Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2022

Open Access 01-12-2022 | Research

Neuroprotective effects of Lippia javanica (Burm.F.) Spreng. Herbal tea infusion on Lead-induced oxidative brain damage in Wistar rats

Authors: Zubair Suleman, Godwill A. Engwa, Mathulo Shauli, Hannibal T. Musarurwa, Ndinashe A. Katuruza, Constance R. Sewani-Rusike

Published in: BMC Complementary Medicine and Therapies | Issue 1/2022

Login to get access

Abstract

Background

Though Lippia javanica (Burm.f.) Spreng antioxidant activity has been demonstrated, its effect in protecting the brain from lead (Pb)-induced oxidative damage is unknown. This study investigated the effect of L. javanica against Pb-induced oxidative stress, inflammation, apoptosis and acetylcholinesterase activity in rat’s brain.

Methods

L. javanica herbal tea infusion was prepared, its phytochemical constituent was revealed by liquid chromatography-Mass spectrometer (LC-MS) and was administered simultaneously with Pb. Four groups of male Wistar rats (n = 5/group) were used: control received distilled water; Pb-acetate group received 50 mg Pb/ Kg bodyweight (bw), treatment group received 50 mg Pb/ Kg Pb-acetate + 5 ml/kg bw L. javanica and L. javanica group received 5 ml/Kg bw of L. javanica tea infusion only. After 6 weeks of treatment, oxidative status, acetylcholinesterase activity, inflammation and apoptosis was assessed in brain tissue which was also histologically examined.

Results

Mean brain and heart weight was reduced (p < 0.05) while liver and spleen weights were increased (p < 0.05) in Pb exposed animals but were prevented by L. juvanica treatment. Treatment with L. javanica increased (p < 0.05) overall brain antioxidant status (glutathione and superoxide dismutase activities) and reduced lipid peroxidation (p < 0.05) compared to the Pb exposed animals. Pro-inflammatory cytokine tumour necrotic factor-alpha, pro-apoptosis Bax protein and anticholinesterase activity were reduced (p < 0.05) in Pb-L. javanica treated animals compared to the Pb exposed group. Histological examination confirmed neuroprotective effects of L. javanica as evidenced by reduced apoptosis/necrosis and inflammation-induced vacuolization and oedema in the hippocampus. The L. javanica treatment alone had no detrimental effects to the rats. LC-MS analysis revealed L. javanica to be rich in phenolics.

Conclusions

This study demonstrated that L. javanica, rich in phenolics was effective in reducing Pb-induced brain oxidative stress, inflammation, apoptosis, acetylcholinesterase activity and neuronal damage.
Literature
1.
go back to reference Ye F, Li X, Li L, Lyu L, Yuan J, Chen J. The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem Toxicol. 2015;86:191–201.PubMed Ye F, Li X, Li L, Lyu L, Yuan J, Chen J. The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem Toxicol. 2015;86:191–201.PubMed
2.
go back to reference Mathee A, Röllin H, von Schirnding Y, Levin J, Naik I. Reductions in blood lead levels among school children following the introduction of unleaded petrol in South Africa. Env Res. 2006;100:319–22. Mathee A, Röllin H, von Schirnding Y, Levin J, Naik I. Reductions in blood lead levels among school children following the introduction of unleaded petrol in South Africa. Env Res. 2006;100:319–22.
3.
go back to reference Debnath B, Singh WS, Manna K. Sources and toxicological effects of lead on human health. Indian J Med Spec. 2019;10:66–71. Debnath B, Singh WS, Manna K. Sources and toxicological effects of lead on human health. Indian J Med Spec. 2019;10:66–71.
4.
go back to reference Giel-Pietraszuk M, Hybza K, Chełchowska M, Barciszewski J. Mechanisms of lead toxicity. Adv Cell Biol. 2012;39:17–248. Giel-Pietraszuk M, Hybza K, Chełchowska M, Barciszewski J. Mechanisms of lead toxicity. Adv Cell Biol. 2012;39:17–248.
5.
go back to reference Amadi CN, Igweze ZN, Orisakwe OE. Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertil Soc J. 2017;22:91–100. Amadi CN, Igweze ZN, Orisakwe OE. Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertil Soc J. 2017;22:91–100.
6.
go back to reference Lamidi IY, Akefe IO. Mitigate effects of antioxidants in Lead toxicity. Clin Pharmacol Toxi J. 2017;1:3. Lamidi IY, Akefe IO. Mitigate effects of antioxidants in Lead toxicity. Clin Pharmacol Toxi J. 2017;1:3.
7.
go back to reference Ahmed MB, Ahmed MI, Meki AR, Abdraboh N. Neurotoxic effect of lead on rats: relationship to apoptosis. Int J Health Sci Qassim University. 2013;7:192–9. Ahmed MB, Ahmed MI, Meki AR, Abdraboh N. Neurotoxic effect of lead on rats: relationship to apoptosis. Int J Health Sci Qassim University. 2013;7:192–9.
8.
9.
go back to reference Lyn P. Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern Med Rev. 2006;11:2–22. Lyn P. Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern Med Rev. 2006;11:2–22.
10.
go back to reference Jankowska-Kulawy A, Gul-Hinc S, Bielarczy H, Suszkiw JB, Pawełczyk T, Dyś A, et al. Effects of lead on cholinergic SN56 neuroblastoma cells. Acta Neurobiol Exp. 2008;68:453–62. Jankowska-Kulawy A, Gul-Hinc S, Bielarczy H, Suszkiw JB, Pawełczyk T, Dyś A, et al. Effects of lead on cholinergic SN56 neuroblastoma cells. Acta Neurobiol Exp. 2008;68:453–62.
11.
go back to reference Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9:101–24.PubMed Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9:101–24.PubMed
12.
go back to reference Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D. Effect of Lead (Pb) on inflammatory processes in the brain. Int J Mol Sci. 2016;17:2140.PubMedCentral Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D. Effect of Lead (Pb) on inflammatory processes in the brain. Int J Mol Sci. 2016;17:2140.PubMedCentral
13.
go back to reference Dribben WH, Creeley CEN. Low-level lead exposure triggers neuronal apoptosis in the developing mouse brain. Neurotoxicol Teratol. 2011;33:473–80.PubMedPubMedCentral Dribben WH, Creeley CEN. Low-level lead exposure triggers neuronal apoptosis in the developing mouse brain. Neurotoxicol Teratol. 2011;33:473–80.PubMedPubMedCentral
14.
go back to reference Sharifi AM, Mousavi SH, Jorjani M. Effect of chronic Lead exposure on pro-apoptotic Bax and anti-apoptotic Bcl-2 protein expression in rat Hippocampus in vivo. Cell Mol Neurobiol. 2010;30:769–74.PubMed Sharifi AM, Mousavi SH, Jorjani M. Effect of chronic Lead exposure on pro-apoptotic Bax and anti-apoptotic Bcl-2 protein expression in rat Hippocampus in vivo. Cell Mol Neurobiol. 2010;30:769–74.PubMed
15.
go back to reference Lopes ACA, Peixe TS, Mesas AE, Paoliello MMB. Lead exposure and oxidative stress: a systematic review. Rev Env Contamination Toxicol. 2016;236:196–234. Lopes ACA, Peixe TS, Mesas AE, Paoliello MMB. Lead exposure and oxidative stress: a systematic review. Rev Env Contamination Toxicol. 2016;236:196–234.
16.
go back to reference Sidhu P, Nehru B. Lead intoxication: histological and oxidative damage in rat cerebrum and cerebellum. J Trace Elements Exp Med. 2004;17:45–53. Sidhu P, Nehru B. Lead intoxication: histological and oxidative damage in rat cerebrum and cerebellum. J Trace Elements Exp Med. 2004;17:45–53.
17.
go back to reference Reckziegel P, Dias VT, Benvegnú D, Boufleur N, Barcelos RCS, Segat HJ, et al. Locomotor damage and brain oxidative stress induced by lead exposures are attenuated by gallic acid treatment. Toxicol Letters. 2011;203:74–81. Reckziegel P, Dias VT, Benvegnú D, Boufleur N, Barcelos RCS, Segat HJ, et al. Locomotor damage and brain oxidative stress induced by lead exposures are attenuated by gallic acid treatment. Toxicol Letters. 2011;203:74–81.
18.
go back to reference Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, et al. Geinstein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signalling pathways. Neurotoxicol. 2016;53:153–64. Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, et al. Geinstein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signalling pathways. Neurotoxicol. 2016;53:153–64.
19.
go back to reference Bhebhe M, Chipurura B, Muchuweti M. (). Determination and comparison of phenolic compound content and antioxidant activity of selected local Zimbabwean herbal teas with exotic Aspalathus linearis. S African J Bot. 2015;100:213–8. Bhebhe M, Chipurura B, Muchuweti M. (). Determination and comparison of phenolic compound content and antioxidant activity of selected local Zimbabwean herbal teas with exotic Aspalathus linearis. S African J Bot. 2015;100:213–8.
20.
go back to reference Katerere DR, Graziani G, Thembo KM, Nyazema NZ, Ritieni A. Antioxidant activity of some African medicinal and dietary leafy African vegetables. African J Biotechnol. 2012;11(17):4103–8. Katerere DR, Graziani G, Thembo KM, Nyazema NZ, Ritieni A. Antioxidant activity of some African medicinal and dietary leafy African vegetables. African J Biotechnol. 2012;11(17):4103–8.
21.
go back to reference Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S Afr J Bot. 2010;76:567–71. Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S Afr J Bot. 2010;76:567–71.
22.
go back to reference York T, De Wet H, Van Vuuren SF. Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, S Africa. J Ethnopharmacol. 2011;135:696–710.PubMed York T, De Wet H, Van Vuuren SF. Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, S Africa. J Ethnopharmacol. 2011;135:696–710.PubMed
23.
go back to reference Maroyi A. Lippia javanica (Burm. F.) Spreng.: traditional and commercial uses and phytochemical and pharmacological significance in the african and indian subcontinent. Evid based Compl Alter Med. 2017;2017:6746071. Maroyi A. Lippia javanica (Burm. F.) Spreng.: traditional and commercial uses and phytochemical and pharmacological significance in the african and indian subcontinent. Evid based Compl Alter Med. 2017;2017:6746071.
24.
go back to reference Suleman Z. Comparing the antioxidant properties of Lippia javanica with Aspalathus linearis (rooibos), BSc III research assignment (Unpublished); 2015. Suleman Z. Comparing the antioxidant properties of Lippia javanica with Aspalathus linearis (rooibos), BSc III research assignment (Unpublished); 2015.
25.
go back to reference von Gadouw A, Joubert E, Hansmann CF. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem. 1997;60:73–7. von Gadouw A, Joubert E, Hansmann CF. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem. 1997;60:73–7.
26.
go back to reference South African National Standard: the care and use of animals for scientific purposes. 2008. (SANS10386: 2008). Published by SABS Standards Division, Pretoria South Africa. South African National Standard: the care and use of animals for scientific purposes. 2008. (SANS10386: 2008). Published by SABS Standards Division, Pretoria South Africa.
27.
go back to reference Nehru B, Sidhu P. Behaviour and neurotoxic consequences of lead on rat brain followed by recovery. Biol Trace Element Res. 2001;84:113–21. Nehru B, Sidhu P. Behaviour and neurotoxic consequences of lead on rat brain followed by recovery. Biol Trace Element Res. 2001;84:113–21.
29.
go back to reference Joubert E, Gelderblom WCA, Louw A, de Beer D. South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides - a review. J Ethnopharmacol. 2008;119:376–412.PubMed Joubert E, Gelderblom WCA, Louw A, de Beer D. South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides - a review. J Ethnopharmacol. 2008;119:376–412.PubMed
30.
go back to reference Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant capacity. Food Chem. 2001;73:239–44. Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant capacity. Food Chem. 2001;73:239–44.
31.
32.
go back to reference Mallick M, Mandal S, Barik B, Bhattacharya A, Ghosh D. Protection of testicular dysfunctions by MTEC, a formulated herbal drug, in streptozotocin induced diabetic rat. Biol Pharm Bull. 2007;30:84–90.PubMed Mallick M, Mandal S, Barik B, Bhattacharya A, Ghosh D. Protection of testicular dysfunctions by MTEC, a formulated herbal drug, in streptozotocin induced diabetic rat. Biol Pharm Bull. 2007;30:84–90.PubMed
33.
go back to reference Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.PubMed Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.PubMed
34.
go back to reference Tiya S, Sewani-Rusike CR, Shauli M. Effects of treatment with Hypoxis hemerocallidea extract on sexual behaviour and reproductive parameters in male rats. Andrologia. 2017;49:e12742. Tiya S, Sewani-Rusike CR, Shauli M. Effects of treatment with Hypoxis hemerocallidea extract on sexual behaviour and reproductive parameters in male rats. Andrologia. 2017;49:e12742.
35.
go back to reference Mfengu MOM, Shauli M, Engwa GA, Musarurwa HT, Sewani-Rusike CR. Lippia javanica (Zumbani) herbal tea infusion attenuates allergic airway inflammation via inhibition of Th2 cell activation and suppression of oxidative stress. BMC Complement Med Ther. 2021;21(1):192.PubMedPubMedCentral Mfengu MOM, Shauli M, Engwa GA, Musarurwa HT, Sewani-Rusike CR. Lippia javanica (Zumbani) herbal tea infusion attenuates allergic airway inflammation via inhibition of Th2 cell activation and suppression of oxidative stress. BMC Complement Med Ther. 2021;21(1):192.PubMedPubMedCentral
36.
go back to reference Rautenbach M, Vlok NM, Eyéghé-Bickong HA, van der Merwe MJ, Stander MA. An electrospray ionization mass spectrometry study on the “in Vacuo” hetero-oligomers formed by the antimicrobial peptides, surfactin and gramicidin. S J Am Soc Mass Spectrometry. 2017;28(8):1623–37. Rautenbach M, Vlok NM, Eyéghé-Bickong HA, van der Merwe MJ, Stander MA. An electrospray ionization mass spectrometry study on the “in Vacuo” hetero-oligomers formed by the antimicrobial peptides, surfactin and gramicidin. S J Am Soc Mass Spectrometry. 2017;28(8):1623–37.
37.
go back to reference Serlin Y, Shelef L, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Seminars Cell Developmental Biol. 2015;38:2–6. Serlin Y, Shelef L, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Seminars Cell Developmental Biol. 2015;38:2–6.
38.
go back to reference Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, et al. Geinstein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signalling pathways. Neurotoxicol. 2016;53:153–64. Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, et al. Geinstein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signalling pathways. Neurotoxicol. 2016;53:153–64.
39.
go back to reference Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. South Afr J Bot. 2010;76:567–71. Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. South Afr J Bot. 2010;76:567–71.
40.
go back to reference Elaga MK, Daughtry LK, Jones AC, Yallapragada PR, Rajanna S, Rajanna B. Attenuation of lead-induced oxidative stress in rat brain, liver, kidney and blood of male Wistar rats by Moringa oleifera seed powder. J Env Pathol Toxicol Oncol. 2014;33:323–37. Elaga MK, Daughtry LK, Jones AC, Yallapragada PR, Rajanna S, Rajanna B. Attenuation of lead-induced oxidative stress in rat brain, liver, kidney and blood of male Wistar rats by Moringa oleifera seed powder. J Env Pathol Toxicol Oncol. 2014;33:323–37.
41.
go back to reference Ohta Y, Yashiro k, Ohashi k, Imai Y. Disruption of non-enzymatic antioxidant defense systems in the brain of rats with water-immersion restraint stress. J Clin Biochem Nut. 2012;51:136–42. Ohta Y, Yashiro k, Ohashi k, Imai Y. Disruption of non-enzymatic antioxidant defense systems in the brain of rats with water-immersion restraint stress. J Clin Biochem Nut. 2012;51:136–42.
42.
go back to reference Faria A, Mateus N, Calhau C. Flavonoid transport across the blood-brain barrier: implication for their direct neuroprotective actions. Nut Aging. 2012;1:89–97. Faria A, Mateus N, Calhau C. Flavonoid transport across the blood-brain barrier: implication for their direct neuroprotective actions. Nut Aging. 2012;1:89–97.
43.
go back to reference Khalaf AA, Moselhy WA, Abdel-Hamed MI. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicol. 2012;33:280–9. Khalaf AA, Moselhy WA, Abdel-Hamed MI. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicol. 2012;33:280–9.
44.
go back to reference Nam T. Lipid peroxidation and its toxicological implications. Official J Kor Soc Toxicol. 2011;27:1–6. Nam T. Lipid peroxidation and its toxicological implications. Official J Kor Soc Toxicol. 2011;27:1–6.
45.
go back to reference Prasanthi RPJ, Devi CB, Basha DC, Reddy NS, Reddy GR. Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. Int J Developmental Neurosci. 2010;28:161–7. Prasanthi RPJ, Devi CB, Basha DC, Reddy NS, Reddy GR. Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. Int J Developmental Neurosci. 2010;28:161–7.
46.
go back to reference Abubakar K, Mailafiya MM, Danmaigoro A, Chiroma SM, Rahim EBA, Zakaria MZAB. Curcumin attenuates Lead-induced cerebellar toxicity in rats via chelating activity and inhibition of oxidative stress. Biomolecules. 2019;9:453.PubMedCentral Abubakar K, Mailafiya MM, Danmaigoro A, Chiroma SM, Rahim EBA, Zakaria MZAB. Curcumin attenuates Lead-induced cerebellar toxicity in rats via chelating activity and inhibition of oxidative stress. Biomolecules. 2019;9:453.PubMedCentral
47.
go back to reference Oprica M, Eriksson C, Schulzberg M. Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the intereukin-1 system. J Cell Mol Med. 2003;7:127–40.PubMedPubMedCentral Oprica M, Eriksson C, Schulzberg M. Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the intereukin-1 system. J Cell Mol Med. 2003;7:127–40.PubMedPubMedCentral
48.
go back to reference Liu J-T, Chen B-Y, Zhang J-Q, Kuang F, Chen L-W. Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4–MyD88–NFκB signaling cascades. Toxicol Letters. 2015;239:97–107. Liu J-T, Chen B-Y, Zhang J-Q, Kuang F, Chen L-W. Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4–MyD88–NFκB signaling cascades. Toxicol Letters. 2015;239:97–107.
49.
go back to reference Farag MR, Alagawany M, Abd El-Hack ME, El-Sayed SAA, Ahmed SYA, Samak DH. Yucca schidigera extract modulates the lead-induced oxidative damage, nephropathy and altered inflammatory response and glucose homeostasis in Japanese quails. Ecotoxicol Env Safety. 2018;156:311–21. Farag MR, Alagawany M, Abd El-Hack ME, El-Sayed SAA, Ahmed SYA, Samak DH. Yucca schidigera extract modulates the lead-induced oxidative damage, nephropathy and altered inflammatory response and glucose homeostasis in Japanese quails. Ecotoxicol Env Safety. 2018;156:311–21.
50.
go back to reference Niu Y, Zhang R, Cheng Y, Sun X, Tian J. Effect of lead acetate on the apoptosis and the expression of and bax genes in rat brain cells. Chin J Prev Med. 2002;36:30–3. Niu Y, Zhang R, Cheng Y, Sun X, Tian J. Effect of lead acetate on the apoptosis and the expression of and bax genes in rat brain cells. Chin J Prev Med. 2002;36:30–3.
52.
go back to reference El-Masry TA, Emara AM, El-Shitany NA. Possible protective effect of propolis against lead induced neurotoxicity in animal model. J Evol Biol Res. 2011;3:4–11. El-Masry TA, Emara AM, El-Shitany NA. Possible protective effect of propolis against lead induced neurotoxicity in animal model. J Evol Biol Res. 2011;3:4–11.
53.
go back to reference Kubo K, Murabayashi C, Kotachi M, Suzuki A, Mori D, Sato Y, et al. Tooth loss early in life suppresses neurogenesis and synaptophysin expression in the hippocampus and impairs learning in mice. Arch Oral Biol. 2016;74:21–7.PubMed Kubo K, Murabayashi C, Kotachi M, Suzuki A, Mori D, Sato Y, et al. Tooth loss early in life suppresses neurogenesis and synaptophysin expression in the hippocampus and impairs learning in mice. Arch Oral Biol. 2016;74:21–7.PubMed
54.
go back to reference Greenbaum L, Ravona-Springer R, Lubitz I, Schmeidler J, Cooper I, Sano M, et al. Potential contribution of the Alzheimer’s disease risk locus BIN1 to episodic memory performance in cognitively normal type 2 diabetes elderly. Eur Neuropsychopharmacol. 2016;26:787–95.PubMed Greenbaum L, Ravona-Springer R, Lubitz I, Schmeidler J, Cooper I, Sano M, et al. Potential contribution of the Alzheimer’s disease risk locus BIN1 to episodic memory performance in cognitively normal type 2 diabetes elderly. Eur Neuropsychopharmacol. 2016;26:787–95.PubMed
55.
go back to reference Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S Afr J Bot. 2010;76(3):567–71. Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S Afr J Bot. 2010;76(3):567–71.
56.
go back to reference Asowata-Ayodele AM, Otunola GA, Afolayan AJ. Assessment of the polyphenolic content, free radical scavenging, anti-inflammatory, and antimicrobial activities of acetone and aqueous extracts of Lippia javanica (Burm.F.) spreng. Pharmacog Mag. 2016;3:353–62. Asowata-Ayodele AM, Otunola GA, Afolayan AJ. Assessment of the polyphenolic content, free radical scavenging, anti-inflammatory, and antimicrobial activities of acetone and aqueous extracts of Lippia javanica (Burm.F.) spreng. Pharmacog Mag. 2016;3:353–62.
57.
go back to reference Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018;108:547–57.PubMed Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018;108:547–57.PubMed
58.
go back to reference Pei K, Ou J, Huang J, Ou S. P-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agriculture. 2016;96(9):2952–62. Pei K, Ou J, Huang J, Ou S. P-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agriculture. 2016;96(9):2952–62.
59.
go back to reference Pragasam SJ, Venkatesan V, Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36(1):169–76.PubMed Pragasam SJ, Venkatesan V, Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36(1):169–76.PubMed
60.
go back to reference Paciello F, Di Pino A, Rolesi R, Troiani D, Paludetti G, Grassi C, et al. Anti-oxidant and anti-inflammatory effects of caffeic acid: in vivo evidences in a model of noise-induced hearing loss. Food ChemToxicol. 2020;143:111555. Paciello F, Di Pino A, Rolesi R, Troiani D, Paludetti G, Grassi C, et al. Anti-oxidant and anti-inflammatory effects of caffeic acid: in vivo evidences in a model of noise-induced hearing loss. Food ChemToxicol. 2020;143:111555.
61.
go back to reference Calixto-Campos C, Carvalho TT, Hohmann MS, Pinho-Ribeiro FA, Fattori V, Manchope MF, et al. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J Natural Products. 2015;78(8):1799–808. Calixto-Campos C, Carvalho TT, Hohmann MS, Pinho-Ribeiro FA, Fattori V, Manchope MF, et al. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J Natural Products. 2015;78(8):1799–808.
62.
go back to reference Szwajgier D. Anticholinesterase activities of selected polyphenols – a short report. Polish J Food Nutr Sci. 2014;64(1):59–64. Szwajgier D. Anticholinesterase activities of selected polyphenols – a short report. Polish J Food Nutr Sci. 2014;64(1):59–64.
63.
go back to reference Mangmool S, Kunpukpong I, Kitphati W, Anantachoke N. Antioxidant and anticholinesterase activities of extracts and phytochemicals of Syzygium antisepticum leaves. Molecules. 2021;26:3295.PubMedPubMedCentral Mangmool S, Kunpukpong I, Kitphati W, Anantachoke N. Antioxidant and anticholinesterase activities of extracts and phytochemicals of Syzygium antisepticum leaves. Molecules. 2021;26:3295.PubMedPubMedCentral
64.
go back to reference Han DH, Jeong JH, Kim JH. Anti-proliferative and apoptosis induction activity of green tea polyphenols on human Promyelocytic leukemia HL-60 cells. Anticancer Res. 2009;29:1417–22.PubMed Han DH, Jeong JH, Kim JH. Anti-proliferative and apoptosis induction activity of green tea polyphenols on human Promyelocytic leukemia HL-60 cells. Anticancer Res. 2009;29:1417–22.PubMed
Metadata
Title
Neuroprotective effects of Lippia javanica (Burm.F.) Spreng. Herbal tea infusion on Lead-induced oxidative brain damage in Wistar rats
Authors
Zubair Suleman
Godwill A. Engwa
Mathulo Shauli
Hannibal T. Musarurwa
Ndinashe A. Katuruza
Constance R. Sewani-Rusike
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2022
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03471-3

Other articles of this Issue 1/2022

BMC Complementary Medicine and Therapies 1/2022 Go to the issue