MM, Hakonarson H, Hodinka RL, Maskeri N, Kim C, Chuang S. Mechanism of cooperative effects of rhinovirus and atopic sensitization on airway responsiveness. Am J Physiol Lung Cell Mol Physiol. 2001;280(2):L229–38.PubMed Grunstein MM, Hakonarson H, Hodinka RL, Maskeri N, Kim C, Chuang S. Mechanism of cooperative effects of rhinovirus and atopic sensitization on airway responsiveness. Am J Physiol Lung Cell Mol Physiol. 2001;280(2):L229–38.PubMed
120.
go back to reference Rider CF, Miller-Larsson A, Proud D, Giembycz MA, Newton R. Modulation of transcriptional responses by poly(I:C) and human rhinovirus: effect of long-acting beta(2)-adrenoceptor agonists. Eur J Pharmacol. 2013;708(1–3):60–7.PubMed Rider CF, Miller-Larsson A, Proud D, Giembycz MA, Newton R. Modulation of transcriptional responses by poly(I:C) and human rhinovirus: effect of long-acting beta(2)-adrenoceptor agonists. Eur J Pharmacol. 2013;708(1–3):60–7.PubMed
121.
go back to reference Van Ly D, Faiz A, Jenkins C, Crossett B, Black JL, McParland B, et al. Characterising the mechanism of airway smooth muscle beta2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells. PLoS ONE. 2013;8(2):e56058.PubMedPubMedCentral Van Ly D, Faiz A, Jenkins C, Crossett B, Black JL, McParland B, et al. Characterising the mechanism of airway smooth muscle beta2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells. PLoS ONE. 2013;8(2):e56058.PubMedPubMedCentral
122.
go back to reference Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne). 2020;7:191.PubMed Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne). 2020;7:191.PubMed
123.
go back to reference Bosse Y, Rola-Pleszczynski M. FGF2 in asthmatic airway-smooth-muscle-cell hyperplasia. Trends Mol Med. 2008;14(1):3–11.PubMed Bosse Y, Rola-Pleszczynski M. FGF2 in asthmatic airway-smooth-muscle-cell hyperplasia. Trends Mol Med. 2008;14(1):3–11.PubMed
124.
go back to reference Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol. 2015;52(1):116–28.PubMedPubMedCentral Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol. 2015;52(1):116–28.PubMedPubMedCentral
125.
go back to reference Zhang S, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab Invest. 1999;79(4):395–405.PubMed Zhang S, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab Invest. 1999;79(4):395–405.PubMed
126.
go back to reference Shelfoon C, Shariff S, Traves SL, Kooi C, Leigh R, Proud D. Chemokine release from human rhinovirus-infected airway epithelial cells promotes fibroblast migration. J Allergy Clin Immunol. 2016;138(1):114–22. e4.PubMed Shelfoon C, Shariff S, Traves SL, Kooi C, Leigh R, Proud D. Chemokine release from human rhinovirus-infected airway epithelial cells promotes fibroblast migration. J Allergy Clin Immunol. 2016;138(1):114–22. e4.PubMed
127.
go back to reference Linfield DT, Raduka A, Aghapour M, Rezaee F. Airway tight junctions as targets of viral infections. Tissue Barriers. 2021;9(2):1883965.PubMedPubMedCentral Linfield DT, Raduka A, Aghapour M, Rezaee F. Airway tight junctions as targets of viral infections. Tissue Barriers. 2021;9(2):1883965.PubMedPubMedCentral
128.
go back to reference Sajjan U, Wang Q, Zhao Y, Gruenert DC, Hershenson MB. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med. 2008;178(12):1271–81.PubMedPubMedCentral Sajjan U, Wang Q, Zhao Y, Gruenert DC, Hershenson MB. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med. 2008;178(12):1271–81.PubMedPubMedCentral
129.
go back to reference Ghildyal R, Dagher H, Donninger H, de Silva D, Li X, Freezer NJ, et al. Rhinovirus infects primary human airway fibroblasts and induces a neutrophil chemokine and a permeability factor. J Med Virol. 2005;75(4):608–15.PubMed Ghildyal R, Dagher H, Donninger H, de Silva D, Li X, Freezer NJ, et al. Rhinovirus infects primary human airway fibroblasts and induces a neutrophil chemokine and a permeability factor. J Med Virol. 2005;75(4):608–15.PubMed
130.
go back to reference Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90.PubMedPubMedCentral Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90.PubMedPubMedCentral
131.
go back to reference Everman JL, Sajuthi S, Saef B, Rios C, Stoner AM, Numata M, et al. Functional genomics of CDHR3 confirms its role in HRV-C infection and childhood asthma exacerbations. J Allergy Clin Immunol. 2019;144(4):962–71.PubMedPubMedCentral Everman JL, Sajuthi S, Saef B, Rios C, Stoner AM, Numata M, et al. Functional genomics of CDHR3 confirms its role in HRV-C infection and childhood asthma exacerbations. J Allergy Clin Immunol. 2019;144(4):962–71.PubMedPubMedCentral
132.
go back to reference Wieczfinska J, Sitarek P, Kowalczyk T, Rieske P, Pawliczak R. Curcumin modulates airway remodelling-contributing genes-the significance of transcription factors. J Cell Mol Med. 2022;26(3):736–49.PubMed Wieczfinska J, Sitarek P, Kowalczyk T, Rieske P, Pawliczak R. Curcumin modulates airway remodelling-contributing genes-the significance of transcription factors. J Cell Mol Med. 2022;26(3):736–49.PubMed
133.
go back to reference Wieczfinska J, Pawliczak R. Thymic stromal lymphopoietin and apocynin alter the expression of airway remodeling factors in human rhinovirus-infected cells. Immunobiology. 2017;222(8–9):892–9.PubMed Wieczfinska J, Pawliczak R. Thymic stromal lymphopoietin and apocynin alter the expression of airway remodeling factors in human rhinovirus-infected cells. Immunobiology. 2017;222(8–9):892–9.PubMed
134.
go back to reference Bedke N, Haitchi HM, Xatzipsalti M, Holgate ST, Davies DE. Contribution of bronchial fibroblasts to the antiviral response in asthma. J Immunol. 2009;182(6):3660–7.PubMed Bedke N, Haitchi HM, Xatzipsalti M, Holgate ST, Davies DE. Contribution of bronchial fibroblasts to the antiviral response in asthma. J Immunol. 2009;182(6):3660–7.PubMed
135.
go back to reference Grossner D, von Kroge H, Berkhoff M, Klapdor R, Kloppel G. [Insulin reserve and morphology of the tail of the pancreas following resection of the head of the pancreas using various surgical methods]. Langenbecks Arch Chir. 1989;374(1):4–11.PubMed Grossner D, von Kroge H, Berkhoff M, Klapdor R, Kloppel G. [Insulin reserve and morphology of the tail of the pancreas following resection of the head of the pancreas using various surgical methods]. Langenbecks Arch Chir. 1989;374(1):4–11.PubMed
136.
go back to reference Mostaco-Guidolin LB, Osei ET, Ullah J, Hajimohammadi S, Fouadi M, Li X, et al. Defective Fibrillar Collagen Organization by fibroblasts contributes to Airway Remodeling in Asthma. Am J Respir Crit Care Med. 2019;200(4):431–43.PubMed Mostaco-Guidolin LB, Osei ET, Ullah J, Hajimohammadi S, Fouadi M, Li X, et al. Defective Fibrillar Collagen Organization by fibroblasts contributes to Airway Remodeling in Asthma. Am J Respir Crit Care Med. 2019;200(4):431–43.PubMed
137.
go back to reference Wang JH, Kwon HJ, Jang YJ. Rhinovirus upregulates matrix metalloproteinase-2, matrix metalloproteinase-9, and vascular endothelial growth factor expression in nasal polyp fibroblasts. Laryngoscope. 2009;119(9):1834–8.PubMed Wang JH, Kwon HJ, Jang YJ. Rhinovirus upregulates matrix metalloproteinase-2, matrix metalloproteinase-9, and vascular endothelial growth factor expression in nasal polyp fibroblasts. Laryngoscope. 2009;119(9):1834–8.PubMed
138.
go back to reference Boser SR, Mauad T, Araujo-Paulino BB, Mitchell I, Shrestha G, Chiu A, et al. Myofibroblasts are increased in the lung parenchyma in asthma. PLoS ONE. 2017;12(8):e0182378.PubMedPubMedCentral Boser SR, Mauad T, Araujo-Paulino BB, Mitchell I, Shrestha G, Chiu A, et al. Myofibroblasts are increased in the lung parenchyma in asthma. PLoS ONE. 2017;12(8):e0182378.PubMedPubMedCentral
139.
go back to reference Miller M, Cho JY, McElwain K, McElwain S, Shim JY, Manni M, et al. Corticosteroids prevent myofibroblast accumulation and airway remodeling in mice. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L162–9.PubMed Miller M, Cho JY, McElwain K, McElwain S, Shim JY, Manni M, et al. Corticosteroids prevent myofibroblast accumulation and airway remodeling in mice. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L162–9.PubMed
140.
go back to reference Tai Y, Woods EL, Dally J, Kong D, Steadman R, Moseley R, Midgley AC. Myofibroblasts: function, formation, and scope of Molecular Therapies for skin fibrosis. Biomolecules. 2021;11(8). Tai Y, Woods EL, Dally J, Kong D, Steadman R, Moseley R, Midgley AC. Myofibroblasts: function, formation, and scope of Molecular Therapies for skin fibrosis. Biomolecules. 2021;11(8).
141.
go back to reference Kattan WM, Alarfaj SF, Alnooh BM, Alsaif HF, Alabdul Karim HS, Al-Qattan NM, et al. Myofibroblast-mediated contraction. J Coll Physicians Surg Pak. 2017;27(1):38–43.PubMed Kattan WM, Alarfaj SF, Alnooh BM, Alsaif HF, Alabdul Karim HS, Al-Qattan NM, et al. Myofibroblast-mediated contraction. J Coll Physicians Surg Pak. 2017;27(1):38–43.PubMed
142.
go back to reference Hinz B. Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc. 2012;9(3):137–47.PubMed Hinz B. Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc. 2012;9(3):137–47.PubMed
143.
go back to reference Michalik M, Wojcik-Pszczola K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, et al. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci. 2018;75(21):3943–61.PubMedPubMedCentral Michalik M, Wojcik-Pszczola K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, et al. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci. 2018;75(21):3943–61.PubMedPubMedCentral
144.
go back to reference Doolin MT, Smith IM, Stroka KM. Fibroblast to myofibroblast transition is enhanced by increased cell density. Mol Biol Cell. 2021;32(22):ar41.PubMedPubMedCentral Doolin MT, Smith IM, Stroka KM. Fibroblast to myofibroblast transition is enhanced by increased cell density. Mol Biol Cell. 2021;32(22):ar41.PubMedPubMedCentral
145.
go back to reference Garrett Q, Khaw PT, Blalock TD, Schultz GS, Grotendorst GR, Daniels JT. Involvement of CTGF in TGF-beta1-stimulation of myofibroblast differentiation and collagen matrix contraction in the presence of mechanical stress. Invest Ophthalmol Vis Sci. 2004;45(4):1109–16.PubMed Garrett Q, Khaw PT, Blalock TD, Schultz GS, Grotendorst GR, Daniels JT. Involvement of CTGF in TGF-beta1-stimulation of myofibroblast differentiation and collagen matrix contraction in the presence of mechanical stress. Invest Ophthalmol Vis Sci. 2004;45(4):1109–16.PubMed
146.
go back to reference Sandbo N, Lau A, Kach J, Ngam C, Yau D, Dulin NO. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-beta. Am J Physiol Lung Cell Mol Physiol. 2011;301(5):L656–66.PubMedPubMedCentral Sandbo N, Lau A, Kach J, Ngam C, Yau D, Dulin NO. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-beta. Am J Physiol Lung Cell Mol Physiol. 2011;301(5):L656–66.PubMedPubMedCentral
147.
go back to reference Gu L, Zhu YJ, Yang X, Guo ZJ, Xu WB, Tian XL. Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation. Acta Pharmacol Sin. 2007;28(3):382–91.PubMed Gu L, Zhu YJ, Yang X, Guo ZJ, Xu WB, Tian XL. Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation. Acta Pharmacol Sin. 2007;28(3):382–91.PubMed
148.
go back to reference Walker EJ, Heydet D, Veldre T, Ghildyal R. Transcriptomic changes during TGF-beta-mediated differentiation of airway fibroblasts to myofibroblasts. Sci Rep. 2019;9(1):20377.PubMedPubMedCentral Walker EJ, Heydet D, Veldre T, Ghildyal R. Transcriptomic changes during TGF-beta-mediated differentiation of airway fibroblasts to myofibroblasts. Sci Rep. 2019;9(1):20377.PubMedPubMedCentral
149.
go back to reference Thomas BJ, Lindsay M, Dagher H, Freezer NJ, Li D, Ghildyal R, Bardin PG. Transforming growth factor-beta enhances rhinovirus infection by diminishing early innate responses. Am J Respir Cell Mol Biol. 2009;41(3):339–47.PubMed Thomas BJ, Lindsay M, Dagher H, Freezer NJ, Li D, Ghildyal R, Bardin PG. Transforming growth factor-beta enhances rhinovirus infection by diminishing early innate responses. Am J Respir Cell Mol Biol. 2009;41(3):339–47.PubMed
150.
go back to reference Sugiura H, Ichikawa T, Koarai A, Yanagisawa S, Minakata Y, Matsunaga K, et al. Activation of toll-like receptor 3 augments myofibroblast differentiation. Am J Respir Cell Mol Biol. 2009;40(6):654–62.PubMed Sugiura H, Ichikawa T, Koarai A, Yanagisawa S, Minakata Y, Matsunaga K, et al. Activation of toll-like receptor 3 augments myofibroblast differentiation. Am J Respir Cell Mol Biol. 2009;40(6):654–62.PubMed
151.
go back to reference Tanaka H, Yamada G, Saikai T, Hashimoto M, Tanaka S, Suzuki K, et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med. 2003;168(12):1495–9.PubMed Tanaka H, Yamada G, Saikai T, Hashimoto M, Tanaka S, Suzuki K, et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med. 2003;168(12):1495–9.PubMed
152.
go back to reference Vrugt B, Wilson S, Bron A, Holgate ST, Djukanovic R, Aalbers R. Bronchial angiogenesis in severe glucocorticoid-dependent asthma. Eur Respir J. 2000;15(6):1014–21.PubMed Vrugt B, Wilson S, Bron A, Holgate ST, Djukanovic R, Aalbers R. Bronchial angiogenesis in severe glucocorticoid-dependent asthma. Eur Respir J. 2000;15(6):1014–21.PubMed
153.
go back to reference Goldie RG, Pedersen KE. Mechanisms of increased airway microvascular permeability: role in airway inflammation and obstruction. Clin Exp Pharmacol Physiol. 1995;22(6–7):387–96.PubMed Goldie RG, Pedersen KE. Mechanisms of increased airway microvascular permeability: role in airway inflammation and obstruction. Clin Exp Pharmacol Physiol. 1995;22(6–7):387–96.PubMed
154.
go back to reference Khor YH, Teoh AK, Lam SM, Mo DC, Weston S, Reid DW, Walters EH. Increased vascular permeability precedes cellular inflammation as asthma control deteriorates. Clin Exp Allergy. 2009;39(11):1659–67.PubMed Khor YH, Teoh AK, Lam SM, Mo DC, Weston S, Reid DW, Walters EH. Increased vascular permeability precedes cellular inflammation as asthma control deteriorates. Clin Exp Allergy. 2009;39(11):1659–67.PubMed
155.
go back to reference Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.PubMedPubMedCentral Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.PubMedPubMedCentral
156.
go back to reference Kotowicz K, Callard RE, Friedrich K, Matthews DJ, Klein N. Biological activity of IL-4 and IL-13 on human endothelial cells: functional evidence that both cytokines act through the same receptor. Int Immunol. 1996;8(12):1915–25.PubMed Kotowicz K, Callard RE, Friedrich K, Matthews DJ, Klein N. Biological activity of IL-4 and IL-13 on human endothelial cells: functional evidence that both cytokines act through the same receptor. Int Immunol. 1996;8(12):1915–25.PubMed
157.
go back to reference Sedgwick JB, Menon I, Gern JE, Busse WW. Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. J Allergy Clin Immunol. 2002;110(5):752–6.PubMed Sedgwick JB, Menon I, Gern JE, Busse WW. Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. J Allergy Clin Immunol. 2002;110(5):752–6.PubMed
158.
go back to reference Psarras S, Volonaki E, Skevaki CL, Xatzipsalti M, Bossios A, Pratsinis H, et al. Vascular endothelial growth factor-mediated induction of angiogenesis by human rhinoviruses. J Allergy Clin Immunol. 2006;117(2):291–7.PubMed Psarras S, Volonaki E, Skevaki CL, Xatzipsalti M, Bossios A, Pratsinis H, et al. Vascular endothelial growth factor-mediated induction of angiogenesis by human rhinoviruses. J Allergy Clin Immunol. 2006;117(2):291–7.PubMed
159.
go back to reference Lee CG, Ma B, Takyar S, Ahangari F, Delacruz C, He CH, Elias JA. Studies of vascular endothelial growth factor in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2011;8(6):512–5.PubMedPubMedCentral Lee CG, Ma B, Takyar S, Ahangari F, Delacruz C, He CH, Elias JA. Studies of vascular endothelial growth factor in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2011;8(6):512–5.PubMedPubMedCentral
160.
go back to reference Chalubinski M, Szulc A, Pawelczyk M, Gajewski A, Gawrysiak M, Likonska A, Kowalski ML. Human rhinovirus 16 induces antiviral and inflammatory response in the human vascular endothelium. APMIS. 2021;129(3):143–51.PubMed Chalubinski M, Szulc A, Pawelczyk M, Gajewski A, Gawrysiak M, Likonska A, Kowalski ML. Human rhinovirus 16 induces antiviral and inflammatory response in the human vascular endothelium. APMIS. 2021;129(3):143–51.PubMed
161.
go back to reference Gajewski A, Gawrysiak M, Szewczyk R, Gulbas I, Likonska A, Michlewska S, et al. IL-33 augments the effect of rhinovirus HRV16 on inflammatory activity of human lung vascular endothelium-possible implications for rhinoviral asthma exacerbations. Allergy. 2021;76(7):2282–5.PubMed Gajewski A, Gawrysiak M, Szewczyk R, Gulbas I, Likonska A, Michlewska S, et al. IL-33 augments the effect of rhinovirus HRV16 on inflammatory activity of human lung vascular endothelium-possible implications for rhinoviral asthma exacerbations. Allergy. 2021;76(7):2282–5.PubMed
162.
go back to reference Gawrysiak M, Gajewski A, Szewczyk R, Likonska A, Michlewska S, Chmiela M, et al. Human rhinovirus HRV16 impairs barrier functions and regeneration of human lung vascular endothelium. Allergy. 2021;76(6):1872–5.PubMed Gawrysiak M, Gajewski A, Szewczyk R, Likonska A, Michlewska S, Chmiela M, et al. Human rhinovirus HRV16 impairs barrier functions and regeneration of human lung vascular endothelium. Allergy. 2021;76(6):1872–5.PubMed
163.
go back to reference Likonska A, Gawrysiak M, Gajewski A, Klimczak K, Michlewska S, Szewczyk R, et al. Human lung vascular endothelium may limit viral replication and recover in time upon the infection with rhinovirus HRV16. APMIS. 2022;130(11):678–85.PubMed Likonska A, Gawrysiak M, Gajewski A, Klimczak K, Michlewska S, Szewczyk R, et al. Human lung vascular endothelium may limit viral replication and recover in time upon the infection with rhinovirus HRV16. APMIS. 2022;130(11):678–85.PubMed
164.
go back to reference Keglowich LF, Borger P. The three a’s in asthma - airway smooth muscle, Airway Remodeling & Angiogenesis. Open Respir Med J. 2015;9:70–80.PubMedPubMedCentral Keglowich LF, Borger P. The three a’s in asthma - airway smooth muscle, Airway Remodeling & Angiogenesis. Open Respir Med J. 2015;9:70–80.PubMedPubMedCentral
165.
go back to reference Chen M, Lv Z, Zhang W, Huang L, Lin X, Shi J, et al. Triptolide suppresses airway goblet cell hyperplasia and Muc5ac expression via NF-kappaB in a murine model of asthma. Mol Immunol. 2015;64(1):99–105.PubMed Chen M, Lv Z, Zhang W, Huang L, Lin X, Shi J, et al. Triptolide suppresses airway goblet cell hyperplasia and Muc5ac expression via NF-kappaB in a murine model of asthma. Mol Immunol. 2015;64(1):99–105.PubMed
166.
go back to reference Southam DS, Ellis R, Wattie J, Glass W, Inman MD. Goblet cell rebound and airway dysfunction with corticosteroid withdrawal in a mouse model of asthma. Am J Respir Crit Care Med. 2008;178(11):1115–22.PubMed Southam DS, Ellis R, Wattie J, Glass W, Inman MD. Goblet cell rebound and airway dysfunction with corticosteroid withdrawal in a mouse model of asthma. Am J Respir Crit Care Med. 2008;178(11):1115–22.PubMed
167.
go back to reference Wang Y, Ninaber DK, van Schadewijk A, Hiemstra PS. Tiotropium and Fluticasone inhibit Rhinovirus-Induced Mucin Production via multiple mechanisms in differentiated Airway Epithelial cells. Front Cell Infect Microbiol. 2020;10:278.PubMedPubMedCentral Wang Y, Ninaber DK, van Schadewijk A, Hiemstra PS. Tiotropium and Fluticasone inhibit Rhinovirus-Induced Mucin Production via multiple mechanisms in differentiated Airway Epithelial cells. Front Cell Infect Microbiol. 2020;10:278.PubMedPubMedCentral
168.
go back to reference Skevaki CL, Christodoulou I, Spyridaki IS, Tiniakou I, Georgiou V, Xepapadaki P, et al. Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus. Clin Exp Allergy. 2009;39(11):1700–10.PubMed Skevaki CL, Christodoulou I, Spyridaki IS, Tiniakou I, Georgiou V, Xepapadaki P, et al. Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus. Clin Exp Allergy. 2009;39(11):1700–10.PubMed
169.
go back to reference Volonaki E, Psarras S, Xepapadaki P, Psomali D, Gourgiotis D, Papadopoulos NG. Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced epithelial production of remodelling-associated growth factors. Clin Exp Allergy. 2006;36(10):1268–73.PubMed Volonaki E, Psarras S, Xepapadaki P, Psomali D, Gourgiotis D, Papadopoulos NG. Synergistic effects of fluticasone propionate and salmeterol on inhibiting rhinovirus-induced epithelial production of remodelling-associated growth factors. Clin Exp Allergy. 2006;36(10):1268–73.PubMed
170.
go back to reference Lee SY, Kim JS, Lee JM, Kwon SS, Kim KH, Moon HS, et al. Inhaled corticosteroid prevents the thickening of airway smooth muscle in murine model of chronic asthma. Pulm Pharmacol Ther. 2008;21(1):14–9.PubMed Lee SY, Kim JS, Lee JM, Kwon SS, Kim KH, Moon HS, et al. Inhaled corticosteroid prevents the thickening of airway smooth muscle in murine model of chronic asthma. Pulm Pharmacol Ther. 2008;21(1):14–9.PubMed
171.
go back to reference Descalzi D, Folli C, Nicolini G, Riccio AM, Gamalero C, Scordamaglia F, Canonica GW. Anti-proliferative and anti-remodelling effect of beclomethasone dipropionate, formoterol and salbutamol alone or in combination in primary human bronchial fibroblasts. Allergy. 2008;63(4):432–7.PubMed Descalzi D, Folli C, Nicolini G, Riccio AM, Gamalero C, Scordamaglia F, Canonica GW. Anti-proliferative and anti-remodelling effect of beclomethasone dipropionate, formoterol and salbutamol alone or in combination in primary human bronchial fibroblasts. Allergy. 2008;63(4):432–7.PubMed
172.
go back to reference Grunberg K, Sharon RF, ‘t Sont JK. Veen JC, Van Schadewijk WA, De Klerk EP, Rhinovirus-induced airway inflammation in asthma: effect of treatment with inhaled corticosteroids before and during experimental infection. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1816-22. Grunberg K, Sharon RF, ‘t Sont JK. Veen JC, Van Schadewijk WA, De Klerk EP, Rhinovirus-induced airway inflammation in asthma: effect of treatment with inhaled corticosteroids before and during experimental infection. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1816-22.
173.
go back to reference Papi A, Contoli M, Adcock IM, Bellettato C, Padovani A, Casolari P, et al. Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor kappaB and c-Jun N-terminal kinase activation. J Allergy Clin Immunol. 2013;132(5):1075–85. e6.PubMed Papi A, Contoli M, Adcock IM, Bellettato C, Padovani A, Casolari P, et al. Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor kappaB and c-Jun N-terminal kinase activation. J Allergy Clin Immunol. 2013;132(5):1075–85. e6.PubMed
174.
go back to reference Durham A, Adcock IM, Tliba O. Steroid resistance in severe asthma: current mechanisms and future treatment. Curr Pharm Des. 2011;17(7):674–84.PubMed Durham A, Adcock IM, Tliba O. Steroid resistance in severe asthma: current mechanisms and future treatment. Curr Pharm Des. 2011;17(7):674–84.PubMed
175.
go back to reference Coultas JA, Cafferkey J, Mallia P, Johnston SL. Experimental antiviral therapeutic studies for human rhinovirus infections. J Exp Pharmacol. 2021;13:645–59.PubMedPubMedCentral Coultas JA, Cafferkey J, Mallia P, Johnston SL. Experimental antiviral therapeutic studies for human rhinovirus infections. J Exp Pharmacol. 2021;13:645–59.PubMedPubMedCentral
176.
go back to reference Hayden FG, Andries K, Janssen PA. Safety and efficacy of intranasal pirodavir (R77975) in experimental rhinovirus infection. Antimicrob Agents Chemother. 1992;36(4):727–32.PubMedPubMedCentral Hayden FG, Andries K, Janssen PA. Safety and efficacy of intranasal pirodavir (R77975) in experimental rhinovirus infection. Antimicrob Agents Chemother. 1992;36(4):727–32.PubMedPubMedCentral
177.
go back to reference Hayden FG, Herrington DT, Coats TL, Kim K, Cooper EC, Villano SA, et al. Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of 2 double-blind, randomized, placebo-controlled trials. Clin Infect Dis. 2003;36(12):1523–32.PubMed Hayden FG, Herrington DT, Coats TL, Kim K, Cooper EC, Villano SA, et al. Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of 2 double-blind, randomized, placebo-controlled trials. Clin Infect Dis. 2003;36(12):1523–32.PubMed
178.
go back to reference Turner RB, Wecker MT, Pohl G, Witek TJ, McNally E, St George R, et al. Efficacy of tremacamra, a soluble intercellular adhesion molecule 1, for experimental rhinovirus infection: a randomized clinical trial. JAMA. 1999;281(19):1797–804.PubMed Turner RB, Wecker MT, Pohl G, Witek TJ, McNally E, St George R, et al. Efficacy of tremacamra, a soluble intercellular adhesion molecule 1, for experimental rhinovirus infection: a randomized clinical trial. JAMA. 1999;281(19):1797–804.PubMed
180.
go back to reference Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, et al. Biologics and airway remodeling in severe asthma. Allergy. 2022;77(12):3538–52.PubMed Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, et al. Biologics and airway remodeling in severe asthma. Allergy. 2022;77(12):3538–52.PubMed
181.
go back to reference Esquivel A, Busse WW, Calatroni A, Togias AG, Grindle KG, Bochkov YA, et al. Effects of Omalizumab on Rhinovirus Infections, Illnesses, and Exacerbations of Asthma. Am J Respir Crit Care Med. 2017;196(8):985–92.PubMedPubMedCentral Esquivel A, Busse WW, Calatroni A, Togias AG, Grindle KG, Bochkov YA, et al. Effects of Omalizumab on Rhinovirus Infections, Illnesses, and Exacerbations of Asthma. Am J Respir Crit Care Med. 2017;196(8):985–92.PubMedPubMedCentral
182.
go back to reference Przybyszowski M, Paciorek K, Zastrzezynska W, Gawlewicz-Mroczka A, Trojan-Krolikowska A, Orlowska A et al. Influence of omalizumab therapy on airway remodeling assessed with high-resolution computed tomography (HRCT) in severe allergic asthma patients. Adv Respir Med. 2018. Przybyszowski M, Paciorek K, Zastrzezynska W, Gawlewicz-Mroczka A, Trojan-Krolikowska A, Orlowska A et al. Influence of omalizumab therapy on airway remodeling assessed with high-resolution computed tomography (HRCT) in severe allergic asthma patients. Adv Respir Med. 2018.
183.
go back to reference Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Benazzi L, et al. Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin Transl Allergy. 2017;7:6.PubMedPubMedCentral Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Benazzi L, et al. Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin Transl Allergy. 2017;7:6.PubMedPubMedCentral
184.
go back to reference Zastrzezynska W, Bazan-Socha S, Przybyszowski M, Gawlewicz-Mroczka A, Jakiela B, Plutecka H, et al. Effect of omalizumab on bronchoalveolar lavage matrix metalloproteinases in severe allergic asthma. J Asthma. 2022;59(6):1087–94.PubMed Zastrzezynska W, Bazan-Socha S, Przybyszowski M, Gawlewicz-Mroczka A, Jakiela B, Plutecka H, et al. Effect of omalizumab on bronchoalveolar lavage matrix metalloproteinases in severe allergic asthma. J Asthma. 2022;59(6):1087–94.PubMed
185.
go back to reference Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol. 2021;148(3):790–8.PubMed Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol. 2021;148(3):790–8.PubMed
186.
go back to reference Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB, et al. Efficacy and safety of Itepekimab in patients with moderate-to-severe asthma. N Engl J Med. 2021;385(18):1656–68.PubMed Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB, et al. Efficacy and safety of Itepekimab in patients with moderate-to-severe asthma. N Engl J Med. 2021;385(18):1656–68.PubMed
187.
go back to reference Hur GY, Broide DH. Genes and pathways regulating decline in lung function and Airway Remodeling in Asthma. Allergy Asthma Immunol Res. 2019;11(5):604–21.PubMedPubMedCentral Hur GY, Broide DH. Genes and pathways regulating decline in lung function and Airway Remodeling in Asthma. Allergy Asthma Immunol Res. 2019;11(5):604–21.PubMedPubMedCentral
188.
go back to reference Basnet S, Bochkov YA, Brockman-Schneider RA, Kuipers I, Aesif SW, Jackson DJ, et al. CDHR3 asthma-risk genotype affects susceptibility of Airway Epithelium to Rhinovirus C Infections. Am J Respir Cell Mol Biol. 2019;61(4):450–8.PubMedPubMedCentral Basnet S, Bochkov YA, Brockman-Schneider RA, Kuipers I, Aesif SW, Jackson DJ, et al. CDHR3 asthma-risk genotype affects susceptibility of Airway Epithelium to Rhinovirus C Infections. Am J Respir Cell Mol Biol. 2019;61(4):450–8.PubMedPubMedCentral
189.
go back to reference McErlean P, Favoreto S Jr, Costa FF, Shen J, Quraishi J, Biyasheva A, et al. Human rhinovirus infection causes different DNA methylation changes in nasal epithelial cells from healthy and asthmatic subjects. BMC Med Genomics. 2014;7:37.PubMedPubMedCentral McErlean P, Favoreto S Jr, Costa FF, Shen J, Quraishi J, Biyasheva A, et al. Human rhinovirus infection causes different DNA methylation changes in nasal epithelial cells from healthy and asthmatic subjects. BMC Med Genomics. 2014;7:37.PubMedPubMedCentral
190.
go back to reference Yu B, Jin L, Chen Z, Nie W, Chen L, Ma Y, et al. The gut microbiome in microscopic polyangiitis with kidney involvement: common and unique alterations, clinical association and values for disease diagnosis and outcome prediction. Ann Transl Med. 2021;9(16):1286.PubMedPubMedCentral Yu B, Jin L, Chen Z, Nie W, Chen L, Ma Y, et al. The gut microbiome in microscopic polyangiitis with kidney involvement: common and unique alterations, clinical association and values for disease diagnosis and outcome prediction. Ann Transl Med. 2021;9(16):1286.PubMedPubMedCentral
191.
go back to reference Obase Y, Rytila P, Metso T, Pelkonen AS, Tervahartiala T, Turpeinen M, et al. Effects of inhaled corticosteroids on metalloproteinase-8 and tissue inhibitor of metalloproteinase-1 in the airways of asthmatic children. Int Arch Allergy Immunol. 2010;151(3):247–54.PubMed Obase Y, Rytila P, Metso T, Pelkonen AS, Tervahartiala T, Turpeinen M, et al. Effects of inhaled corticosteroids on metalloproteinase-8 and tissue inhibitor of metalloproteinase-1 in the airways of asthmatic children. Int Arch Allergy Immunol. 2010;151(3):247–54.PubMed
192.
go back to reference Kelly MM, O’Connor TM, Leigh R, Otis J, Gwozd C, Gauvreau GM, et al. Effects of budesonide and formoterol on allergen-induced airway responses, inflammation, and airway remodeling in asthma. J Allergy Clin Immunol. 2010;125(2):349–56. e13.PubMed Kelly MM, O’Connor TM, Leigh R, Otis J, Gwozd C, Gauvreau GM, et al. Effects of budesonide and formoterol on allergen-induced airway responses, inflammation, and airway remodeling in asthma. J Allergy Clin Immunol. 2010;125(2):349–56. e13.PubMed
193.
go back to reference Kantor DB, McDonald MC, Stenquist N, Schultz BJ, Smallwood CD, Nelson KA, et al. Omalizumab is Associated with reduced Acute Severity of Rhinovirus-triggered Asthma Exacerbation. Am J Respir Crit Care Med. 2016;194(12):1552–5.PubMedPubMedCentral Kantor DB, McDonald MC, Stenquist N, Schultz BJ, Smallwood CD, Nelson KA, et al. Omalizumab is Associated with reduced Acute Severity of Rhinovirus-triggered Asthma Exacerbation. Am J Respir Crit Care Med. 2016;194(12):1552–5.PubMedPubMedCentral
Metadata
Title
Rhinovirus induces airway remodeling: what are the physiological consequences?
Authors
Cassandra Spector
Camden M. De Sanctis
Reynold A. Panettieri Jr.
Cynthia J. Koziol-White
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2023
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-023-02529-9

Other articles of this Issue 1/2023

Respiratory Research 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine