Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Research

Free radical scavenging and anti-isolated human LDL oxidation activities of Butea superba Roxb. extract

Authors: Kittipot Sirichaiwetchakoon, Griangsak Eumkeb

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

Butea superba Roxb. (B. superba), is an herbal plant traditionally used for rejuvenation. Additionally, there have been reports on its antioxidant properties. Low-density lipoproteins (LDL) oxidation is the leading cause of cardiovascular diseases (CVDs). Natural products with antioxidant properties have the potential to inhibit LDL oxidation. However, no work has been done about the anti-isolated human LDL oxidation of B. superba extract (BSE). This study aimed to investigate the antioxidant potential of BSE and its ability to prevent isolated human (LDL) oxidation induced by free radical agents.

Methods

The antioxidant properties were investigated by antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), ferric reducing ability power (FRAP), nitric oxide (NO) and peroxynitrite scavenging assay. More so, anti-isolated human LDL oxidation activities were evaluated by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and 3-morpholinosydnonimine hydrochloride (SIN-1) induced LDL oxidation assay.

Results

BSE exhibited a significant (p < 0.05) antioxidant activity in all the test systems, demonstrating its potential as a potent free radical scavenger. It displayed scavenging effects on DPPH (p < 0.05; IC50 = 487.67 ± 21.94 µg/ml), ABTS (p < 0.05; IC50 = 30.83 ± 1.29 µg/ml). Furthermore, it generated significantly (p < 0.05) increased antioxidant capacity in a dose-dependent manner in FRAP assay and exhibited significantly (p < 0.01) higher percent NO scavenging activity than gallic acid. Besides, BSE at 62.5 µg/ml exhibited a considerable percent peroxynitrite scavenging of 71.40 ± 6.59% after a 2 h period. Moreover, BSE demonstrated anti-isolated human LDL oxidation activity induced by AAPH and SIN-1 (p < 0.05) and revealed scavenging activity similar to ascorbic acid (p > 0.05). Identifying the main constituents of BSE revealed the presence of genistein, daidzein, and biochanin A through Liquid Chromatography-Mass Spectrometer/Mass Spectrometer (LC–MS/MS) analysis.

Conclusion

This is the first report that the presence of isoflavones in BSE could play an important role in its antioxidation and isolated human LDL oxidation scavenging properties. These findings suggest the potential for developing antioxidant herbal supplements. However, further studies must be investigated, including efficacious and safe human dosages.
Literature
1.
go back to reference Kelly JP, Kaufman DW, Kelley K, Rosenberg L, Anderson TE, Mitchell AA. Recent trends in use of herbal and other natural products. Arch Intern Med. 2005;165(3):281–6.PubMedCrossRef Kelly JP, Kaufman DW, Kelley K, Rosenberg L, Anderson TE, Mitchell AA. Recent trends in use of herbal and other natural products. Arch Intern Med. 2005;165(3):281–6.PubMedCrossRef
2.
go back to reference Amin KA, Nagy MA. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabetes Metab Syndr. 2009;1(1):17.CrossRef Amin KA, Nagy MA. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabetes Metab Syndr. 2009;1(1):17.CrossRef
3.
go back to reference Cheeseman KH, Slater T. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.PubMedCrossRef Cheeseman KH, Slater T. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.PubMedCrossRef
4.
go back to reference Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro A. Free radical properties, source and targets, antioxidant consumption and health. Oxygen. 2022;2(2):48–78.CrossRef Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro A. Free radical properties, source and targets, antioxidant consumption and health. Oxygen. 2022;2(2):48–78.CrossRef
5.
go back to reference Dhawan V. Reactive oxygen and nitrogen species. In: Studies on respiratory disorders. New York: Springer; 2014. Dhawan V. Reactive oxygen and nitrogen species. In: Studies on respiratory disorders. New York: Springer; 2014.
6.
go back to reference Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics. update: a report from the American Heart Association. 2016;133(4):e38–360. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics. update: a report from the American Heart Association. 2016;133(4):e38–360.
7.
go back to reference Gao S, Liu J. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis Transl Med. 2017;3(02):89–94.PubMedPubMedCentral Gao S, Liu J. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis Transl Med. 2017;3(02):89–94.PubMedPubMedCentral
8.
go back to reference Bahorun T, Soobrattee M, Luximon-Ramma V, Aruoma O. Free radicals and antioxidants in cardiovascular health and disease. Internet J Medical Update. 2006;1(2):25–41. Bahorun T, Soobrattee M, Luximon-Ramma V, Aruoma O. Free radicals and antioxidants in cardiovascular health and disease. Internet J Medical Update. 2006;1(2):25–41.
9.
go back to reference Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid Med Cell Longev. 2019;2019:8563845. Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid Med Cell Longev. 2019;2019:8563845.
10.
go back to reference Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.PubMedCrossRef Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.PubMedCrossRef
11.
go back to reference Kashirskikh DA, Guo S, Panyod S, Chicherina NR, Bagheri M, Ekta AI, et al. A novel insight into the nature of modified low-density lipoproteins and their role in atherosclerosis. Vessel Plus. 2023;7:3. Kashirskikh DA, Guo S, Panyod S, Chicherina NR, Bagheri M, Ekta AI, et al. A novel insight into the nature of modified low-density lipoproteins and their role in atherosclerosis. Vessel Plus. 2023;7:3.
12.
go back to reference Panchawat S, Rathore K, Sisodia SS. A review on herbal antioxidants. Int J Pharmtech Res. 2010;2(1):232–9. Panchawat S, Rathore K, Sisodia SS. A review on herbal antioxidants. Int J Pharmtech Res. 2010;2(1):232–9.
13.
go back to reference Apak R, Ozyurek M, Guclu K, Capanoglu E. Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J Agric Food Chem. 2016;64(5):1046–70.PubMedCrossRef Apak R, Ozyurek M, Guclu K, Capanoglu E. Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J Agric Food Chem. 2016;64(5):1046–70.PubMedCrossRef
14.
go back to reference Eumkeb G, Tanphonkrang S, Sirichaiwetchakoon K, Hengpratom T, Naknarong W. The synergy effect of daidzein and genistein isolated from Butea superba Roxb. on the reproductive system of male mice. Nat Prod Res. 2017;31(6):672–5.PubMedCrossRef Eumkeb G, Tanphonkrang S, Sirichaiwetchakoon K, Hengpratom T, Naknarong W. The synergy effect of daidzein and genistein isolated from Butea superba Roxb. on the reproductive system of male mice. Nat Prod Res. 2017;31(6):672–5.PubMedCrossRef
15.
go back to reference Chukeatirote E, Saisavoey T. Antimicrobial property and antioxidant composition of crude extracts of Pueraria mirifica, Butea superba and Mucuna macrocarpa. Maejo Int J Sci Technol. 2009;3(1):212–21. Chukeatirote E, Saisavoey T. Antimicrobial property and antioxidant composition of crude extracts of Pueraria mirifica, Butea superba and Mucuna macrocarpa. Maejo Int J Sci Technol. 2009;3(1):212–21.
16.
go back to reference Nuengchamnong N, De Jong C, Bruyneel B, Niessen W, Irth H, Ingkaninan K. HPLC coupled on-line to ESI-MS and a DPPH-based assay for the rapid identification of anti-oxidants in Butea superba. Phytochem Anal. 2005;16(6):422–8.PubMedCrossRef Nuengchamnong N, De Jong C, Bruyneel B, Niessen W, Irth H, Ingkaninan K. HPLC coupled on-line to ESI-MS and a DPPH-based assay for the rapid identification of anti-oxidants in Butea superba. Phytochem Anal. 2005;16(6):422–8.PubMedCrossRef
17.
go back to reference Sirichaiwetchakoon K, Lowe GM, Thumanu K, Eumkeb G. The effect of Pluchea indica (L.) Less. tea on adipogenesis in 3T3-L1 adipocytes and lipase activity. Evid Based Complement Alternat Med. 2018;2018:4108787. Sirichaiwetchakoon K, Lowe GM, Thumanu K, Eumkeb G. The effect of Pluchea indica (L.) Less. tea on adipogenesis in 3T3-L1 adipocytes and lipase activity. Evid Based Complement Alternat Med. 2018;2018:4108787.
18.
go back to reference Sirichaiwetchakoon K, Lowe GM, Kupittayanant S, Churproong S, Eumkeb G, Pluchea indica (L.). Less. tea ameliorates hyperglycemia, dyslipidemia, and obesity in high fat diet-fed Mice. Evid Based Complement Alternat Med. 2020;2020:8746137.PubMedPubMedCentralCrossRef Sirichaiwetchakoon K, Lowe GM, Kupittayanant S, Churproong S, Eumkeb G, Pluchea indica (L.). Less. tea ameliorates hyperglycemia, dyslipidemia, and obesity in high fat diet-fed Mice. Evid Based Complement Alternat Med. 2020;2020:8746137.PubMedPubMedCentralCrossRef
19.
go back to reference Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25–30.CrossRef Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25–30.CrossRef
20.
go back to reference Re R, Pellegrini N, Proteggente A, Pannala A, Yang M. Rice-Evans Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;28(9):1231–7.CrossRef Re R, Pellegrini N, Proteggente A, Pannala A, Yang M. Rice-Evans Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;28(9):1231–7.CrossRef
21.
go back to reference Benzie I, Devaki M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Measurement of antioxidant activity & capacity. recent trends and applications. Wiley. New York: 2018:77–106. https://doi.org/10.1002/9781119135388. Benzie I, Devaki M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Measurement of antioxidant activity & capacity. recent trends and applications. Wiley. New York: 2018:77–106. https://​doi.​org/​10.​1002/​9781119135388.
22.
go back to reference Yen G-C, Lai H-H, Chou H. Nitric oxide-scavenging and antioxidant effects of Uraria crinita root. Food Chem. 2001;74(4):471–8.CrossRef Yen G-C, Lai H-H, Chou H. Nitric oxide-scavenging and antioxidant effects of Uraria crinita root. Food Chem. 2001;74(4):471–8.CrossRef
23.
go back to reference Bailly F, Zoete V, Vamecq J, Catteau JP, Bernier J. Antioxidant actions of ovothiol-derived 4-mercaptoimidazoles: glutathione peroxidase activity and protection against peroxynitrite-induced damage. Febs Lett. 2000;486(1):19–22.PubMedCrossRef Bailly F, Zoete V, Vamecq J, Catteau JP, Bernier J. Antioxidant actions of ovothiol-derived 4-mercaptoimidazoles: glutathione peroxidase activity and protection against peroxynitrite-induced damage. Febs Lett. 2000;486(1):19–22.PubMedCrossRef
24.
go back to reference Barcelos RP, de Lima PR, da Rosa E, de Souza FA, Bresolin L, Carratu V, et al. Thiosemicarbazone derivate protects from AAPH and Cu2+-induced LDL oxidation. Life Sci. 2011;89(1–2):20–8.PubMedCrossRef Barcelos RP, de Lima PR, da Rosa E, de Souza FA, Bresolin L, Carratu V, et al. Thiosemicarbazone derivate protects from AAPH and Cu2+-induced LDL oxidation. Life Sci. 2011;89(1–2):20–8.PubMedCrossRef
25.
go back to reference Eumkeb G, Naknarong W, Sirichaiwetchakoon K. The effects of Red Kwao Krue (Butea Superba Roxb.) extract on sperm quality and testosterone level in mice. Thai J Pharm Sci. 2013;38:120–3. Eumkeb G, Naknarong W, Sirichaiwetchakoon K. The effects of Red Kwao Krue (Butea Superba Roxb.) extract on sperm quality and testosterone level in mice. Thai J Pharm Sci. 2013;38:120–3.
27.
go back to reference Sirichaiwetchakoon K, Suksuphew S, Srisawat R, Eumkeb G. Butea superba Roxb. extract ameliorates scopolamine-induced cognitive and memory impairment in aged male rats. Evid Based Complement Alternat Med. 2021;2021:2703138. Sirichaiwetchakoon K, Suksuphew S, Srisawat R, Eumkeb G. Butea superba Roxb. extract ameliorates scopolamine-induced cognitive and memory impairment in aged male rats. Evid Based Complement Alternat Med. 2021;2021:2703138.
28.
go back to reference Ungar Y, Osundahunsi OF, Shimoni E. Thermal stability of genistein and daidzein and its effect on their antioxidant activity. J Agric Food Chem. 2003;51(15):4394–9.PubMedCrossRef Ungar Y, Osundahunsi OF, Shimoni E. Thermal stability of genistein and daidzein and its effect on their antioxidant activity. J Agric Food Chem. 2003;51(15):4394–9.PubMedCrossRef
29.
go back to reference Widodo WS, Widowati W, Ginting CN, Lister I, Armansyah A, Girsang E. Comparison of antioxidant and anti-collagenase activity of genistein and epicatechin. Pharm Sci Res. 2019;6(2):6. Widodo WS, Widowati W, Ginting CN, Lister I, Armansyah A, Girsang E. Comparison of antioxidant and anti-collagenase activity of genistein and epicatechin. Pharm Sci Res. 2019;6(2):6.
30.
go back to reference Vennila L, Asaikumar L, Jayaraj D, Vijayakumar N. Evaluation of in-vitro antioxidant activity of biochanin A. J Drug Deliv Sci Technol. 2019;9(4-A):594–600. Vennila L, Asaikumar L, Jayaraj D, Vijayakumar N. Evaluation of in-vitro antioxidant activity of biochanin A. J Drug Deliv Sci Technol. 2019;9(4-A):594–600.
31.
go back to reference Bushra A, Riaz S, Mateen S, Moin S, Faizy A. Analysis of anti-oxidant activity of phytoestrogen biochanin A, an isoflavone phytoestrogen. Indian J Clin Biochem. 2022;36(S1):S94. Bushra A, Riaz S, Mateen S, Moin S, Faizy A. Analysis of anti-oxidant activity of phytoestrogen biochanin A, an isoflavone phytoestrogen. Indian J Clin Biochem. 2022;36(S1):S94.
32.
go back to reference Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen Z. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 2005;90(4):735–41.CrossRef Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen Z. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 2005;90(4):735–41.CrossRef
33.
go back to reference Orhan EI, Tosun F, Tamer U, Duran A, Alan B, Kök F. Quantification of genistein and daidzein in two endemic Genista species and their antioxidant activity. J Serb Chem Soc. 2011;76(1):35–42.CrossRef Orhan EI, Tosun F, Tamer U, Duran A, Alan B, Kök F. Quantification of genistein and daidzein in two endemic Genista species and their antioxidant activity. J Serb Chem Soc. 2011;76(1):35–42.CrossRef
34.
go back to reference Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep. 2020;10(1):2611.PubMedPubMedCentralCrossRefADS Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep. 2020;10(1):2611.PubMedPubMedCentralCrossRefADS
35.
go back to reference Tenuta MC, Deguin B, Loizzo MR, Dugay A, Acquaviva R, Malfa GA, et al. Contribution of flavonoids and iridoids to the hypoglycaemic, antioxidant, and nitric oxide (NO) inhibitory activities of Arbutus unedo L. Antioxid. 2020;9(2):184.CrossRef Tenuta MC, Deguin B, Loizzo MR, Dugay A, Acquaviva R, Malfa GA, et al. Contribution of flavonoids and iridoids to the hypoglycaemic, antioxidant, and nitric oxide (NO) inhibitory activities of Arbutus unedo L. Antioxid. 2020;9(2):184.CrossRef
36.
go back to reference Sharma J, Al-Omran A, Parvathy S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9.PubMedCrossRef Sharma J, Al-Omran A, Parvathy S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9.PubMedCrossRef
37.
go back to reference Li H, Förstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000;190(3):244–54.PubMedCrossRef Li H, Förstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000;190(3):244–54.PubMedCrossRef
38.
go back to reference Kumaran A, Karunakaran R. Nitric oxide radical scavenging active components from Phyllanthus emblica L. Plant Foods Hum Nutr. 2006;61:1–5.PubMedCrossRef Kumaran A, Karunakaran R. Nitric oxide radical scavenging active components from Phyllanthus emblica L. Plant Foods Hum Nutr. 2006;61:1–5.PubMedCrossRef
39.
go back to reference Badhani B, Sharma N, Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5(35):27540–57.CrossRefADS Badhani B, Sharma N, Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5(35):27540–57.CrossRefADS
41.
go back to reference Ebadi M, Sharma S. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Antioxid Redox Signal. 2003;5(3):319–35.PubMedCrossRef Ebadi M, Sharma S. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Antioxid Redox Signal. 2003;5(3):319–35.PubMedCrossRef
42.
go back to reference Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.PubMedCrossRef Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.PubMedCrossRef
43.
go back to reference Yen G-C, Lai H. Inhibitory effects of isoflavones on nitric oxide-or peroxynitrite-mediated DNA damage in RAW 264.7 cells and φX174 DNA. Food Chem Toxicol. 2002;40(10):1433–40.PubMedCrossRef Yen G-C, Lai H. Inhibitory effects of isoflavones on nitric oxide-or peroxynitrite-mediated DNA damage in RAW 264.7 cells and φX174 DNA. Food Chem Toxicol. 2002;40(10):1433–40.PubMedCrossRef
44.
go back to reference Lai H-H, Yen G-C. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci Biotechnol Biochem. 2002;66(1):22–8.PubMedCrossRef Lai H-H, Yen G-C. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci Biotechnol Biochem. 2002;66(1):22–8.PubMedCrossRef
45.
go back to reference Jafari S, Shoghi M, Khazdair M. Pharmacological effects of genistein on cardiovascular diseases. Evid Based Complement Alternat Med. 2023;2023:8250219. Jafari S, Shoghi M, Khazdair M. Pharmacological effects of genistein on cardiovascular diseases. Evid Based Complement Alternat Med. 2023;2023:8250219.
46.
go back to reference Zhong S, Li L, Shen X, Li Q, Xu W, Wang X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic Biol Med. 2019;144:266–78.PubMedCrossRef Zhong S, Li L, Shen X, Li Q, Xu W, Wang X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic Biol Med. 2019;144:266–78.PubMedCrossRef
47.
go back to reference Ramana KV, Srivastava S, Singhal SS. Lipid peroxidation products in human health and disease. Oxid Med Cell Longev. 2019;2019:583438. Ramana KV, Srivastava S, Singhal SS. Lipid peroxidation products in human health and disease. Oxid Med Cell Longev. 2019;2019:583438.
48.
go back to reference Spranger T, Finckh B, Fingerhut R, Kohlschütter A, Beisiegel U, Kontush A. How different constituents of human plasma and low density lipoprotein determine plasma oxidizability by copper. Chem Phys Lipids. 1998;91(1):39–52.PubMedCrossRef Spranger T, Finckh B, Fingerhut R, Kohlschütter A, Beisiegel U, Kontush A. How different constituents of human plasma and low density lipoprotein determine plasma oxidizability by copper. Chem Phys Lipids. 1998;91(1):39–52.PubMedCrossRef
49.
go back to reference Abdollahzad H, Eghtesadi S, Nourmohammadi I, Khadem-Ansari M, Nejad-Gashti H, Esmaillzadeh A. Effect of vitamin C supplementation on oxidative stress and lipid profiles in hemodialysis patients. Int J Vitam Nutr Res. 2009;79(56):281–7.PubMedCrossRef Abdollahzad H, Eghtesadi S, Nourmohammadi I, Khadem-Ansari M, Nejad-Gashti H, Esmaillzadeh A. Effect of vitamin C supplementation on oxidative stress and lipid profiles in hemodialysis patients. Int J Vitam Nutr Res. 2009;79(56):281–7.PubMedCrossRef
50.
go back to reference Yoon GA, Park S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr Res Pract. 2014;8(6):618–24.PubMedPubMedCentralCrossRef Yoon GA, Park S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr Res Pract. 2014;8(6):618–24.PubMedPubMedCentralCrossRef
51.
go back to reference Guy RA, Maguire GF, Crandall I, Connelly PW, Kain KC. Characterization of peroxynitrite-oxidized low density lipoprotein binding to human CD36. Atherosclerosis. 2001;155(1):19–28.PubMedCrossRef Guy RA, Maguire GF, Crandall I, Connelly PW, Kain KC. Characterization of peroxynitrite-oxidized low density lipoprotein binding to human CD36. Atherosclerosis. 2001;155(1):19–28.PubMedCrossRef
Metadata
Title
Free radical scavenging and anti-isolated human LDL oxidation activities of Butea superba Roxb. extract
Authors
Kittipot Sirichaiwetchakoon
Griangsak Eumkeb
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04373-w

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue