Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Antimalaria | Research

In vivo antimalarial effect of 1-hydroxy-5,6,7-trimethoxyxanthone isolated from Mammea siamensis T. Anders. flowers: pharmacokinetic and acute toxicity studies

Authors: Prapaporn Chaniad, Arnon Chukaew, Prasit Na-ek, Gorawit Yusakul, Litavadee Chuaboon, Arisara Phuwajaroanpong, Walaiporn Plirat, Atthaphon Konyanee, Abdi Wira Septama, Chuchard Punsawad

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration.

Methods

The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software.

Results

HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h.

Conclusions

HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.
Literature
1.
go back to reference Alehegn AA, Yesuf JS, Birru EM. Antimalarial activity of crude extract and solvent fractions of the leaves of Bersama Abyssinica Fresen. (Melianthaceae) against Plasmodium berghei infection in Swiss albino mice. Evid Based Complement Alternat Med. 2020;2020:9467359.CrossRefPubMedPubMedCentral Alehegn AA, Yesuf JS, Birru EM. Antimalarial activity of crude extract and solvent fractions of the leaves of Bersama Abyssinica Fresen. (Melianthaceae) against Plasmodium berghei infection in Swiss albino mice. Evid Based Complement Alternat Med. 2020;2020:9467359.CrossRefPubMedPubMedCentral
2.
go back to reference Muhaimin M, Madyawati L, Riski Dwimalida P, Anis Yohana C, Andreas Yoga A, Normalita Eka P et al. Antiplasmodial activity of methanolic leaf extract of mangrove plants against Plasmodium berghei. Pharmacogn J. 2019;11(5). Muhaimin M, Madyawati L, Riski Dwimalida P, Anis Yohana C, Andreas Yoga A, Normalita Eka P et al. Antiplasmodial activity of methanolic leaf extract of mangrove plants against Plasmodium berghei. Pharmacogn J. 2019;11(5).
3.
go back to reference WHO. World malaria report 2022. Geneva: World Health Organization; 2022. WHO. World malaria report 2022. Geneva: World Health Organization; 2022.
4.
go back to reference Pan WH, Xu XY, Shi N, Tsang SW, Zhang HJ. Antimalarial activity of plant metabolites. Int J Mol Sci. 2018;19(5). Pan WH, Xu XY, Shi N, Tsang SW, Zhang HJ. Antimalarial activity of plant metabolites. Int J Mol Sci. 2018;19(5).
5.
go back to reference Koehne E, Kreidenweiss A, Adegbite BR, Manego RZ, McCall MBB, Mombo-Ngoma G, et al. In vitro activity of eravacycline, a novel synthetic halogenated tetracycline, against the malaria parasite Plasmodium Falciparum. J Glob Antimicrob Resist. 2021;24:93–7.CrossRefPubMed Koehne E, Kreidenweiss A, Adegbite BR, Manego RZ, McCall MBB, Mombo-Ngoma G, et al. In vitro activity of eravacycline, a novel synthetic halogenated tetracycline, against the malaria parasite Plasmodium Falciparum. J Glob Antimicrob Resist. 2021;24:93–7.CrossRefPubMed
6.
go back to reference Fenta M, Kahaliw W. Evaluation of antimalarial activity of hydromethanolic crude extract and solvent fractions of the leaves of Nuxia congesta R. Br. Ex Fresen (Buddlejaceae) in Plasmodium Berghei infected mice. J Exp Pharmacol. 2019;11:121–34.CrossRefPubMedPubMedCentral Fenta M, Kahaliw W. Evaluation of antimalarial activity of hydromethanolic crude extract and solvent fractions of the leaves of Nuxia congesta R. Br. Ex Fresen (Buddlejaceae) in Plasmodium Berghei infected mice. J Exp Pharmacol. 2019;11:121–34.CrossRefPubMedPubMedCentral
7.
go back to reference Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg. 2015;93(3 Suppl):57–68.CrossRefPubMedPubMedCentral Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg. 2015;93(3 Suppl):57–68.CrossRefPubMedPubMedCentral
8.
go back to reference Bekono BD, Ntie-Kang F, Onguéné PA, Lifongo LL, Sippl W, Fester K, et al. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J. 2020;19(1):183.CrossRefPubMedPubMedCentral Bekono BD, Ntie-Kang F, Onguéné PA, Lifongo LL, Sippl W, Fester K, et al. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J. 2020;19(1):183.CrossRefPubMedPubMedCentral
10.
go back to reference Kweyamba PA, Zofou D, Efange N, Assob J-CN, Kitau J, Nyindo M. In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malar J. 2019;18(1):119. Kweyamba PA, Zofou D, Efange N, Assob J-CN, Kitau J, Nyindo M. In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malar J. 2019;18(1):119.
11.
go back to reference Waluyo D, Prabandari EE, Pramisandi A, Hidayati DN, Chrisnayanti E, Puspitasari DJ, et al. Exploring natural microbial resources for the discovery of anti-malarial compounds. Parasitol Int. 2021;85:102432.CrossRefPubMed Waluyo D, Prabandari EE, Pramisandi A, Hidayati DN, Chrisnayanti E, Puspitasari DJ, et al. Exploring natural microbial resources for the discovery of anti-malarial compounds. Parasitol Int. 2021;85:102432.CrossRefPubMed
12.
go back to reference Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144.CrossRefPubMedPubMedCentral Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144.CrossRefPubMedPubMedCentral
14.
go back to reference Sangkaruk R, Rungrojsakul M, Tima S, Anuchapreeda S. Effect of Thai saraphi flower extracts on WT1 and Bcr/Abl protein expression in leukemic cell lines. Afr J Tradit Complement Altern Med. 2017;14(2):16–24.CrossRefPubMedPubMedCentral Sangkaruk R, Rungrojsakul M, Tima S, Anuchapreeda S. Effect of Thai saraphi flower extracts on WT1 and Bcr/Abl protein expression in leukemic cell lines. Afr J Tradit Complement Altern Med. 2017;14(2):16–24.CrossRefPubMedPubMedCentral
15.
go back to reference Ninomiya K, Shibatani K, Sueyoshi M, Chaipech S, Pongpiriyadacha Y, Hayakawa T, et al. Aromatase inhibitory activity of geranylated coumarins, mammeasins C and D, isolated from the flowers of Mammea siamensis. Chem Pharm Bull. 2016;64(7):880–5.CrossRef Ninomiya K, Shibatani K, Sueyoshi M, Chaipech S, Pongpiriyadacha Y, Hayakawa T, et al. Aromatase inhibitory activity of geranylated coumarins, mammeasins C and D, isolated from the flowers of Mammea siamensis. Chem Pharm Bull. 2016;64(7):880–5.CrossRef
16.
go back to reference Tung NH, Uto T, Sakamoto A, Hayashida Y, Hidaka Y, Morinaga O, et al. Antiproliferative and apoptotic effects of compounds from the flower of Mammea siamensis (miq.) T. Anders. On human cancer cell lines. Bioorg Med Chem Lett. 2013;23(1):158–62.CrossRefPubMed Tung NH, Uto T, Sakamoto A, Hayashida Y, Hidaka Y, Morinaga O, et al. Antiproliferative and apoptotic effects of compounds from the flower of Mammea siamensis (miq.) T. Anders. On human cancer cell lines. Bioorg Med Chem Lett. 2013;23(1):158–62.CrossRefPubMed
17.
go back to reference Luo F, Sugita H, Muraki K, Saeki S, Chaipech S, Pongpiriyadacha Y, et al. Anti-proliferative activities of coumarins from the Thai medicinal plant Mammea siamensis (miq.) T. Anders. Against human digestive tract carcinoma cell lines. Fitoterapia. 2021;148:104780.CrossRefPubMed Luo F, Sugita H, Muraki K, Saeki S, Chaipech S, Pongpiriyadacha Y, et al. Anti-proliferative activities of coumarins from the Thai medicinal plant Mammea siamensis (miq.) T. Anders. Against human digestive tract carcinoma cell lines. Fitoterapia. 2021;148:104780.CrossRefPubMed
18.
go back to reference Morikawa T, Sueyoshi M, Chaipech S, Matsuda H, Nomura Y, Yabe M, et al. Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells. Bioorg Med Chem. 2012;20(16):4968–77.CrossRefPubMed Morikawa T, Sueyoshi M, Chaipech S, Matsuda H, Nomura Y, Yabe M, et al. Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells. Bioorg Med Chem. 2012;20(16):4968–77.CrossRefPubMed
19.
go back to reference Chaniad P, Techarang T, Phuwajaroanpong A, Horata N, Septama AW, Punsawad C. Exploring potential antimalarial candidate from medicinal plants of Kheaw Hom remedy. Trop Med Infect Dis. 2022;7(11). Chaniad P, Techarang T, Phuwajaroanpong A, Horata N, Septama AW, Punsawad C. Exploring potential antimalarial candidate from medicinal plants of Kheaw Hom remedy. Trop Med Infect Dis. 2022;7(11).
20.
go back to reference Chaniad P, Chukaew A, Payaka A, Phuwajaroanpong A, Techarang T, Plirat W, et al. Antimalarial potential of compounds isolated from Mammea Siamensis T. Anders. Flowers: in vitro and molecular docking studies. BMC Complement Med Ther. 2022;22(1):266.CrossRefPubMedPubMedCentral Chaniad P, Chukaew A, Payaka A, Phuwajaroanpong A, Techarang T, Plirat W, et al. Antimalarial potential of compounds isolated from Mammea Siamensis T. Anders. Flowers: in vitro and molecular docking studies. BMC Complement Med Ther. 2022;22(1):266.CrossRefPubMedPubMedCentral
21.
go back to reference Plirat W, Chaniad P, Phuwajaroanpong A, Septama AW, Punsawad C. Phytochemical, antimalarial, and acute oral toxicity properties of selected crude extracts of Prabchompoothaweep remedy in Plasmodium berghei-infected mice. Trop Med Infect Dis. 2022;7(12):395.CrossRefPubMedPubMedCentral Plirat W, Chaniad P, Phuwajaroanpong A, Septama AW, Punsawad C. Phytochemical, antimalarial, and acute oral toxicity properties of selected crude extracts of Prabchompoothaweep remedy in Plasmodium berghei-infected mice. Trop Med Infect Dis. 2022;7(12):395.CrossRefPubMedPubMedCentral
22.
go back to reference Chaniad P, Techarang T, Phuwajaroanpong A, Punsawad C. Antimalarial activity and toxicological assessment of Betula alnoides extract against Plasmodium berghei infections in mice. Evid Based Complement Altern Med. 2019;2019:2324679.CrossRef Chaniad P, Techarang T, Phuwajaroanpong A, Punsawad C. Antimalarial activity and toxicological assessment of Betula alnoides extract against Plasmodium berghei infections in mice. Evid Based Complement Altern Med. 2019;2019:2324679.CrossRef
23.
go back to reference Peters W. The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasitol. 1975;69:155–71.CrossRefPubMed Peters W. The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasitol. 1975;69:155–71.CrossRefPubMed
24.
go back to reference OECD. Test No. 425: acute oral toxicity: up-and-down procedure2022. OECD. Test No. 425: acute oral toxicity: up-and-down procedure2022.
25.
go back to reference Wichapoon B, Punsawad C, Chaisri U, Viriyavejakul P. Glomerular changes and alterations of zonula occludens-1 in the kidneys of Plasmodium Falciparum malaria patients. Malar J. 2014;13(1):176.CrossRefPubMedPubMedCentral Wichapoon B, Punsawad C, Chaisri U, Viriyavejakul P. Glomerular changes and alterations of zonula occludens-1 in the kidneys of Plasmodium Falciparum malaria patients. Malar J. 2014;13(1):176.CrossRefPubMedPubMedCentral
26.
go back to reference Viriyavejakul P, Khachonsaksumet V, Punsawad C. Liver changes in severe Plasmodium Falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression. Malar J. 2014;13(1):106.CrossRefPubMedPubMedCentral Viriyavejakul P, Khachonsaksumet V, Punsawad C. Liver changes in severe Plasmodium Falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression. Malar J. 2014;13(1):106.CrossRefPubMedPubMedCentral
27.
go back to reference Patnaik MP, Sharma V, Parmar VS, Boll PM. Synthesis of new trioxygenated xanthones of Tovomita Excelsa. ChemInform. 1987;18. Patnaik MP, Sharma V, Parmar VS, Boll PM. Synthesis of new trioxygenated xanthones of Tovomita Excelsa. ChemInform. 1987;18.
29.
go back to reference Tovilovic Kovacevic G, Zogovic N, Krstić-Milošević D. Secondary metabolites from endangered Gentiana, Gentianella, Centaurium, and Swertia species (Gentianaceae): promising natural biotherapeutics. 2020. p. 335 – 84. Tovilovic Kovacevic G, Zogovic N, Krstić-Milošević D. Secondary metabolites from endangered Gentiana, Gentianella, Centaurium, and Swertia species (Gentianaceae): promising natural biotherapeutics. 2020. p. 335 – 84.
30.
go back to reference Mina EC, Mina JF. Ethnobotanical survey of plants commonly used for diabetes in Tarlac of central Luzon Philippines. IIUM Med J Malays. 2017;16(1). Mina EC, Mina JF. Ethnobotanical survey of plants commonly used for diabetes in Tarlac of central Luzon Philippines. IIUM Med J Malays. 2017;16(1).
31.
go back to reference Chatatikun M, Chiabchalard A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. BMC Complement Altern Med. 2017;17(1):487.CrossRefPubMedPubMedCentral Chatatikun M, Chiabchalard A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. BMC Complement Altern Med. 2017;17(1):487.CrossRefPubMedPubMedCentral
32.
go back to reference Zhang H, Tan Y-p, Zhao L, Wang L, Fu N-j, Zheng S-p, et al. Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. Cell Death Dis. 2020;11(1):63.CrossRefPubMedPubMedCentral Zhang H, Tan Y-p, Zhao L, Wang L, Fu N-j, Zheng S-p, et al. Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. Cell Death Dis. 2020;11(1):63.CrossRefPubMedPubMedCentral
33.
go back to reference Upegui Y, Robledo SM, Gil Romero JF, Quiñones W, Archbold R, Torres F, et al. In vivo antimalarial activity of α-mangostin and the new xanthone δ-mangostin. Phytother Res. 2015;29(8):1195–201.CrossRefPubMed Upegui Y, Robledo SM, Gil Romero JF, Quiñones W, Archbold R, Torres F, et al. In vivo antimalarial activity of α-mangostin and the new xanthone δ-mangostin. Phytother Res. 2015;29(8):1195–201.CrossRefPubMed
34.
go back to reference Kelly JX, Winter R, Peyton DH, Hinrichs DJ, Riscoe M. Optimization of xanthones for antimalarial activity: the 3,6-bis-omega-diethylaminoalkoxyxanthone series. Antimicrob Agents Chemother. 2002;46(1):144–50.CrossRefPubMedPubMedCentral Kelly JX, Winter R, Peyton DH, Hinrichs DJ, Riscoe M. Optimization of xanthones for antimalarial activity: the 3,6-bis-omega-diethylaminoalkoxyxanthone series. Antimicrob Agents Chemother. 2002;46(1):144–50.CrossRefPubMedPubMedCentral
35.
go back to reference Thome R, Lopes S, Costa F, Verinaud L. Chloroquine: modes of action of an undervalued drug. Immunol Lett. 2013;153. Thome R, Lopes S, Costa F, Verinaud L. Chloroquine: modes of action of an undervalued drug. Immunol Lett. 2013;153.
36.
go back to reference Pillat MM, Krüger A, Guimarães LMF, Lameu C, de Souza EE, Wrenger C, et al. Insights in chloroquine action: perspectives and implications in Malaria and COVID-19. Cytometry Part A. 2020;97(9):872–81.CrossRef Pillat MM, Krüger A, Guimarães LMF, Lameu C, de Souza EE, Wrenger C, et al. Insights in chloroquine action: perspectives and implications in Malaria and COVID-19. Cytometry Part A. 2020;97(9):872–81.CrossRef
37.
go back to reference Nigatu TA, Afework M, Urga K, Ergete W, Makonnen E. Toxicological investigation of acute and chronic treatment with Gnidia Stenophylla Gilg root extract on some blood parameters and histopathology of spleen, liver and kidney in mice. BMC Res Notes. 2017;10(1):625.CrossRefPubMedPubMedCentral Nigatu TA, Afework M, Urga K, Ergete W, Makonnen E. Toxicological investigation of acute and chronic treatment with Gnidia Stenophylla Gilg root extract on some blood parameters and histopathology of spleen, liver and kidney in mice. BMC Res Notes. 2017;10(1):625.CrossRefPubMedPubMedCentral
38.
go back to reference Ugwah-Oguejiofor CJ, Okoli CO, Ugwah MO, Umaru ML, Ogbulie CS, Mshelia HE, et al. Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii N. E. Brown in mice and rats. Heliyon. 2019;5(1):e01179.CrossRefPubMedPubMedCentral Ugwah-Oguejiofor CJ, Okoli CO, Ugwah MO, Umaru ML, Ogbulie CS, Mshelia HE, et al. Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii N. E. Brown in mice and rats. Heliyon. 2019;5(1):e01179.CrossRefPubMedPubMedCentral
39.
go back to reference Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.PubMedPubMedCentral Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.PubMedPubMedCentral
40.
go back to reference Yudhani R, Pesik R, Azzahro S, Anisa A, Hendriyani R. Renal function parameter on acute toxicity test of kapulaga (Amomum cardamom) seed extract in rat. IOP Conf Series: Mater Sci Eng. 2019;578:012053.CrossRef Yudhani R, Pesik R, Azzahro S, Anisa A, Hendriyani R. Renal function parameter on acute toxicity test of kapulaga (Amomum cardamom) seed extract in rat. IOP Conf Series: Mater Sci Eng. 2019;578:012053.CrossRef
41.
go back to reference Rivadeneyra-Domínguez E, Becerra-Contreras Y, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Rep. 2018;5:1124–8.CrossRefPubMedPubMedCentral Rivadeneyra-Domínguez E, Becerra-Contreras Y, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Rep. 2018;5:1124–8.CrossRefPubMedPubMedCentral
42.
go back to reference Auletta CS. RAC M. Acute, subchronic, and chronic toxicology. Handb Toxicol. 1995:51–162. Auletta CS. RAC M. Acute, subchronic, and chronic toxicology. Handb Toxicol. 1995:51–162.
43.
go back to reference Hussain K, Ismail Z, Sadikun A, Ibrahim P. Bioactive markers based pharmacokinetic evaluation of extracts of a traditional medicinal plant, Piper Sarmentosum. Evid Based Complement Alternat Med. 2011;2011:980760.CrossRefPubMedPubMedCentral Hussain K, Ismail Z, Sadikun A, Ibrahim P. Bioactive markers based pharmacokinetic evaluation of extracts of a traditional medicinal plant, Piper Sarmentosum. Evid Based Complement Alternat Med. 2011;2011:980760.CrossRefPubMedPubMedCentral
44.
go back to reference Okada K, Sato A, Hiramoto A, Isogawa R, Kurosaki Y, Higaki K, et al. Pharmacokinetic analysis of new synthetic antimalarial N-251. Trop Med Int Health. 2019;47(1):40.CrossRef Okada K, Sato A, Hiramoto A, Isogawa R, Kurosaki Y, Higaki K, et al. Pharmacokinetic analysis of new synthetic antimalarial N-251. Trop Med Int Health. 2019;47(1):40.CrossRef
45.
go back to reference Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2019;37(1):12.CrossRefPubMedPubMedCentral Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2019;37(1):12.CrossRefPubMedPubMedCentral
46.
go back to reference Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin C-S, Fleckenstein L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 2011;10(1):263.CrossRefPubMedPubMedCentral Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin C-S, Fleckenstein L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 2011;10(1):263.CrossRefPubMedPubMedCentral
47.
go back to reference Tarning J, Rijken MJ, McGready R, Phyo AP, Hanpithakpong W, Day NP, et al. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob Agents Chemother. 2012;56(4):1997–2007.CrossRefPubMedPubMedCentral Tarning J, Rijken MJ, McGready R, Phyo AP, Hanpithakpong W, Day NP, et al. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob Agents Chemother. 2012;56(4):1997–2007.CrossRefPubMedPubMedCentral
48.
go back to reference Hong X, Liu C-h, Huang X-t, Huang T-l, Ye S-m, Ou W-p, et al. Pharmacokinetics of dihydroartemisinin in Artekin tablets for single and repeated dosing in Chinese healthy volunteers. Biopharm Drug Dispos. 2008;29(4):237–44.CrossRefPubMed Hong X, Liu C-h, Huang X-t, Huang T-l, Ye S-m, Ou W-p, et al. Pharmacokinetics of dihydroartemisinin in Artekin tablets for single and repeated dosing in Chinese healthy volunteers. Biopharm Drug Dispos. 2008;29(4):237–44.CrossRefPubMed
49.
go back to reference Gautam A, Ahmed T, Sharma P, Varshney B, Kothari M, Saha N, et al. Pharmacokinetics and pharmacodynamics of arterolane maleate following multiple oral doses in adult patients with P. Falciparum malaria. J Clin Pharmacol. 2011;51(11):1519–28.CrossRefPubMed Gautam A, Ahmed T, Sharma P, Varshney B, Kothari M, Saha N, et al. Pharmacokinetics and pharmacodynamics of arterolane maleate following multiple oral doses in adult patients with P. Falciparum malaria. J Clin Pharmacol. 2011;51(11):1519–28.CrossRefPubMed
50.
go back to reference Tanner L, Haynes RK, Wiesner L. An in vitro ADME and in vivo pharmacokinetic study of novel TB-active decoquinate derivatives. Front Pharmacol. 2019;10. Tanner L, Haynes RK, Wiesner L. An in vitro ADME and in vivo pharmacokinetic study of novel TB-active decoquinate derivatives. Front Pharmacol. 2019;10.
51.
go back to reference Bassat Q, Maïga-Ascofaré O, May J, Clain J, Mombo-Ngoma G, Groger M, et al. Challenges in the clinical development pathway for triple and multiple drug combinations in the treatment of uncomplicated falciparum malaria. Malar J. 2022;21(1):61.CrossRefPubMedPubMedCentral Bassat Q, Maïga-Ascofaré O, May J, Clain J, Mombo-Ngoma G, Groger M, et al. Challenges in the clinical development pathway for triple and multiple drug combinations in the treatment of uncomplicated falciparum malaria. Malar J. 2022;21(1):61.CrossRefPubMedPubMedCentral
Metadata
Title
In vivo antimalarial effect of 1-hydroxy-5,6,7-trimethoxyxanthone isolated from Mammea siamensis T. Anders. flowers: pharmacokinetic and acute toxicity studies
Authors
Prapaporn Chaniad
Arnon Chukaew
Prasit Na-ek
Gorawit Yusakul
Litavadee Chuaboon
Arisara Phuwajaroanpong
Walaiporn Plirat
Atthaphon Konyanee
Abdi Wira Septama
Chuchard Punsawad
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04427-z

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue