Skip to main content
Top
Published in: Respiratory Research 1/2019

Open Access 01-12-2019 | Sleep Apnea | Research

What is the remaining status of adaptive servo-ventilation? The results of a real-life multicenter study (OTRLASV-study)

Adaptive servo-ventilation in real-life conditions

Authors: Dany Jaffuel, Carole Philippe, Claudio Rabec, Jean-Pierre Mallet, Marjolaine Georges, Stefania Redolfi, Alain Palot, Carey M. Suehs, Erika Nogue, Nicolas Molinari, Arnaud Bourdin

Published in: Respiratory Research | Issue 1/2019

Login to get access

Abstract

Backgrounds

As a consequence of the increased mortality observed in the SERVE-HF study, many questions concerning the safety and rational use of ASV in other indications emerged. The aim of this study was to describe the clinical characteristics of ASV-treated patients in real-life conditions.

Methods

The OTRLASV-study is a prospective, 5-centre study including patients who underwent ASV-treatment for at least 1 year. Patients were consecutively included in the study during the annual visit imposed for ASV-reimbursement renewal.

Results

177/214 patients were analysed (87.57% male) with a median (IQ25–75) age of 71 (65–77) years, an ASV-treatment duration of 2.88 (1.76–4.96) years, an ASV-usage of 6.52 (5.13–7.65) hours/day, and 54.8% were previously treated via continuous positive airway pressure (CPAP). The median Epworth Scale Score decreased from 10 (6–13.5) to 6 (3–9) (p < 0.001) with ASV-therapy, the apnea-hypopnea-index decreased from 50 (38–62)/h to a residual device index of 1.9 (0.7–3.8)/h (p < 0.001). The majority of patients were classified in a Central-Sleep-Apnea group (CSA; 59.3%), whereas the remaining are divided into an Obstructive-Sleep-Apnea group (OSA; 20.3%) and a Treatment-Emergent-Central-Sleep-Apnea group (TECSA; 20.3%). The Left Ventricular Ejection Fraction (LVEF) was > 45% in 92.7% of patients. Associated comorbidities/etiologies were cardiac in nature for 75.7% of patients (neurological for 12.4%, renal for 4.5%, opioid-treatment for 3.4%). 9.6% had idiopathic central-sleep-apnea. 6.2% of the patients were hospitalized the year preceding the study for cardiological reasons. In the 6 months preceding inclusion, night monitoring (i.e. polygraphy or oximetry during ASV usage) was performed in 34.4% of patients, 25.9% of whom required a subsequent setting change. According to multivariable, logistic regression, the variables that were independently associated with poor adherence (ASV-usage ≤4 h in duration) were TECSA group versus CSA group (p = 0.010), a higher Epworth score (p = 0.019) and lack of a night monitoring in the last 6 months (p < 0.05).

Conclusions

In real-life conditions, ASV-treatment is often associated with high cardiac comorbidities and high compliance. Future research should assess how regular night monitoring may optimize devices settings and patient management.

Trial registration

The OTRLASV study is registered on ClinicalTrials.gov (Identifier: NCT02429986) on 1 April 2015.
Appendix
Available only for authorised users
Literature
1.
go back to reference Javaheri S, Brown LK, Randerath WJ. Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest. 2014;146:514–23.CrossRef Javaheri S, Brown LK, Randerath WJ. Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest. 2014;146:514–23.CrossRef
2.
go back to reference Teschler H, Döhring J, Wang YM, Berthon-Jones M. Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-stokes respiration in heart failure. Am J Respir Crit Care Med. 2001;164:614–9.CrossRef Teschler H, Döhring J, Wang YM, Berthon-Jones M. Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-stokes respiration in heart failure. Am J Respir Crit Care Med. 2001;164:614–9.CrossRef
3.
go back to reference Aurora RN, Chowdhuri S, Ramar K, Bista SR, Casey KR, Lamm CI, et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep. 2012;35:17–40.CrossRef Aurora RN, Chowdhuri S, Ramar K, Bista SR, Casey KR, Lamm CI, et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep. 2012;35:17–40.CrossRef
4.
go back to reference Javaheri S, Brown LK, Randerath WJ. Clinical applications of adaptive servoventilation devices: part 2. Chest. 2014;146:858–68.CrossRef Javaheri S, Brown LK, Randerath WJ. Clinical applications of adaptive servoventilation devices: part 2. Chest. 2014;146:858–68.CrossRef
6.
go back to reference Aurora RN, Bista SR, Casey KR, Chowdhuri S, Kristo DA, Mallea JM, et al. Updated adaptive servo-ventilation recommendations for the 2012 AASM guideline: “The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses.”. J Clin Sleep Med Med. 2016;12:757–61.CrossRef Aurora RN, Bista SR, Casey KR, Chowdhuri S, Kristo DA, Mallea JM, et al. Updated adaptive servo-ventilation recommendations for the 2012 AASM guideline: “The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses.”. J Clin Sleep Med Med. 2016;12:757–61.CrossRef
7.
go back to reference Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho M-P, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105.CrossRef Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho M-P, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105.CrossRef
8.
go back to reference Oldenburg O, Wellmann B, Bitter T, Fox H, Buchholz A, Freiwald E, et al. Adaptive servo-ventilation to treat central sleep apnea in heart failure with reduced ejection fraction: the Bad Oeynhausen prospective ASV registry. Clin Res. 2018;107:719–28. Oldenburg O, Wellmann B, Bitter T, Fox H, Buchholz A, Freiwald E, et al. Adaptive servo-ventilation to treat central sleep apnea in heart failure with reduced ejection fraction: the Bad Oeynhausen prospective ASV registry. Clin Res. 2018;107:719–28.
9.
go back to reference Oldenburg O. Cheyne-stokes respiration in chronic heart failure. Treatment with adaptive servoventilation therapy. Circ J. 2012;76:2305–17.CrossRef Oldenburg O. Cheyne-stokes respiration in chronic heart failure. Treatment with adaptive servoventilation therapy. Circ J. 2012;76:2305–17.CrossRef
10.
go back to reference Carnevale C, Georges M, Rabec C, Tamisier R, Levy P, Pépin J-L. Effectiveness of adaptive servo ventilation in the treatment of hypocapnic central sleep apnea of various etiologies. Sleep Med. 2011;12:952–8.CrossRef Carnevale C, Georges M, Rabec C, Tamisier R, Levy P, Pépin J-L. Effectiveness of adaptive servo ventilation in the treatment of hypocapnic central sleep apnea of various etiologies. Sleep Med. 2011;12:952–8.CrossRef
11.
go back to reference Momomura S-I, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H. Adaptive servo-ventilation therapy using an innovative ventilator for patients with chronic heart failure: a real-world, multicenter, retrospective, observational study (SAVIOR-R). Heart Vessel. 2015;30:805–17.CrossRef Momomura S-I, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H. Adaptive servo-ventilation therapy using an innovative ventilator for patients with chronic heart failure: a real-world, multicenter, retrospective, observational study (SAVIOR-R). Heart Vessel. 2015;30:805–17.CrossRef
12.
go back to reference Malfertheiner MV, Lerzer C, Kolb L, Heider K, Zeman F, Gfüllner F, et al. Whom are we treating with adaptive servo-ventilation? A clinical post hoc analysis. Clin Res. 2017;106:702–10. Malfertheiner MV, Lerzer C, Kolb L, Heider K, Zeman F, Gfüllner F, et al. Whom are we treating with adaptive servo-ventilation? A clinical post hoc analysis. Clin Res. 2017;106:702–10.
13.
go back to reference Randerath W, Schumann K, Treml M, Herkenrath S, Castrogiovanni A, Javaheri S, et al. Adaptive servoventilation in clinical practice: beyond SERVE-HF? ERJ Open Res. 2017;3(4):00078–2017.CrossRef Randerath W, Schumann K, Treml M, Herkenrath S, Castrogiovanni A, Javaheri S, et al. Adaptive servoventilation in clinical practice: beyond SERVE-HF? ERJ Open Res. 2017;3(4):00078–2017.CrossRef
14.
go back to reference Mansukhani MP, Kolla BP, Naessens JM, Gay PC, Morgenthaler TI. Effects of adaptive servoventilation therapy for central sleep apnea on health care utilization and mortality: a population-based study. J Clin Sleep Med. 2019;15:119–28.CrossRef Mansukhani MP, Kolla BP, Naessens JM, Gay PC, Morgenthaler TI. Effects of adaptive servoventilation therapy for central sleep apnea on health care utilization and mortality: a population-based study. J Clin Sleep Med. 2019;15:119–28.CrossRef
15.
go back to reference Jaffuel D, Molinari N, Berdague P, Pathak A, Galinier M, Dupuis M, et al. Impact of sacubitril-valsartan combination in patients with chronic heart failure and sleep apnoea syndrome: the ENTRESTO-SAS study design. ESC Heart Fail. 2018;5:222–30.CrossRef Jaffuel D, Molinari N, Berdague P, Pathak A, Galinier M, Dupuis M, et al. Impact of sacubitril-valsartan combination in patients with chronic heart failure and sleep apnoea syndrome: the ENTRESTO-SAS study design. ESC Heart Fail. 2018;5:222–30.CrossRef
16.
go back to reference Pépin J-LD, Woehrle H, Liu D, Shao S, Armitstead JP, Cistulli PA, et al. Adherence to positive airway therapy after switching from CPAP to ASV: a big data analysis. J Clin Sleep Med. 2018;14:57–63.CrossRef Pépin J-LD, Woehrle H, Liu D, Shao S, Armitstead JP, Cistulli PA, et al. Adherence to positive airway therapy after switching from CPAP to ASV: a big data analysis. J Clin Sleep Med. 2018;14:57–63.CrossRef
17.
go back to reference O’Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ, et al. Cardiovascular outcomes with minute ventilation-targeted adaptive servo-ventilation therapy in heart failure: the CAT-HF trial. J Am Coll Cardiol. 2017;69:1577–87.CrossRef O’Connor CM, Whellan DJ, Fiuzat M, Punjabi NM, Tasissa G, Anstrom KJ, et al. Cardiovascular outcomes with minute ventilation-targeted adaptive servo-ventilation therapy in heart failure: the CAT-HF trial. J Am Coll Cardiol. 2017;69:1577–87.CrossRef
18.
go back to reference Huang H-CC, Hillman DR, McArdle N. Control of OSA during automatic positive airway pressure titration in a clinical case series: predictors and accuracy of device download data. Sleep. 2012;35:1277–1283A.CrossRef Huang H-CC, Hillman DR, McArdle N. Control of OSA during automatic positive airway pressure titration in a clinical case series: predictors and accuracy of device download data. Sleep. 2012;35:1277–1283A.CrossRef
19.
go back to reference Weaver TE, Maislin G, Dinges DF, Bloxham T, George CFP, Greenberg H, et al. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep. 2007;30:711–9.CrossRef Weaver TE, Maislin G, Dinges DF, Bloxham T, George CFP, Greenberg H, et al. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep. 2007;30:711–9.CrossRef
20.
go back to reference Piccini JP, Pokorney SD, Anstrom KJ, Oldenburg O, Punjabi NM, Fiuzat M, et al. Adaptive servo-ventilation reduces atrial fibrillation burden in patients with heart failure and sleep apnea. Heart Rhythm. 2019;16:91–7.CrossRef Piccini JP, Pokorney SD, Anstrom KJ, Oldenburg O, Punjabi NM, Fiuzat M, et al. Adaptive servo-ventilation reduces atrial fibrillation burden in patients with heart failure and sleep apnea. Heart Rhythm. 2019;16:91–7.CrossRef
22.
go back to reference Lee C-H, Barbé F. Adaptive servoventilation for central sleep apnoea in heart failure: a broken dream. Lancet Respir Med. 2016;4:846–7.CrossRef Lee C-H, Barbé F. Adaptive servoventilation for central sleep apnoea in heart failure: a broken dream. Lancet Respir Med. 2016;4:846–7.CrossRef
23.
go back to reference Platt AB, Kuna ST, Field SH, Chen Z, Gupta R, Roche DF, et al. Adherence to sleep apnea therapy and use of lipid-lowering drugs: a study of the healthy-user effect. Chest. 2010;137:102–8.CrossRef Platt AB, Kuna ST, Field SH, Chen Z, Gupta R, Roche DF, et al. Adherence to sleep apnea therapy and use of lipid-lowering drugs: a study of the healthy-user effect. Chest. 2010;137:102–8.CrossRef
24.
go back to reference Villar I, Izuel M, Carrizo S, Vicente E, Marin JM. Medication adherence and persistence in severe obstructive sleep apnea. Sleep. 2009;32:623–8.CrossRef Villar I, Izuel M, Carrizo S, Vicente E, Marin JM. Medication adherence and persistence in severe obstructive sleep apnea. Sleep. 2009;32:623–8.CrossRef
25.
go back to reference Reiter J, Zleik B, Bazalakova M, Mehta P, Thomas RJ. Residual events during use of CPAP: prevalence, predictors, and detection accuracy. J Clin Sleep Med. 2016;12:1153–8.CrossRef Reiter J, Zleik B, Bazalakova M, Mehta P, Thomas RJ. Residual events during use of CPAP: prevalence, predictors, and detection accuracy. J Clin Sleep Med. 2016;12:1153–8.CrossRef
26.
go back to reference Schwab RJ, Badr SM, Epstein LJ, Gay PC, Gozal D, Kohler M, et al. An official American Thoracic Society statement: continuous positive airway pressure adherence tracking systems. The optimal monitoring strategies and outcome measures in adults. Am J Respir Crit Care Med. 2013;188:613–20.CrossRef Schwab RJ, Badr SM, Epstein LJ, Gay PC, Gozal D, Kohler M, et al. An official American Thoracic Society statement: continuous positive airway pressure adherence tracking systems. The optimal monitoring strategies and outcome measures in adults. Am J Respir Crit Care Med. 2013;188:613–20.CrossRef
27.
go back to reference Thomas RJ, Bianchi MT. Urgent need to improve PAP management: the devil is in two (fixable) details. J Clin Sleep Med. 2017;13:657–64.CrossRef Thomas RJ, Bianchi MT. Urgent need to improve PAP management: the devil is in two (fixable) details. J Clin Sleep Med. 2017;13:657–64.CrossRef
28.
go back to reference Tomita Y, Kasai T, Kasuga S, Morimoto K, Takaya H, Maeno K, et al. Evaluation of the apnea-hypopnea index determined by adaptive-servo ventilation devices in heart failure patients with sleep disordered breathing. Eur Respir J. 2014;44:P2008. Tomita Y, Kasai T, Kasuga S, Morimoto K, Takaya H, Maeno K, et al. Evaluation of the apnea-hypopnea index determined by adaptive-servo ventilation devices in heart failure patients with sleep disordered breathing. Eur Respir J. 2014;44:P2008.
30.
go back to reference Silveira M-G, Sampol G, Cambrodi R, Ferre À, Lloberes P. Adaptive servoventilation device software in the assessment of residual respiratory events in patients with central or complex apnoeas. Arch Bronconeumol. 2017;53:455–7.CrossRef Silveira M-G, Sampol G, Cambrodi R, Ferre À, Lloberes P. Adaptive servoventilation device software in the assessment of residual respiratory events in patients with central or complex apnoeas. Arch Bronconeumol. 2017;53:455–7.CrossRef
31.
go back to reference The report of an American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep. 1999;22:667–89. The report of an American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep. 1999;22:667–89.
32.
go back to reference Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8:597–619.PubMedPubMedCentral Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8:597–619.PubMedPubMedCentral
Metadata
Title
What is the remaining status of adaptive servo-ventilation? The results of a real-life multicenter study (OTRLASV-study)
Adaptive servo-ventilation in real-life conditions
Authors
Dany Jaffuel
Carole Philippe
Claudio Rabec
Jean-Pierre Mallet
Marjolaine Georges
Stefania Redolfi
Alain Palot
Carey M. Suehs
Erika Nogue
Nicolas Molinari
Arnaud Bourdin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2019
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-019-1221-9

Other articles of this Issue 1/2019

Respiratory Research 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine