Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Research

Gallic acid rescues uranyl acetate induced-hepatic dysfunction in rats by its antioxidant and cytoprotective potentials

Authors: Ibtisam M. H. Elmileegy, Hanan S. A. Waly, Alshaimaa A. I. Alghriany, Nasser S. Abou Khalil, Sara M. M. Mahmoud, Eman A. Negm

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

The liver was identified as a primary target organ for the chemo-radiological effects of uranyl acetate (UA). Although the anti-oxidant and anti-apoptotic properties of gallic acid (GA) make it a promising phytochemical to resist its hazards, there is no available data in this area of research.

Methods

To address this issue, eighteen rats were randomly and equally divided into three groups. One group was received carboxymethyl cellulose (vehicle of GA) and kept as a control. The UA group was injected intraperitoneally with UA at a single dose of 5 mg/kg body weight. The third group (GA + UA group) was treated with GA orally at a dose of 100 mg/kg body weight for 14 days before UA exposure. UA was injected on the 15th day of the experiment in either the UA group or the GA + UA group. The biochemical, histological, and immunohistochemical findings in the GA + UA group were compared to both control and UA groups.

Results

The results showed that UA exposure led to a range of adverse effects. These included elevated plasma levels of aspartate aminotransferase, lactate dehydrogenase, total protein, globulin, glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein and decreased plasma levels of high-density lipoprotein cholesterol. The exposure also disrupted the redox balance, evident through decreased plasma total antioxidant capacity and hepatic nitric oxide, superoxide dismutase, reduced glutathione, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase and increased hepatic oxidized glutathione and malondialdehyde. Plasma levels of albumin and alanine aminotransferase did not significantly change in all groups. Histopathological analysis revealed damage to liver tissue, characterized by deteriorations in tissue structure, excessive collagen accumulation, and depletion of glycogen. Furthermore, UA exposure up-regulated the immuno-expression of cleaved caspase-3 and down-regulated the immuno-expression of nuclear factor-erythroid-2-related factor 2 in hepatic tissues, indicating an induction of apoptosis and oxidative stress response. However, the pre-treatment with GA proved to be effective in mitigating these negative effects induced by UA exposure, except for the disturbances in the lipid profile.

Conclusions

The study suggests that GA has the potential to act as a protective agent against the adverse effects of UA exposure on the liver. Its ability to restore redox balance and inhibit apoptosis makes it a promising candidate for countering the harmful effects of chemo-radiological agents such as UA.
Literature
1.
go back to reference Yue YC, Li MH, Wang HB, Zhang BL, He W. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med. 2018;23:1–9.CrossRef Yue YC, Li MH, Wang HB, Zhang BL, He W. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med. 2018;23:1–9.CrossRef
2.
go back to reference Soltani M, Zarei MH, Salimi A, Pourahmad J. Mitochondrial protective and antioxidant agents protect toxicity induced by depleted uranium in isolated human lymphocytes. J Environ Radioact. 2019;203:112–6.PubMedCrossRef Soltani M, Zarei MH, Salimi A, Pourahmad J. Mitochondrial protective and antioxidant agents protect toxicity induced by depleted uranium in isolated human lymphocytes. J Environ Radioact. 2019;203:112–6.PubMedCrossRef
3.
go back to reference Shaki F, Hosseini MJ, Shahraki J, Ghazi-Khansari M, Pourahmad J. Toxicity of depleted uranium on isolated liver mitochondria: a revised mechanistic vision for justification of clinical complication of depleted uranium (DU) on liver. Toxicol Environ Chem. 2013;95:1221–34.CrossRef Shaki F, Hosseini MJ, Shahraki J, Ghazi-Khansari M, Pourahmad J. Toxicity of depleted uranium on isolated liver mitochondria: a revised mechanistic vision for justification of clinical complication of depleted uranium (DU) on liver. Toxicol Environ Chem. 2013;95:1221–34.CrossRef
4.
go back to reference Yuan Y, Zheng J, Zhao T, Tang X, Hu N. Hydrogen sulfide alleviates uranium-induced acute hepatotoxicity in rats: role of antioxidant and antiapoptotic signaling. Environ Toxicol. 2017;32:581–93.PubMedCrossRef Yuan Y, Zheng J, Zhao T, Tang X, Hu N. Hydrogen sulfide alleviates uranium-induced acute hepatotoxicity in rats: role of antioxidant and antiapoptotic signaling. Environ Toxicol. 2017;32:581–93.PubMedCrossRef
5.
go back to reference Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Zhao X. Sub-chronic lead and cadmium co-induce apoptosis protein expression in liver and kidney of rats. Int J Clin Exp Pathol. 2014;7:2905.PubMedPubMedCentral Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Zhao X. Sub-chronic lead and cadmium co-induce apoptosis protein expression in liver and kidney of rats. Int J Clin Exp Pathol. 2014;7:2905.PubMedPubMedCentral
6.
go back to reference Šömen Joksić A, Katz SA. Chelation therapy for treatment of systemic intoxication with uranium: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50:1479–88.PubMedCrossRef Šömen Joksić A, Katz SA. Chelation therapy for treatment of systemic intoxication with uranium: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50:1479–88.PubMedCrossRef
7.
go back to reference Ohmachi Y. Decorporation agents for internal radioactive contamination. J Pharm Soc Jpn. 2015;135:557–63.CrossRef Ohmachi Y. Decorporation agents for internal radioactive contamination. J Pharm Soc Jpn. 2015;135:557–63.CrossRef
8.
go back to reference Waly H, Ragab SMM, Hassanein KMA, Abou Khalil NS, Ahmed EA. Uranium exposure increases spermatocytes metaphase apoptosis in rats: inhibitory effect of thymoquinone and N-acetylcysteine. Gen Physiol Biophys. 2019;38:145–55.PubMedCrossRef Waly H, Ragab SMM, Hassanein KMA, Abou Khalil NS, Ahmed EA. Uranium exposure increases spermatocytes metaphase apoptosis in rats: inhibitory effect of thymoquinone and N-acetylcysteine. Gen Physiol Biophys. 2019;38:145–55.PubMedCrossRef
10.
go back to reference Ferk F, Chakraborty A, Jäger W, Kundi M, Bichler J, Mišík M, Wagner KH, Grasl-Kraupp B, Sagmeister S, Haidinger G, Hoelzl C, Nersesyan A, Dušinská M, Simić T, Knasmüller S. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutat Res Fundam Mol Mech Mutagen. 2011;715:61–71.CrossRef Ferk F, Chakraborty A, Jäger W, Kundi M, Bichler J, Mišík M, Wagner KH, Grasl-Kraupp B, Sagmeister S, Haidinger G, Hoelzl C, Nersesyan A, Dušinská M, Simić T, Knasmüller S. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutat Res Fundam Mol Mech Mutagen. 2011;715:61–71.CrossRef
11.
go back to reference Ma S, Lv L, Lu Q, Li Y, Zhang F, Lin M, Gao D, Liu L, Tian X, Yao J. Gallic acid attenuates dimethylnitrosamine-induced acute liver injury in mice through Nrf2-mediated induction of heme oxygenase-1 and glutathione-s-transferase alpha 3. Med Chem. 2014;4:663–9.CrossRef Ma S, Lv L, Lu Q, Li Y, Zhang F, Lin M, Gao D, Liu L, Tian X, Yao J. Gallic acid attenuates dimethylnitrosamine-induced acute liver injury in mice through Nrf2-mediated induction of heme oxygenase-1 and glutathione-s-transferase alpha 3. Med Chem. 2014;4:663–9.CrossRef
12.
go back to reference Esmaeilzadeh M, Heidarian E, Shaghaghi M, Roshanmehr H, Najafi M, Moradi A, Nouri A. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1β gene expression in male rats. Pharm Biol. 2020;58:590–6.PubMedPubMedCentralCrossRef Esmaeilzadeh M, Heidarian E, Shaghaghi M, Roshanmehr H, Najafi M, Moradi A, Nouri A. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1β gene expression in male rats. Pharm Biol. 2020;58:590–6.PubMedPubMedCentralCrossRef
13.
go back to reference Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.PubMedCrossRef Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.PubMedCrossRef
14.
go back to reference Saravanan R, Pari L. Effect of a novel insulinotropic agent, succinic acid monoethyl ester, on lipids and lipoproteins levels in rats with streptozotocin-nicotinamide-induced type 2 Diabetes. J Biosci. 2006;31:581–7.PubMedCrossRef Saravanan R, Pari L. Effect of a novel insulinotropic agent, succinic acid monoethyl ester, on lipids and lipoproteins levels in rats with streptozotocin-nicotinamide-induced type 2 Diabetes. J Biosci. 2006;31:581–7.PubMedCrossRef
15.
go back to reference Rojas MM, Villalpando DM, Ferrer M, Alexander-Aguilera A, García HS. Conjugated linoleic acid supplemented Diet influences serum markers in Orchidectomized Sprague‐Dawley rats. Eur J Lipid Sci Technol. 2020;122:1900098.CrossRef Rojas MM, Villalpando DM, Ferrer M, Alexander-Aguilera A, García HS. Conjugated linoleic acid supplemented Diet influences serum markers in Orchidectomized Sprague‐Dawley rats. Eur J Lipid Sci Technol. 2020;122:1900098.CrossRef
16.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.PubMedCrossRef Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.PubMedCrossRef
17.
go back to reference Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for Independent production. J Immunol. 1988;141:2407–12.PubMedCrossRef Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for Independent production. J Immunol. 1988;141:2407–12.PubMedCrossRef
18.
go back to reference Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.PubMedCrossRef Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.PubMedCrossRef
19.
go back to reference Beutler E. Red cell metabolism. A manual of biochemical methods. 3rd ed. New York: Grune and Startton; 1984. Beutler E. Red cell metabolism. A manual of biochemical methods. 3rd ed. New York: Grune and Startton; 1984.
20.
go back to reference Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–22.PubMedCrossRef Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–22.PubMedCrossRef
21.
go back to reference Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90.PubMedCrossRef Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90.PubMedCrossRef
22.
go back to reference Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.PubMedCrossRef Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.PubMedCrossRef
23.
go back to reference Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. Churchill Livingstone: Elsevier Health Sciences; 2008. Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. Churchill Livingstone: Elsevier Health Sciences; 2008.
24.
go back to reference Bhutda S, Surve MV, Anil A, Kamath K, Singh N, Modi D, Banerjee A. Histochemical staining of collagen and identification of its subtypes by picrosirius red dye in mouse reproductive tissues. Bio-protocol. 2017;7:e2592.PubMedPubMedCentralCrossRef Bhutda S, Surve MV, Anil A, Kamath K, Singh N, Modi D, Banerjee A. Histochemical staining of collagen and identification of its subtypes by picrosirius red dye in mouse reproductive tissues. Bio-protocol. 2017;7:e2592.PubMedPubMedCentralCrossRef
25.
go back to reference Atia MM, Alghriany AA. Adipose-derived mesenchymal stem cells rescue rat hippocampal cells from aluminum oxide nanoparticle-induced apoptosis via regulation of P53, Aβ, SOX2, OCT4, and CYP2E1. Toxicol Rep. 2021;8:1156–68.PubMedPubMedCentralCrossRef Atia MM, Alghriany AA. Adipose-derived mesenchymal stem cells rescue rat hippocampal cells from aluminum oxide nanoparticle-induced apoptosis via regulation of P53, Aβ, SOX2, OCT4, and CYP2E1. Toxicol Rep. 2021;8:1156–68.PubMedPubMedCentralCrossRef
26.
go back to reference Ndrepepa G, Kastrati A. Alanine aminotransferase—a marker of cardiovascular risk at high and low activity levels. J Lab Precis Med. 2019;4:29–45.CrossRef Ndrepepa G, Kastrati A. Alanine aminotransferase—a marker of cardiovascular risk at high and low activity levels. J Lab Precis Med. 2019;4:29–45.CrossRef
27.
go back to reference Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care. 2016;19:1–13. Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care. 2016;19:1–13.
28.
go back to reference Nouri A, Salehi-Vanani N, Heidarian E. Antioxidant, anti-inflammatory and protective potential of gallic acid against paraquat-induced liver toxicity in male rats. Avicenna J Phytomed. 2021;11:633–44.PubMedPubMedCentral Nouri A, Salehi-Vanani N, Heidarian E. Antioxidant, anti-inflammatory and protective potential of gallic acid against paraquat-induced liver toxicity in male rats. Avicenna J Phytomed. 2021;11:633–44.PubMedPubMedCentral
29.
go back to reference Suwalsky M, Colina J, Gallardo MJ, Jemiola-Rzeminska M, Strzalka K, Manrique-Moreno M, Sepúlveda B. Antioxidant capacity of gallic acid in vitro assayed on human erythrocytes. J Membr Biol. 2016;249:769–79.PubMedCrossRef Suwalsky M, Colina J, Gallardo MJ, Jemiola-Rzeminska M, Strzalka K, Manrique-Moreno M, Sepúlveda B. Antioxidant capacity of gallic acid in vitro assayed on human erythrocytes. J Membr Biol. 2016;249:769–79.PubMedCrossRef
30.
go back to reference Panghal A, Sathua KB, Flora SJS. Gallic acid and MiADMSA reversed arsenic induced oxidative/nitrosative damage in rat red blood cells. Heliyon. 2020;6:e03431.PubMedPubMedCentralCrossRef Panghal A, Sathua KB, Flora SJS. Gallic acid and MiADMSA reversed arsenic induced oxidative/nitrosative damage in rat red blood cells. Heliyon. 2020;6:e03431.PubMedPubMedCentralCrossRef
31.
go back to reference Nahar N, Mohamed S, Mustapha NM, Fong LS, Mohd Ishak NI. Gallic acid and myricetin-rich Labisia pumila extract mitigated multiple diabetic eye disorders in rats. J Food Biochem. 2021;45:e13948.PubMedCrossRef Nahar N, Mohamed S, Mustapha NM, Fong LS, Mohd Ishak NI. Gallic acid and myricetin-rich Labisia pumila extract mitigated multiple diabetic eye disorders in rats. J Food Biochem. 2021;45:e13948.PubMedCrossRef
32.
go back to reference Hao Y, Ren J, Liu J, Yang Z, Liu C, Li R, Su Y. Immunological changes of chronic oral exposure to depleted uranium in mice. Toxicology. 2013;309:81–90.PubMedCrossRef Hao Y, Ren J, Liu J, Yang Z, Liu C, Li R, Su Y. Immunological changes of chronic oral exposure to depleted uranium in mice. Toxicology. 2013;309:81–90.PubMedCrossRef
33.
go back to reference Doi H, Hayashi E, Arai J, Tojo M, Morikawa K, Eguchi J, Ito T, Kanto T, Kaplan DE, Yoshida H. Enhanced B-cell differentiation driven by advanced Cirrhosis resulting in hyperglobulinemia. J Gastroenterol Hepatol. 2018;33:1667–76.CrossRef Doi H, Hayashi E, Arai J, Tojo M, Morikawa K, Eguchi J, Ito T, Kanto T, Kaplan DE, Yoshida H. Enhanced B-cell differentiation driven by advanced Cirrhosis resulting in hyperglobulinemia. J Gastroenterol Hepatol. 2018;33:1667–76.CrossRef
34.
go back to reference Tanaka S, Okamoto Y, Yamazaki M, Mitani N, Nakajima Y, Fukui H. Significance of hyperglobulinemia in severe chronic Liver Diseases–with special reference to the correlation between serum globulin/IgG level and ICG clearance. Hepatogastroenterology. 2007;54:2301–5.PubMed Tanaka S, Okamoto Y, Yamazaki M, Mitani N, Nakajima Y, Fukui H. Significance of hyperglobulinemia in severe chronic Liver Diseases–with special reference to the correlation between serum globulin/IgG level and ICG clearance. Hepatogastroenterology. 2007;54:2301–5.PubMed
35.
go back to reference Katz A, Orellana O. Protein synthesis and the stress response. In: Biyani M, editor. Cell-free protein synthesis. Crotia: Intech; 2012. pp. 111–34. Katz A, Orellana O. Protein synthesis and the stress response. In: Biyani M, editor. Cell-free protein synthesis. Crotia: Intech; 2012. pp. 111–34.
36.
go back to reference Zimmerman KL, Barber DS, Ehrich MF, Tobias L, Hancock S, Hinckley J, Binder EM, Jortner BS. Temporal clinical chemistry and microscopic renal effects following acute uranyl acetate exposure. Toxicol Pathol. 2007;35:1000–9.PubMedCrossRef Zimmerman KL, Barber DS, Ehrich MF, Tobias L, Hancock S, Hinckley J, Binder EM, Jortner BS. Temporal clinical chemistry and microscopic renal effects following acute uranyl acetate exposure. Toxicol Pathol. 2007;35:1000–9.PubMedCrossRef
37.
go back to reference Almalki DA, Alghamdi SA, Al-Attar AM. Comparative study on the influence of some medicinal plants on Diabetes induced by streptozotocin in male rats. Biomed Res Int. 2019;2019:3596287.PubMedPubMedCentralCrossRef Almalki DA, Alghamdi SA, Al-Attar AM. Comparative study on the influence of some medicinal plants on Diabetes induced by streptozotocin in male rats. Biomed Res Int. 2019;2019:3596287.PubMedPubMedCentralCrossRef
38.
go back to reference Wang G, Wang YF, Li JL, Peng RJ, Liang XY, Chen XD, Jiang GH, Shi JF, Si-Ma YH, Xu SQ. Mechanism of hyperproteinemia-induced blood cell homeostasis imbalance in an animal model. Zool Res. 2022;43:301–18.PubMedPubMedCentralCrossRef Wang G, Wang YF, Li JL, Peng RJ, Liang XY, Chen XD, Jiang GH, Shi JF, Si-Ma YH, Xu SQ. Mechanism of hyperproteinemia-induced blood cell homeostasis imbalance in an animal model. Zool Res. 2022;43:301–18.PubMedPubMedCentralCrossRef
39.
go back to reference Carvalho JR, Machado MV. New insights about albumin and Liver Disease. Ann Hepatol. 2018;17:547–60.PubMedCrossRef Carvalho JR, Machado MV. New insights about albumin and Liver Disease. Ann Hepatol. 2018;17:547–60.PubMedCrossRef
40.
go back to reference Ali MM, Ahmed OM, Nada AS, Abdel-Reheim ES, Amin NE. Possible protective effect of naringin (a citrus bioflavonoid) against kidney injury induced by?-irradiation and/or iron overload in male rats. Int J Radiat Res. 2020;18:673–84.CrossRef Ali MM, Ahmed OM, Nada AS, Abdel-Reheim ES, Amin NE. Possible protective effect of naringin (a citrus bioflavonoid) against kidney injury induced by?-irradiation and/or iron overload in male rats. Int J Radiat Res. 2020;18:673–84.CrossRef
41.
go back to reference Hao Y, Huang J, Gu Y, Liu C, Li H, Liu J, Ren J, Yang Z, Peng S, Wang W. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity. Toxicol Appl Pharmacol. 2015;287:306–15.PubMedCrossRef Hao Y, Huang J, Gu Y, Liu C, Li H, Liu J, Ren J, Yang Z, Peng S, Wang W. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity. Toxicol Appl Pharmacol. 2015;287:306–15.PubMedCrossRef
42.
go back to reference Mercantepe F, Tumkaya L, Mercantepe T, Rakici SY, Ciftel S, Ciftel S. Radioprotective effects of α2-adrenergic receptor agonist dexmedetomidine on X-ray irradiation-induced pancreatic islet cell damage. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:1827–36.PubMedCrossRef Mercantepe F, Tumkaya L, Mercantepe T, Rakici SY, Ciftel S, Ciftel S. Radioprotective effects of α2-adrenergic receptor agonist dexmedetomidine on X-ray irradiation-induced pancreatic islet cell damage. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:1827–36.PubMedCrossRef
43.
go back to reference Jo SK, Seol MA, Park HR, Jung U, Roh C. Ionising radiation triggers fat accumulation in white adipose tissue. Int J Radiat Biol. 2011;87:302–10.PubMedCrossRef Jo SK, Seol MA, Park HR, Jung U, Roh C. Ionising radiation triggers fat accumulation in white adipose tissue. Int J Radiat Biol. 2011;87:302–10.PubMedCrossRef
44.
go back to reference Chen Y, Wang L, Pitzer AL, Li X, Li PL, Zhang Y. Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. J Mol Med. 2016;94:1335–47.PubMedCrossRef Chen Y, Wang L, Pitzer AL, Li X, Li PL, Zhang Y. Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. J Mol Med. 2016;94:1335–47.PubMedCrossRef
45.
go back to reference Shivarudrappa AH, Ponesakki G. Lutein reverses hyperglycemia-mediated blockage of Nrf2 translocation by modulating the activation of intracellular protein kinases in retinal pigment epithelial (ARPE-19) cells. J Cell Commun Signal. 2020;14:207–21.PubMedCrossRef Shivarudrappa AH, Ponesakki G. Lutein reverses hyperglycemia-mediated blockage of Nrf2 translocation by modulating the activation of intracellular protein kinases in retinal pigment epithelial (ARPE-19) cells. J Cell Commun Signal. 2020;14:207–21.PubMedCrossRef
46.
go back to reference Parmar M, Syed S, Gray I, Ray JP. Curcumin, hesperidin, and rutin selectively interfere with apoptosis signaling and attenuate streptozotocin-induced oxidative stress-mediated hyperglycemia. Curr Neurovasc Res. 2015;12:363–74.PubMedCrossRef Parmar M, Syed S, Gray I, Ray JP. Curcumin, hesperidin, and rutin selectively interfere with apoptosis signaling and attenuate streptozotocin-induced oxidative stress-mediated hyperglycemia. Curr Neurovasc Res. 2015;12:363–74.PubMedCrossRef
47.
go back to reference Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine. 2020;73:152906.PubMedCrossRef Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine. 2020;73:152906.PubMedCrossRef
48.
go back to reference Abdel-Moneim A, Abd El-Twab SM, Yousef AI, Ashour MB, Reheim ESA, Hamed MAA. New insights into the in vitro, in situ and in vivo antihyperglycemic mechanisms of gallic acid and p-coumaric acid. Arch Physiol Biochem. 2022;128:1188–94.PubMedCrossRef Abdel-Moneim A, Abd El-Twab SM, Yousef AI, Ashour MB, Reheim ESA, Hamed MAA. New insights into the in vitro, in situ and in vivo antihyperglycemic mechanisms of gallic acid and p-coumaric acid. Arch Physiol Biochem. 2022;128:1188–94.PubMedCrossRef
49.
go back to reference Alkhalf MI, Khalifa FK. Blueberry extract attenuates γ-radiation-induced hepatocyte damage by modulating oxidative stress and suppressing NF-κB in male rats. Saudi J Biol Sci. 2018;25:1272–7.PubMedPubMedCentralCrossRef Alkhalf MI, Khalifa FK. Blueberry extract attenuates γ-radiation-induced hepatocyte damage by modulating oxidative stress and suppressing NF-κB in male rats. Saudi J Biol Sci. 2018;25:1272–7.PubMedPubMedCentralCrossRef
50.
go back to reference Lestaevel P, Bensoussan H, Racine R, Airault F, Gourmelon P, Souidi M. Transcriptomic effects of depleted uranium on acetylcholine and cholesterol metabolisms in Alzheimer’s Disease model. C R Biol. 2011;334:85–90.PubMedCrossRef Lestaevel P, Bensoussan H, Racine R, Airault F, Gourmelon P, Souidi M. Transcriptomic effects of depleted uranium on acetylcholine and cholesterol metabolisms in Alzheimer’s Disease model. C R Biol. 2011;334:85–90.PubMedCrossRef
51.
go back to reference Rashid S, Watanabe T, Sakaue T, Lewis GF. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem. 2003;36:421–9.PubMedCrossRef Rashid S, Watanabe T, Sakaue T, Lewis GF. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem. 2003;36:421–9.PubMedCrossRef
52.
go back to reference Razzaq DF, Saleh DS, Al-Mashhadani AH. Studying the uranium pollution in reduction the levels of the C-Peptide and Vitamin D for healthy and diabetic patients in Najaf City Iraq. AIP Conf Proc. 2020;2290:030038. Razzaq DF, Saleh DS, Al-Mashhadani AH. Studying the uranium pollution in reduction the levels of the C-Peptide and Vitamin D for healthy and diabetic patients in Najaf City Iraq. AIP Conf Proc. 2020;2290:030038.
53.
go back to reference Hirano T. Abnormal lipoprotein metabolism in diabetic Nephropathy. Clin Exp Nephrol. 2014;18:206–9.PubMedCrossRef Hirano T. Abnormal lipoprotein metabolism in diabetic Nephropathy. Clin Exp Nephrol. 2014;18:206–9.PubMedCrossRef
54.
go back to reference Zhou X, Zhang W, Liu X, Zhang W, Li Y. Interrelationship between Diabetes and periodontitis: role of hyperlipidemia. Arch Oral Biol. 2015;60:667–74.PubMedCrossRef Zhou X, Zhang W, Liu X, Zhang W, Li Y. Interrelationship between Diabetes and periodontitis: role of hyperlipidemia. Arch Oral Biol. 2015;60:667–74.PubMedCrossRef
55.
go back to reference Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and Disease. Sci China Life Sci. 2019;62:1420–58.PubMedCrossRef Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and Disease. Sci China Life Sci. 2019;62:1420–58.PubMedCrossRef
56.
go back to reference Azizidoost S, Nazeri Z, Mohammadi A, Mohammadzadeh G, Cheraghzadeh M, Jafari A, Kheirollah A. Effect of hydroalcoholic ginger extract on brain HMG-CoA reductase and CYP46A1 levels in streptozotocin-induced diabetic rats. Avicenna J Med Biotechnol. 2019;11:234–8.PubMedPubMedCentral Azizidoost S, Nazeri Z, Mohammadi A, Mohammadzadeh G, Cheraghzadeh M, Jafari A, Kheirollah A. Effect of hydroalcoholic ginger extract on brain HMG-CoA reductase and CYP46A1 levels in streptozotocin-induced diabetic rats. Avicenna J Med Biotechnol. 2019;11:234–8.PubMedPubMedCentral
57.
go back to reference Li M, Zhou W, Dang Y, Li C, Ji G, Zhang L. Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice. Biomed Pharmacother. 2020;132:110953.PubMedCrossRef Li M, Zhou W, Dang Y, Li C, Ji G, Zhang L. Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice. Biomed Pharmacother. 2020;132:110953.PubMedCrossRef
58.
go back to reference Mansour HH, Ismael NER, Hafez HF. Modulatory effect of Moringa oleifera against gamma-radiation-induced oxidative stress in rats. Biomed Aging Pathol. 2014;4:265–72.CrossRef Mansour HH, Ismael NER, Hafez HF. Modulatory effect of Moringa oleifera against gamma-radiation-induced oxidative stress in rats. Biomed Aging Pathol. 2014;4:265–72.CrossRef
59.
go back to reference Paiva AA, Raposo HF, Wanschel ACBA, Nardelli TR, Oliveira HCF. Apolipoprotein CIII overexpression-induced hypertriglyceridemia increases nonalcoholic fatty Liver Disease in association with inflammation and cell death. Oxid Med Cell Longev. 2017;2017:1838679.PubMedPubMedCentralCrossRef Paiva AA, Raposo HF, Wanschel ACBA, Nardelli TR, Oliveira HCF. Apolipoprotein CIII overexpression-induced hypertriglyceridemia increases nonalcoholic fatty Liver Disease in association with inflammation and cell death. Oxid Med Cell Longev. 2017;2017:1838679.PubMedPubMedCentralCrossRef
60.
go back to reference Bai J, Lin QY, An X, Liu S, Wang Y, Xie Y, Liao J. Low-dose gallic acid administration does not improve diet-induced metabolic disorders and Atherosclerosis in apoe knockout mice. J Immunol Res. 2022;2022:7909971.PubMedPubMedCentralCrossRef Bai J, Lin QY, An X, Liu S, Wang Y, Xie Y, Liao J. Low-dose gallic acid administration does not improve diet-induced metabolic disorders and Atherosclerosis in apoe knockout mice. J Immunol Res. 2022;2022:7909971.PubMedPubMedCentralCrossRef
61.
go back to reference Redan BW, Buhman KK, Novotny JA, Ferruzzi MG. Altered transport and metabolism of phenolic compounds in obesity and Diabetes: implications for functional food development and assessment. Adv Nutr. 2016;7:1090–104.PubMedPubMedCentralCrossRef Redan BW, Buhman KK, Novotny JA, Ferruzzi MG. Altered transport and metabolism of phenolic compounds in obesity and Diabetes: implications for functional food development and assessment. Adv Nutr. 2016;7:1090–104.PubMedPubMedCentralCrossRef
62.
go back to reference Pourahmad J, Shaki F, Tanbakosazan F, Ghalandari R, Ettehadi HA, Dahaghin E. Protective effects of fungal β-(1→ 3)-D-glucan against oxidative stress cytotoxicity induced by depleted uranium in isolated rat hepatocytes. Hum Exp Toxicol. 2011;30:173–81.PubMedCrossRef Pourahmad J, Shaki F, Tanbakosazan F, Ghalandari R, Ettehadi HA, Dahaghin E. Protective effects of fungal β-(1→ 3)-D-glucan against oxidative stress cytotoxicity induced by depleted uranium in isolated rat hepatocytes. Hum Exp Toxicol. 2011;30:173–81.PubMedCrossRef
63.
go back to reference Abou-Khalil NS, Ali MF, Ali MM, Ibrahim A. Surgical castration versus chemical castration in donkeys: response of stress, lipid profile and redox potential biomarkers. BMC Vet Res. 2020;16:1–10.CrossRef Abou-Khalil NS, Ali MF, Ali MM, Ibrahim A. Surgical castration versus chemical castration in donkeys: response of stress, lipid profile and redox potential biomarkers. BMC Vet Res. 2020;16:1–10.CrossRef
64.
go back to reference Ebaid H, Bashandy SA, Morsy FA, Al-Tamimi J, Hassan I, Alhazza IM. Protective effect of gallic acid against thioacetamide-induced metabolic dysfunction of lipids in hepatic and renal toxicity. J King Saud Univ Sci. 2023;35:102531.CrossRef Ebaid H, Bashandy SA, Morsy FA, Al-Tamimi J, Hassan I, Alhazza IM. Protective effect of gallic acid against thioacetamide-induced metabolic dysfunction of lipids in hepatic and renal toxicity. J King Saud Univ Sci. 2023;35:102531.CrossRef
65.
go back to reference de Oliveira LS, Thomé GR, Lopes TF, Reichert KP, de Oliveira JS, da Silva Pereira A, Baldissareli J, da Costa Krewer C, Morsch VM, Schetinger MRC. Effects of gallic acid on delta–aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats. Biomed Pharmacother. 2016;84:1291–9.PubMedCrossRef de Oliveira LS, Thomé GR, Lopes TF, Reichert KP, de Oliveira JS, da Silva Pereira A, Baldissareli J, da Costa Krewer C, Morsch VM, Schetinger MRC. Effects of gallic acid on delta–aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats. Biomed Pharmacother. 2016;84:1291–9.PubMedCrossRef
66.
go back to reference Guerby P, Tasta O, Swiader A, Pont F, Bujold E, Parant O, Vayssiere C, Salvayre R, Negre-Salvayre A. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861.PubMedPubMedCentralCrossRef Guerby P, Tasta O, Swiader A, Pont F, Bujold E, Parant O, Vayssiere C, Salvayre R, Negre-Salvayre A. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861.PubMedPubMedCentralCrossRef
67.
go back to reference Laroia ST, Ganti AK, Laroia AT, Tendulkar KK. Endothelium and the lipid metabolism: the current understanding. Int J Cardiol. 2003;88:1–9.PubMedCrossRef Laroia ST, Ganti AK, Laroia AT, Tendulkar KK. Endothelium and the lipid metabolism: the current understanding. Int J Cardiol. 2003;88:1–9.PubMedCrossRef
68.
go back to reference Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res. 2007;101:1155–63.PubMedCrossRef Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res. 2007;101:1155–63.PubMedCrossRef
69.
go back to reference Yan X, Zhang QY, Zhang YL, Han X, Guo SB, Li HH. Gallic acid attenuates angiotensin II-induced Hypertension and vascular dysfunction by inhibiting the degradation of endothelial nitric oxide synthase. Front Pharmacol. 2020;11:1121.PubMedPubMedCentralCrossRef Yan X, Zhang QY, Zhang YL, Han X, Guo SB, Li HH. Gallic acid attenuates angiotensin II-induced Hypertension and vascular dysfunction by inhibiting the degradation of endothelial nitric oxide synthase. Front Pharmacol. 2020;11:1121.PubMedPubMedCentralCrossRef
70.
go back to reference Kang N, Lee JH, Lee W, Ko JY, Kim EA, Kim JS, Heu MS, Kim GH, Jeon YJ. Gallic acid isolated from Spirogyra sp. improves Cardiovascular Disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol. 2015;39:764–72.PubMedCrossRef Kang N, Lee JH, Lee W, Ko JY, Kim EA, Kim JS, Heu MS, Kim GH, Jeon YJ. Gallic acid isolated from Spirogyra sp. improves Cardiovascular Disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol. 2015;39:764–72.PubMedCrossRef
71.
go back to reference Iizumi T, Takahashi S, Mashima K, Minami K, Izawa Y, Abe T, Hishiki T, Suematsu M, Kajimura M, Suzuki N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J Neuroinflammation. 2016;13:1–20.CrossRef Iizumi T, Takahashi S, Mashima K, Minami K, Izawa Y, Abe T, Hishiki T, Suematsu M, Kajimura M, Suzuki N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J Neuroinflammation. 2016;13:1–20.CrossRef
72.
go back to reference Couto GK, Britto LRG, Mill JG, Rossoni LV. Enhanced nitric oxide bioavailability in coronary arteries prevents the onset of Heart Failure in rats with Myocardial Infarction. J Mol Cell Cardiol. 2015;86:110–20.PubMedCrossRef Couto GK, Britto LRG, Mill JG, Rossoni LV. Enhanced nitric oxide bioavailability in coronary arteries prevents the onset of Heart Failure in rats with Myocardial Infarction. J Mol Cell Cardiol. 2015;86:110–20.PubMedCrossRef
73.
go back to reference Bahnson ESM, Koo N, Cantu-Medellin N, Tsui AY, Havelka GE, Vercammen JM, Jiang Q, Kelley EE, Kibbe MR. Nitric oxide inhibits neointimal hyperplasia following vascular injury via differential, cell-specific modulation of SOD-1 in the arterial wall. Nitric Oxide. 2015;44:8–17.PubMedCrossRef Bahnson ESM, Koo N, Cantu-Medellin N, Tsui AY, Havelka GE, Vercammen JM, Jiang Q, Kelley EE, Kibbe MR. Nitric oxide inhibits neointimal hyperplasia following vascular injury via differential, cell-specific modulation of SOD-1 in the arterial wall. Nitric Oxide. 2015;44:8–17.PubMedCrossRef
74.
go back to reference Hao Y, Huang J, Liu C, Li H, Liu J, Zeng Y, Li R. Differential protein expression in metallothionein protection from depleted uranium-induced nephrotoxicity. Sci Rep. 2016;6:38942.PubMedPubMedCentralCrossRef Hao Y, Huang J, Liu C, Li H, Liu J, Zeng Y, Li R. Differential protein expression in metallothionein protection from depleted uranium-induced nephrotoxicity. Sci Rep. 2016;6:38942.PubMedPubMedCentralCrossRef
75.
go back to reference Shaw P, Chattopadhyay A. Nrf2–ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J Cell Physiol. 2020;235:3119–30.PubMedCrossRef Shaw P, Chattopadhyay A. Nrf2–ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J Cell Physiol. 2020;235:3119–30.PubMedCrossRef
76.
go back to reference LaMonte G, Tang X, Chen JLY, Wu J, Ding CKC, Keenan MM, Sangokoya C, Kung HN, Ilkayeva O, Boros LG, Newgard GB, Chi JT. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab. 2013;1:1–19.CrossRef LaMonte G, Tang X, Chen JLY, Wu J, Ding CKC, Keenan MM, Sangokoya C, Kung HN, Ilkayeva O, Boros LG, Newgard GB, Chi JT. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab. 2013;1:1–19.CrossRef
77.
go back to reference Omobowale TO, Oyagbemi AA, Ajufo UE, Adejumobi OA, Ola-Davies OE, Adedapo AA, Yakubu MA. Ameliorative effect of gallic acid in doxorubicin-induced hepatotoxicity in Wistar rats through antioxidant defense system. J Diet Suppl. 2018;15:183–96.PubMedCrossRef Omobowale TO, Oyagbemi AA, Ajufo UE, Adejumobi OA, Ola-Davies OE, Adedapo AA, Yakubu MA. Ameliorative effect of gallic acid in doxorubicin-induced hepatotoxicity in Wistar rats through antioxidant defense system. J Diet Suppl. 2018;15:183–96.PubMedCrossRef
78.
go back to reference Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol Appl Pharmacol. 2015;289:361–70.PubMedPubMedCentralCrossRef Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol Appl Pharmacol. 2015;289:361–70.PubMedPubMedCentralCrossRef
79.
go back to reference Saadat M. An evidence for correlation between the glutathione S-transferase T1 (GSTT1) polymorphism and outcome of COVID-19. Clin Chim Acta. 2020;508:213–6.PubMedPubMedCentralCrossRef Saadat M. An evidence for correlation between the glutathione S-transferase T1 (GSTT1) polymorphism and outcome of COVID-19. Clin Chim Acta. 2020;508:213–6.PubMedPubMedCentralCrossRef
80.
go back to reference Song Y, Salbu B, Teien HC, Evensen Ø, Lind OC, Rosseland BO, Tollefsen KE. Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. Sci Total Environ. 2016;562:270–9.PubMedCrossRef Song Y, Salbu B, Teien HC, Evensen Ø, Lind OC, Rosseland BO, Tollefsen KE. Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. Sci Total Environ. 2016;562:270–9.PubMedCrossRef
81.
go back to reference Zhang F, Xu Z, Gao J, Xu B, Deng Y. In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol. 2008;26:232–6.PubMedCrossRef Zhang F, Xu Z, Gao J, Xu B, Deng Y. In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol. 2008;26:232–6.PubMedCrossRef
82.
go back to reference Kowaltowski AJ, Netto LE, Vercesi AE. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition: evidence for the participation of reactive oxygen species in this mechanism. J Biol Chem. 1998;273:12766–9.PubMedCrossRef Kowaltowski AJ, Netto LE, Vercesi AE. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition: evidence for the participation of reactive oxygen species in this mechanism. J Biol Chem. 1998;273:12766–9.PubMedCrossRef
83.
go back to reference Feng RB, Wang Y, He C, Yang Y, Wan JB. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol. 2018;119:479–88.PubMedCrossRef Feng RB, Wang Y, He C, Yang Y, Wan JB. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol. 2018;119:479–88.PubMedCrossRef
84.
go back to reference Sanjay S, Girish C, Toi PC, Bobby Z. Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in Wistar rats. J Pharm Pharmacol. 2021;73:473–86.PubMedCrossRef Sanjay S, Girish C, Toi PC, Bobby Z. Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in Wistar rats. J Pharm Pharmacol. 2021;73:473–86.PubMedCrossRef
85.
go back to reference Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total antioxidant capacity: biochemical aspects and clinical significance. Int J Mol Sci. 2023;24:10978.PubMedPubMedCentralCrossRef Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total antioxidant capacity: biochemical aspects and clinical significance. Int J Mol Sci. 2023;24:10978.PubMedPubMedCentralCrossRef
86.
go back to reference Ojeaburu SI, Oriakhi K. Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats. Toxicol Rep. 2021;8:177–85.PubMedPubMedCentralCrossRef Ojeaburu SI, Oriakhi K. Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats. Toxicol Rep. 2021;8:177–85.PubMedPubMedCentralCrossRef
87.
go back to reference Olayinka ET, Ore A, Ola OS, Adeyemo OA. Ameliorative effect of gallic acid on cyclophosphamide-induced oxidative injury and hepatic dysfunction in rats. Med Sci. 2015;3:78–92. Olayinka ET, Ore A, Ola OS, Adeyemo OA. Ameliorative effect of gallic acid on cyclophosphamide-induced oxidative injury and hepatic dysfunction in rats. Med Sci. 2015;3:78–92.
88.
go back to reference Li Z, Dong X, Liu H, Chen X, Shi H, Fan Y, Hou D, Zhang X. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis. 2013;19:1656–66.PubMedPubMedCentral Li Z, Dong X, Liu H, Chen X, Shi H, Fan Y, Hou D, Zhang X. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis. 2013;19:1656–66.PubMedPubMedCentral
89.
go back to reference Moghadam D, Zarei R, Vakili S, Ghojoghi R, Zarezade V, Veisi A, Sabaghan M, Azadbakht O, Behrouj H. The effect of natural polyphenols resveratrol, gallic acid, and kuromanin chloride on human telomerase reverse transcriptase (hTERT) expression in HepG2 hepatocellular carcinoma: role of SIRT1/Nrf2 signaling pathway and oxidative stress. Mol Biol Rep. 2023;50:77–84.PubMedCrossRef Moghadam D, Zarei R, Vakili S, Ghojoghi R, Zarezade V, Veisi A, Sabaghan M, Azadbakht O, Behrouj H. The effect of natural polyphenols resveratrol, gallic acid, and kuromanin chloride on human telomerase reverse transcriptase (hTERT) expression in HepG2 hepatocellular carcinoma: role of SIRT1/Nrf2 signaling pathway and oxidative stress. Mol Biol Rep. 2023;50:77–84.PubMedCrossRef
90.
go back to reference Zhang L, Chen Z, Gong W, Zou Y, Xu F, Chen L, Huang H. Paeonol ameliorates diabetic renal fibrosis through promoting the activation of the Nrf2/ARE pathway via up-regulating Sirt1. Front Pharmacol. 2018;9:512.PubMedPubMedCentralCrossRef Zhang L, Chen Z, Gong W, Zou Y, Xu F, Chen L, Huang H. Paeonol ameliorates diabetic renal fibrosis through promoting the activation of the Nrf2/ARE pathway via up-regulating Sirt1. Front Pharmacol. 2018;9:512.PubMedPubMedCentralCrossRef
91.
go back to reference Sarhan HKA. Uranium and lead intoxication hazards induce hepatotoxicity in rats; biochemical, histochemical and histopathological studies. Egypt J Chem. 2021;64:4545–56.CrossRef Sarhan HKA. Uranium and lead intoxication hazards induce hepatotoxicity in rats; biochemical, histochemical and histopathological studies. Egypt J Chem. 2021;64:4545–56.CrossRef
92.
go back to reference Abd-Elkareem M, Abou Khalil NS, Sayed AH. Hepatotoxic responses of 4-nonylphenol on African catfish (Clarias gariepinus): antixoidant and histochemical biomarkers. Fish Physiol Biochem. 2018;44:969–81.PubMedCrossRef Abd-Elkareem M, Abou Khalil NS, Sayed AH. Hepatotoxic responses of 4-nonylphenol on African catfish (Clarias gariepinus): antixoidant and histochemical biomarkers. Fish Physiol Biochem. 2018;44:969–81.PubMedCrossRef
93.
94.
go back to reference Takada S, Watanabe T, Mizuta R. DNase γ-dependent DNA fragmentation causes karyolysis in necrotic hepatocyte. J Vet Med Sci. 2020;82:23–6.PubMedCrossRef Takada S, Watanabe T, Mizuta R. DNase γ-dependent DNA fragmentation causes karyolysis in necrotic hepatocyte. J Vet Med Sci. 2020;82:23–6.PubMedCrossRef
95.
96.
go back to reference Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R, Honnons S, Jones C, Isern NG, Hu JZ, Nathan SD, Grant G, Phipps RP, Sime PJ. Lactic acid is elevated in Idiopathic Pulmonary Fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am J Respir Crit Care Med. 2012;186:740–51.PubMedPubMedCentralCrossRef Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R, Honnons S, Jones C, Isern NG, Hu JZ, Nathan SD, Grant G, Phipps RP, Sime PJ. Lactic acid is elevated in Idiopathic Pulmonary Fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am J Respir Crit Care Med. 2012;186:740–51.PubMedPubMedCentralCrossRef
97.
go back to reference Yellowhair M, Romanotto MR, Stearns DM, Lantz RC. Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol. 2018;349:29–38.PubMedPubMedCentralCrossRef Yellowhair M, Romanotto MR, Stearns DM, Lantz RC. Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol. 2018;349:29–38.PubMedPubMedCentralCrossRef
98.
go back to reference El-Lakkany NM, El-Maadawy WH, El-Din SHS, Saleh S, Safar MM, Ezzat SM, Mohamed SH, Botros SS, Demerdash Z, Hammam OA. Antifibrotic effects of gallic acid on hepatic stellate cells: in vitro and in vivo mechanistic study. J Tradit Complement Med. 2019;9:45–53.PubMedCrossRef El-Lakkany NM, El-Maadawy WH, El-Din SHS, Saleh S, Safar MM, Ezzat SM, Mohamed SH, Botros SS, Demerdash Z, Hammam OA. Antifibrotic effects of gallic acid on hepatic stellate cells: in vitro and in vivo mechanistic study. J Tradit Complement Med. 2019;9:45–53.PubMedCrossRef
99.
go back to reference Wang L, Ryu B, Kim WS, Kim GH, Jeon YJ, Wang L, Ryu B, Kim WS, Kim GH, Jeon YJ. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish. Algae. 2017;32:379–88.CrossRef Wang L, Ryu B, Kim WS, Kim GH, Jeon YJ, Wang L, Ryu B, Kim WS, Kim GH, Jeon YJ. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish. Algae. 2017;32:379–88.CrossRef
100.
go back to reference Zhou D, Yang Q, Tian T, Chang Y, Li Y, Duan LR, Li H, Wang SW. Gastroprotective effect of gallic acid against ethanol-induced gastric Ulcer in rats: involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed Pharmacother. 2020;126:110075.PubMedCrossRef Zhou D, Yang Q, Tian T, Chang Y, Li Y, Duan LR, Li H, Wang SW. Gastroprotective effect of gallic acid against ethanol-induced gastric Ulcer in rats: involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed Pharmacother. 2020;126:110075.PubMedCrossRef
Metadata
Title
Gallic acid rescues uranyl acetate induced-hepatic dysfunction in rats by its antioxidant and cytoprotective potentials
Authors
Ibtisam M. H. Elmileegy
Hanan S. A. Waly
Alshaimaa A. I. Alghriany
Nasser S. Abou Khalil
Sara M. M. Mahmoud
Eman A. Negm
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04250-y

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue