Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Fatty Liver | Research article

The traditional Chinese formulae Ling-gui-zhu-gan decoction alleviated non-alcoholic fatty liver disease via inhibiting PPP1R3C mediated molecules

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Ling-gui-zhu-gan decoction (LGZG), a classic traditional Chinese medicine formula, has been confirmed to be effective in improving steatosis in non-alcoholic fatty liver disease (NAFLD). However, the mechanism under the efficacy remains unclear. Hence, this study was designed to investigate the mechanisms of LGZG on alleviating steatosis.

Methods

Twenty four rats were randomly divided into three groups: normal group, NAFLD group, fed with high fat diet (HFD) and LGZG group (fed with HFD and supplemented with LGZG). After 4 weeks intervention, blood and liver were collected. Liver steatosis was detected by Oil Red O staining, and blood lipids were biochemically determined. Whole genome genes were detected by RNA-Seq and the significant different genes were verified by RT-qPCR. The protein expression of Protein phosphatase 1 regulatory subunit 3C (PPP1R3C) and key molecules of glycogen and lipid metabolism were measured by western blot. Chromophore substrate methods measured glycogen phosphorylase (GPa) activity and glycogen content.

Results

HFD can markedly induce hepatic steatosis and promote liver triglyceride (TG) and serum cholesterol (CHOL) contents, while liver TG and serum CHOL were both markedly decreased by LGZG treatment for 4 weeks. By RNA sequencing, we found that NAFLD rats showed significantly increase of PPP1R3C expression and LGZG reduced its expression. RT-qPCR and Western blot both verified the alteration of PPP1R3C upon LGZG intervention. LGZG also promoted the activity of glycogen phosphorylase liver type (PYGL) and inhibited the activity of glycogen synthase (GS) in NAFLD rats, resulting in glycogenolysis increase and glycogen synthesis decrease in the liver. By detecting glycogen content, we also found that LGZG reduced hepatic glycogen in NAFLD rats. In addition, we analyzed the key molecules in hepatic de novo lipogenesis and cholesterol synthesis, and indicated that LGZG markedly inhibited the activity of acetyl-CoA carboxylase (ACC), sterol receptor element-binding protein-1c (SREBP-1c) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), resulting in lipid synthesis decrease in the liver.

Conclusion

Our data highlighted the role of PPP1R3C targeting pathways, and found that hepatic glycogen metabolism might be the potential target of LGZG in preventing NAFLD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ray K. NAFLD-the next global epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):621.CrossRef Ray K. NAFLD-the next global epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):621.CrossRef
2.
go back to reference Williams T. Metabolic syndrome: nonalcoholic fatty liver disease. FP Essent. 2015;435:24–9.PubMed Williams T. Metabolic syndrome: nonalcoholic fatty liver disease. FP Essent. 2015;435:24–9.PubMed
3.
go back to reference Hardy T, Oakley F, Anstee QM, Day CP. Nonalcoholic fatty liver disease: pathogenesis and disease Spectrum. Annu Rev Pathol. 2016;11:451–96.CrossRef Hardy T, Oakley F, Anstee QM, Day CP. Nonalcoholic fatty liver disease: pathogenesis and disease Spectrum. Annu Rev Pathol. 2016;11:451–96.CrossRef
4.
go back to reference Orlic L, Mikolasevic I, Lukenda V, Racki S, Stimac D, Milic S. Nonalcoholic fatty liver disease (NAFLD)--is it a new marker of hyporesponsiveness to recombinant human erythropoietin in patients that are on chronic hemodialysis? Med Hypotheses. 2014;83(6):798–801.CrossRef Orlic L, Mikolasevic I, Lukenda V, Racki S, Stimac D, Milic S. Nonalcoholic fatty liver disease (NAFLD)--is it a new marker of hyporesponsiveness to recombinant human erythropoietin in patients that are on chronic hemodialysis? Med Hypotheses. 2014;83(6):798–801.CrossRef
5.
go back to reference Mikolasevic I, Racki S, Zaputovic L, Lukenda V, Milic S, Orlic L. Nonalcoholic fatty liver disease (NAFLD): a new risk factor for adverse cardiovascular events in dialysis patients. Med Hypotheses. 2014;82(2):205–8.CrossRef Mikolasevic I, Racki S, Zaputovic L, Lukenda V, Milic S, Orlic L. Nonalcoholic fatty liver disease (NAFLD): a new risk factor for adverse cardiovascular events in dialysis patients. Med Hypotheses. 2014;82(2):205–8.CrossRef
6.
go back to reference Mikolasevic I, Milic S, Racki S, Zaputovic L, Stimac D, Radic M, Markic D, Orlic L. Nonalcoholic fatty liver disease (NAFLD)-a new cardiovascular risk factor in peritoneal Dialysis patients. Perit Dial Int. 2016;36(4):427–32.CrossRef Mikolasevic I, Milic S, Racki S, Zaputovic L, Stimac D, Radic M, Markic D, Orlic L. Nonalcoholic fatty liver disease (NAFLD)-a new cardiovascular risk factor in peritoneal Dialysis patients. Perit Dial Int. 2016;36(4):427–32.CrossRef
7.
go back to reference JA A, OS T. In vivo studies on antidiabetic plants used in south African herbal medicine. J Clin Biochem Nutr. 2010;47(2):98–106.CrossRef JA A, OS T. In vivo studies on antidiabetic plants used in south African herbal medicine. J Clin Biochem Nutr. 2010;47(2):98–106.CrossRef
8.
go back to reference Zhou M, Xu A, Lam KS, Tam PK, Che CM, Chan L, Lee IK, Wu D, Wang Y. Rosiglitazone promotes fatty acyl CoA accumulation and excessive glycogen storage in livers of mice without adiponectin. J Hepatol. 2010;53(6):1108–16.CrossRef Zhou M, Xu A, Lam KS, Tam PK, Che CM, Chan L, Lee IK, Wu D, Wang Y. Rosiglitazone promotes fatty acyl CoA accumulation and excessive glycogen storage in livers of mice without adiponectin. J Hepatol. 2010;53(6):1108–16.CrossRef
9.
go back to reference Doherty MJ, Young PR, Cohen PT. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett. 1996;399(3):339–43.CrossRef Doherty MJ, Young PR, Cohen PT. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett. 1996;399(3):339–43.CrossRef
10.
go back to reference Printen JA, Brady MJ, Saltiel AR. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science. 1997;275(5305):1475–8.CrossRef Printen JA, Brady MJ, Saltiel AR. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science. 1997;275(5305):1475–8.CrossRef
11.
go back to reference Greenberg CC, Meredith KN, Yan L, Brady MJ. Protein targeting to glycogen overexpression results in the specific enhancement of glycogen storage in 3T3-L1 adipocytes. J Biol Chem. 2003;278(33):30835–42.CrossRef Greenberg CC, Meredith KN, Yan L, Brady MJ. Protein targeting to glycogen overexpression results in the specific enhancement of glycogen storage in 3T3-L1 adipocytes. J Biol Chem. 2003;278(33):30835–42.CrossRef
12.
go back to reference Greenberg CC, Danos AM, Brady MJ. Central role for protein targeting to glycogen in the maintenance of cellular glycogen stores in 3T3-L1 adipocytes. Mol Cell Biol. 2006;26(1):334–42.CrossRef Greenberg CC, Danos AM, Brady MJ. Central role for protein targeting to glycogen in the maintenance of cellular glycogen stores in 3T3-L1 adipocytes. Mol Cell Biol. 2006;26(1):334–42.CrossRef
13.
go back to reference Crosson SM, Khan A, Printen J, Pessin JE, Saltiel AR. PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J Clin Invest. 2003;111(9):1423–32.CrossRef Crosson SM, Khan A, Printen J, Pessin JE, Saltiel AR. PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. J Clin Invest. 2003;111(9):1423–32.CrossRef
14.
go back to reference Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001;414(6865):821–7.CrossRef Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001;414(6865):821–7.CrossRef
15.
go back to reference Zani F, Breasson L, Becattini B, Vukolic A, Montani JP, Albrecht U, Provenzani A, Ripperger JA, Solinas G. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression. Mol Metab. 2013;2(3):292–305.CrossRef Zani F, Breasson L, Becattini B, Vukolic A, Montani JP, Albrecht U, Provenzani A, Ripperger JA, Solinas G. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression. Mol Metab. 2013;2(3):292–305.CrossRef
16.
go back to reference Kim YB, Peroni OD, Aschenbach WG, Minokoshi Y, Kotani K, Zisman A, Kahn CR, Goodyear LJ, Kahn BB. Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism. Mol Cell Biol. 2005;25(21):9713–23.CrossRef Kim YB, Peroni OD, Aschenbach WG, Minokoshi Y, Kotani K, Zisman A, Kahn CR, Goodyear LJ, Kahn BB. Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism. Mol Cell Biol. 2005;25(21):9713–23.CrossRef
17.
go back to reference Montori-Grau M, Guitart M, Lerin C, Andreu AL, Newgard CB, Garcia-Martinez C, Gomez-Foix AM. Expression and glycogenic effect of glycogen-targeting protein phosphatase 1 regulatory subunit GL in cultured human muscle. Biochem J. 2007;405(1):107–13.CrossRef Montori-Grau M, Guitart M, Lerin C, Andreu AL, Newgard CB, Garcia-Martinez C, Gomez-Foix AM. Expression and glycogenic effect of glycogen-targeting protein phosphatase 1 regulatory subunit GL in cultured human muscle. Biochem J. 2007;405(1):107–13.CrossRef
18.
go back to reference Newgard CB, Brady MJ, O'Doherty RM, Saltiel AR. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes. 2000;49(12):1967–77.CrossRef Newgard CB, Brady MJ, O'Doherty RM, Saltiel AR. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes. 2000;49(12):1967–77.CrossRef
19.
go back to reference Zhang L, Xu J, Song H, Yao Z, Ji G. Extracts from salvia-Nelumbinis naturalis alleviate hepatosteatosis via improving hepatic insulin sensitivity. J Transl Med. 2014;12:236.CrossRef Zhang L, Xu J, Song H, Yao Z, Ji G. Extracts from salvia-Nelumbinis naturalis alleviate hepatosteatosis via improving hepatic insulin sensitivity. J Transl Med. 2014;12:236.CrossRef
20.
go back to reference Cheng Y, Chen T, Ping J, Chen J. Cangju Qinggan Jiangzhi decoction reduces the development of NonAlcoholic steatohepatitis and activation of Kupffer cells. Cell Physiol Biochem. 2018;48(3):971–82.CrossRef Cheng Y, Chen T, Ping J, Chen J. Cangju Qinggan Jiangzhi decoction reduces the development of NonAlcoholic steatohepatitis and activation of Kupffer cells. Cell Physiol Biochem. 2018;48(3):971–82.CrossRef
21.
go back to reference Yang L, Lin W, Nugent CA, Hao S, Song H, Liu T, Zheng P. Lingguizhugan decoction protects against high-fat-diet-induced nonalcoholic fatty liver disease by alleviating oxidative stress and activating cholesterol secretion. Int J Genomics. 2017;2017:2790864.CrossRef Yang L, Lin W, Nugent CA, Hao S, Song H, Liu T, Zheng P. Lingguizhugan decoction protects against high-fat-diet-induced nonalcoholic fatty liver disease by alleviating oxidative stress and activating cholesterol secretion. Int J Genomics. 2017;2017:2790864.CrossRef
22.
go back to reference Fujimoto M, Tsuneyama K, Kinoshita H, Goto H, Takano Y, Selmi C, Keen CL, Gershwin ME, Shimada Y. The traditional Japanese formula keishibukuryogan reduces liver injury and inflammation in patients with nonalcoholic fatty liver disease. Ann N Y Acad Sci. 2010;1190:151–8.CrossRef Fujimoto M, Tsuneyama K, Kinoshita H, Goto H, Takano Y, Selmi C, Keen CL, Gershwin ME, Shimada Y. The traditional Japanese formula keishibukuryogan reduces liver injury and inflammation in patients with nonalcoholic fatty liver disease. Ann N Y Acad Sci. 2010;1190:151–8.CrossRef
23.
go back to reference Yao L, Wei J, Shi S, Guo K, Wang X, Wang Q, Chen D, Li W. Modified lingguizhugan decoction incorporated with dietary restriction and exercise ameliorates hyperglycemia, hyperlipidemia and hypertension in a rat model of the metabolic syndrome. BMC Complement Altern Med. 2017;17(1):132.CrossRef Yao L, Wei J, Shi S, Guo K, Wang X, Wang Q, Chen D, Li W. Modified lingguizhugan decoction incorporated with dietary restriction and exercise ameliorates hyperglycemia, hyperlipidemia and hypertension in a rat model of the metabolic syndrome. BMC Complement Altern Med. 2017;17(1):132.CrossRef
24.
go back to reference Liu T, Yang LL, Zou L, Li DF, Wen HZ, Zheng PY, Xing LJ, Song HY, Tang XD, Ji G. Chinese medicine formula lingguizhugan decoction improves Beta-oxidation and metabolism of fatty acid in high-fat-diet-induced rat model of fatty liver disease. Evid Based Complement Alternat Med. 2013;2013:429738.PubMedPubMedCentral Liu T, Yang LL, Zou L, Li DF, Wen HZ, Zheng PY, Xing LJ, Song HY, Tang XD, Ji G. Chinese medicine formula lingguizhugan decoction improves Beta-oxidation and metabolism of fatty acid in high-fat-diet-induced rat model of fatty liver disease. Evid Based Complement Alternat Med. 2013;2013:429738.PubMedPubMedCentral
25.
go back to reference Zhu M, Hao S, Liu T, Yang L, Zheng P, Zhang L, Ji G. Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq. Oncotarget. 2017;8(47):82621–31.CrossRef Zhu M, Hao S, Liu T, Yang L, Zheng P, Zhang L, Ji G. Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq. Oncotarget. 2017;8(47):82621–31.CrossRef
26.
go back to reference Zhang L, Song H, Ge Y, Ji G, Yao Z. Temporal relationship between diet-induced steatosis and onset of insulin/leptin resistance in male Wistar rats. PLoS One. 2015;10(2):e0117008.CrossRef Zhang L, Song H, Ge Y, Ji G, Yao Z. Temporal relationship between diet-induced steatosis and onset of insulin/leptin resistance in male Wistar rats. PLoS One. 2015;10(2):e0117008.CrossRef
27.
go back to reference Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M. Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep. 2006;7(7):704–9.CrossRef Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M. Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep. 2006;7(7):704–9.CrossRef
28.
go back to reference Lai YC, Lin FC, Jensen J. Glycogen content regulates insulin- but not contraction-mediated glycogen synthase activation in the rat slow-twitch soleus muscles. Acta Physiol (Oxf). 2009;197(2):139–50.CrossRef Lai YC, Lin FC, Jensen J. Glycogen content regulates insulin- but not contraction-mediated glycogen synthase activation in the rat slow-twitch soleus muscles. Acta Physiol (Oxf). 2009;197(2):139–50.CrossRef
29.
go back to reference Shen GM, Zhang FL, Liu XL, Zhang JW. Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia. FEBS Lett. 2010;584(20):4366–72.CrossRef Shen GM, Zhang FL, Liu XL, Zhang JW. Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia. FEBS Lett. 2010;584(20):4366–72.CrossRef
30.
go back to reference Gall D, Baus E, Dupont G. Activation of the liver glycogen phosphorylase by ca(2+)oscillations: a theoretical study. J Theor Biol. 2000;207(4):445–54.CrossRef Gall D, Baus E, Dupont G. Activation of the liver glycogen phosphorylase by ca(2+)oscillations: a theoretical study. J Theor Biol. 2000;207(4):445–54.CrossRef
31.
go back to reference Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-Gomez M, Boursier J, Abdelmalek M, Caldwell S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–59 e1145.CrossRef Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-Gomez M, Boursier J, Abdelmalek M, Caldwell S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–59 e1145.CrossRef
32.
go back to reference Sookoian S, Pirola CJ. Elafibranor for the treatment of NAFLD: one pill, two molecular targets and multiple effects in a complex phenotype. Ann Hepatol. 2016;15(4):604–9.PubMed Sookoian S, Pirola CJ. Elafibranor for the treatment of NAFLD: one pill, two molecular targets and multiple effects in a complex phenotype. Ann Hepatol. 2016;15(4):604–9.PubMed
33.
go back to reference Ding ZM, Xiao Y, Wu X, Zou H, Yang S, Shen Y, Xu J, Workman HC, Usborne AL, Hua H. Progression and regression of hepatic lesions in a mouse model of NASH induced by dietary intervention and its implications in pharmacotherapy. Front Pharmacol. 2018;9:410.CrossRef Ding ZM, Xiao Y, Wu X, Zou H, Yang S, Shen Y, Xu J, Workman HC, Usborne AL, Hua H. Progression and regression of hepatic lesions in a mouse model of NASH induced by dietary intervention and its implications in pharmacotherapy. Front Pharmacol. 2018;9:410.CrossRef
34.
go back to reference McCommis KS, Hodges WT, Brunt EM, Nalbantoglu I, McDonald WG, Holley C, Fujiwara H, Schaffer JE, Colca JR, Finck BN. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65(5):1543–56.CrossRef McCommis KS, Hodges WT, Brunt EM, Nalbantoglu I, McDonald WG, Holley C, Fujiwara H, Schaffer JE, Colca JR, Finck BN. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65(5):1543–56.CrossRef
35.
go back to reference Frenette CT, Morelli G, Shiffman ML, Frederick RT, Rubin RA, Fallon MB, Cheng JT, Cave M, Khaderi SA, Massoud O, et al. Emricasan improves liver function in patients with cirrhosis and high model for end-stage liver disease scores compared with placebo. Clin Gastroenterol Hepatol. 2018;S1542-3565(18):30622-0. Frenette CT, Morelli G, Shiffman ML, Frederick RT, Rubin RA, Fallon MB, Cheng JT, Cave M, Khaderi SA, Massoud O, et al. Emricasan improves liver function in patients with cirrhosis and high model for end-stage liver disease scores compared with placebo. Clin Gastroenterol Hepatol. 2018;S1542-3565(18):30622-0.
36.
go back to reference Lu B, Bridges D, Yang Y, Fisher K, Cheng A, Chang L, Meng ZX, Lin JD, Downes M, Yu RT, et al. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity. Diabetes. 2014;63(9):2935–48.CrossRef Lu B, Bridges D, Yang Y, Fisher K, Cheng A, Chang L, Meng ZX, Lin JD, Downes M, Yu RT, et al. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity. Diabetes. 2014;63(9):2935–48.CrossRef
37.
go back to reference Lopez-Soldado I, Zafra D, Duran J, Adrover A, Calbo J, Guinovart JJ. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model. Diabetes. 2015;64(3):796–807.CrossRef Lopez-Soldado I, Zafra D, Duran J, Adrover A, Calbo J, Guinovart JJ. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model. Diabetes. 2015;64(3):796–807.CrossRef
38.
go back to reference Stender S, Smagris E, Lauridsen BK, Kofoed KF, Nordestgaard BG, Tybjaerg-Hansen A, Pennacchio LA, Dickel DE, Cohen JC, Hobbs HH. Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. Hepatology. 2018;67(6):2182–95.CrossRef Stender S, Smagris E, Lauridsen BK, Kofoed KF, Nordestgaard BG, Tybjaerg-Hansen A, Pennacchio LA, Dickel DE, Cohen JC, Hobbs HH. Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. Hepatology. 2018;67(6):2182–95.CrossRef
39.
go back to reference Wang J, Yang W, Chen Z, Chen J, Meng Y, Feng B, Sun L, Dou L, Li J, Cui Q, et al. Long noncoding RNA lncSHGL recruits hnRNPA1 to suppress hepatic gluconeogenesis and lipogenesis. Diabetes. 2018;67(4):581–93.CrossRef Wang J, Yang W, Chen Z, Chen J, Meng Y, Feng B, Sun L, Dou L, Li J, Cui Q, et al. Long noncoding RNA lncSHGL recruits hnRNPA1 to suppress hepatic gluconeogenesis and lipogenesis. Diabetes. 2018;67(4):581–93.CrossRef
40.
go back to reference Zhang M, Chi X, Qu N, Wang C. Long noncoding RNA lncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun. 2018;499(1):66–70.CrossRef Zhang M, Chi X, Qu N, Wang C. Long noncoding RNA lncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun. 2018;499(1):66–70.CrossRef
Metadata
Title
The traditional Chinese formulae Ling-gui-zhu-gan decoction alleviated non-alcoholic fatty liver disease via inhibiting PPP1R3C mediated molecules
Publication date
01-12-2019
Keyword
Fatty Liver
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2424-1

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue