Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Phytochemical investigation and nephroprotective potential of Sida cordata in rat

Authors: Naseer Ali Shah, Muhammad Rashid Khan, Dereje Nigussie

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Plants are an efficient source of natural antioxidant against free radicals causing kidney damages. Sida cordata ethyl acetate fraction has been reported for strong in vitro antioxidant potency, previously. In the present study, our objective was to evaluate its in vivo antioxidant potency against CCl4 induced nephrotoxicity and investigates the bioactive phytochemicals by HPLC-DAD analysis.

Methods

Phytochemical analysis was performed by HPLC-DAD methodology. For in vivo study, 42 male Sprague-Dawley rats were treated with alternatively managed doses for 60 days. Group I animals were remained untreated. Group II animals were treated with vehicle (1 mL of olive oil) by intragastric route on alternate days. Group III was treated with 30% CCl4 (1 mL/kg b.w.) i.p. Group IV was treated with 30% CCl4 (1 mL/kg b.w.) i.p and silymarin intragastric. Group V and VI rats were treated with 30% CCl4 and SCEE (150 and 300 mg/kg b.w., respectively) intragastric. Group VII animals were treated with SCEE (300 mg/kg b.w.) intragastrically. Blood parameters, Serum proteins and urine profile were investigated. Activities of tissue enzyme i.e. catalase, peroxidase, superoxide dismutase, glutathione-S-transferase, glutathione reductase, GSH and γ-GT were evaluated. Histopathological observations, total protein contents, lipid peroxidation, DNA damage and relative weight were also analyzed.

Results

Gallic acid, catechin and caffeic acid were identified in SCEE fraction by HPLC-DAD. Decrease in the count of red blood cells, neutrophils, eosinophils and concentration of hemoglobin whereas increase in lymphocyte count and estimation of sedimentation rate (ESR) with 1 mL CCl4 (30% in Olive oil) administration (30 doses in 60 days) was restored dose dependently with co-treatment of SCEE (150 and 300 mg/kg b.w.). Treatment of rats with CCl4 markedly (P < 0.01) increased the count of urinary red blood cells and leucocytes, concentration of urea, creatinine and urobilinogen and specific gravity whereas creatinine clearance was reduced. Serum level of total protein, albumin, globulin, nitrite, creatinine and blood urea nitrogen (BUN) was significantly increased (P < 0.01) by CCl4 treatment. The activity of antioxidant enzymes; catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase and content of reduced glutathione was decreased (P < 0.01) significantly. However, increased concentration (P < 0.01) of thiobarbituric acid reactive substances and histopathological injuries were noticed in the renal tissues of rats after the treatment with CCl4. Co-administration of SCEE, dose dependently, protected the alterations in the studied parameters of rats at 150 and 300 mg/kg b.w. The present study revealed that SCEE could be used as a possible remedy for renal toxicity abnormalities.

Conclusion

These results are an evidence of the renal protective role of S.cordat ethyl acetate fraction against CCl4 induced nephrotoxicity in rats which may be due to its antioxidant compounds.
Literature
1.
go back to reference Khan MR, Ahmed D. Protective effects of Digera Muricata (L.) Mart. On testis against oxidative stress of carbon tetrachloride in rat. Food Chem Toxicol. 2009;47(6):1393–9.CrossRefPubMed Khan MR, Ahmed D. Protective effects of Digera Muricata (L.) Mart. On testis against oxidative stress of carbon tetrachloride in rat. Food Chem Toxicol. 2009;47(6):1393–9.CrossRefPubMed
2.
go back to reference Khan MR, Siddique F. Antioxidant effects of Citharexylum Spinosum in CCl 4 induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64(4):349–55.CrossRefPubMed Khan MR, Siddique F. Antioxidant effects of Citharexylum Spinosum in CCl 4 induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64(4):349–55.CrossRefPubMed
3.
go back to reference Makni M, Chtourou Y, Barkallah M, Fetoui H. Protective effect of vanillin against carbon tetrachloride (CCl4)-induced oxidative brain injury in rats. Toxicol Ind Health. 2012;28(7):655-62. Makni M, Chtourou Y, Barkallah M, Fetoui H. Protective effect of vanillin against carbon tetrachloride (CCl4)-induced oxidative brain injury in rats. Toxicol Ind Health. 2012;28(7):655-62.
4.
go back to reference Ahmad B, Khan MR, Shah NA. Amelioration of carbon tetrachloride-induced pulmonary toxicity with Oxalis Corniculata. Toxicol Ind Health. 2015;31(12):1243–51.CrossRefPubMed Ahmad B, Khan MR, Shah NA. Amelioration of carbon tetrachloride-induced pulmonary toxicity with Oxalis Corniculata. Toxicol Ind Health. 2015;31(12):1243–51.CrossRefPubMed
5.
go back to reference Sakr SA, Lamfon HA. Protective effect of rosemary (Rosmarinus Officinalis) leaves extract on carbon tetrachloride-induced nephrotoxicity in albino rats. Life Sci J. 2012;9(1):779–85. Sakr SA, Lamfon HA. Protective effect of rosemary (Rosmarinus Officinalis) leaves extract on carbon tetrachloride-induced nephrotoxicity in albino rats. Life Sci J. 2012;9(1):779–85.
6.
go back to reference Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride-induced nephrotoxicity in rats: protective role of Digera Muricata. J Ethnopharmacol. 2009;122(1):91–9.CrossRefPubMed Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride-induced nephrotoxicity in rats: protective role of Digera Muricata. J Ethnopharmacol. 2009;122(1):91–9.CrossRefPubMed
7.
go back to reference Doğukan A, Akpolat N, Çeliker H, Ilhan N, Halil BI, Günal AI. Protective effect of interferon-alpha on carbon tetrachloride-induced nephrotoxicity. Journal of nephrology. 2002;16(1):81–4. Doğukan A, Akpolat N, Çeliker H, Ilhan N, Halil BI, Günal AI. Protective effect of interferon-alpha on carbon tetrachloride-induced nephrotoxicity. Journal of nephrology. 2002;16(1):81–4.
8.
go back to reference Adewole S, Salako A, Doherty O, Naicker T: Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. Afr J Biomed Res 2007, 10(2). Adewole S, Salako A, Doherty O, Naicker T: Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. Afr J Biomed Res 2007, 10(2).
9.
go back to reference Kim S, Na J-Y, Song K, Kwon J. In vivo protective effect of phosphatidylcholine on carbon tetrachloride induced nephrotoxicity. Exp Toxicol Pathol. 2016;68(10):553–8.CrossRefPubMed Kim S, Na J-Y, Song K, Kwon J. In vivo protective effect of phosphatidylcholine on carbon tetrachloride induced nephrotoxicity. Exp Toxicol Pathol. 2016;68(10):553–8.CrossRefPubMed
10.
go back to reference Maurya H, Kumar T. Antinephrotic potential of CATCAB-50 in CCL4 induced glomerulonephritic animal. Int J Pharma Med Res. 2016;4(2):324-8. Maurya H, Kumar T. Antinephrotic potential of CATCAB-50 in CCL4 induced glomerulonephritic animal. Int J Pharma Med Res. 2016;4(2):324-8.
11.
go back to reference Ahmed O, Ashour M, Fahim H, AbouZid S, Ahmed R, Abdel Gaid M. Ameliorative effects of Punica Granatum juice and extracts against 7, 12-Dimethylbenz (a) Anthracene and carbon tetrachloride-induced Cardiorenal toxicity in albino rats. SM J Biol. 2016;2(2):1011. Ahmed O, Ashour M, Fahim H, AbouZid S, Ahmed R, Abdel Gaid M. Ameliorative effects of Punica Granatum juice and extracts against 7, 12-Dimethylbenz (a) Anthracene and carbon tetrachloride-induced Cardiorenal toxicity in albino rats. SM J Biol. 2016;2(2):1011.
12.
go back to reference Al-Sowayan NS, Mousa H. Ameliorative effect of olive leaf extract on carbon tetrachloride-induced nephrotoxicity in rats. Life Sci J. 2014;11:238–42. Al-Sowayan NS, Mousa H. Ameliorative effect of olive leaf extract on carbon tetrachloride-induced nephrotoxicity in rats. Life Sci J. 2014;11:238–42.
13.
go back to reference Özsoy N. The protective effect of melatonin on carbon tetrachloride (ccl4)-induced nephrotoxicity in rats. Acta Physiol. 2015;215:118. Özsoy N. The protective effect of melatonin on carbon tetrachloride (ccl4)-induced nephrotoxicity in rats. Acta Physiol. 2015;215:118.
14.
go back to reference Sattar S, Khan MR, Shah NA, Noureen F, Naz K. Nephroprotective potential of Pistacia Chinensis bark extract against induced toxicity in rats. NUSANTARA BIOSCIENCE. 2016;8(2):192–200.CrossRef Sattar S, Khan MR, Shah NA, Noureen F, Naz K. Nephroprotective potential of Pistacia Chinensis bark extract against induced toxicity in rats. NUSANTARA BIOSCIENCE. 2016;8(2):192–200.CrossRef
15.
go back to reference Sajid M, Khan MR, Shah NA, Ullah S, Younis T, Majid M, Ahmad B, Nigussie D. Proficiencies of Artemisia Scoparia against CCl 4 induced DNA damages and renal toxicity in rat. BMC Complement Altern Med. 2016;16(1):149.CrossRefPubMedPubMedCentral Sajid M, Khan MR, Shah NA, Ullah S, Younis T, Majid M, Ahmad B, Nigussie D. Proficiencies of Artemisia Scoparia against CCl 4 induced DNA damages and renal toxicity in rat. BMC Complement Altern Med. 2016;16(1):149.CrossRefPubMedPubMedCentral
16.
go back to reference Khan RA, Khan MR, Shah NA, Sahreen S, Siddiq P. Modulation of carbon tetrachloride-induced nephrotoxicity in rats by n-hexane extract of Sonchus Asper. Toxicol Ind Health. 2015;31(10):955–9.CrossRefPubMed Khan RA, Khan MR, Shah NA, Sahreen S, Siddiq P. Modulation of carbon tetrachloride-induced nephrotoxicity in rats by n-hexane extract of Sonchus Asper. Toxicol Ind Health. 2015;31(10):955–9.CrossRefPubMed
17.
go back to reference Olagunju J, Adeneye A, Fagbohunka B, Bisuga N, Ketiku A, Benebo A, Olufowobi O, Adeoye A, Alimi M, Adeleke A. Nephroprotective activities of the aqueous seed extract of Carica Papaya Linn. In carbon tetrachloride induced renal injured Wistar rats: a dose-and time-dependent study. Biol Med. 2009;1(1):11–9. Olagunju J, Adeneye A, Fagbohunka B, Bisuga N, Ketiku A, Benebo A, Olufowobi O, Adeoye A, Alimi M, Adeleke A. Nephroprotective activities of the aqueous seed extract of Carica Papaya Linn. In carbon tetrachloride induced renal injured Wistar rats: a dose-and time-dependent study. Biol Med. 2009;1(1):11–9.
18.
go back to reference Preethi KC, Kuttan R. Hepato and reno protective action of Calendula officinalis L. flower extract. Indian J Exp Biol. 2009;47(3):163-16. Preethi KC, Kuttan R. Hepato and reno protective action of Calendula officinalis L. flower extract. Indian J Exp Biol. 2009;47(3):163-16.
19.
go back to reference Sahreen S, Khan M, Khan R. Estimation of flavonoids and evaluation of protective effect of Carissa Opaca Stapf ex Haines fruit against CCl4 induced nephrotoxicity in rat. Food Chem Toxicol doi. 2011;10:1016. Sahreen S, Khan M, Khan R. Estimation of flavonoids and evaluation of protective effect of Carissa Opaca Stapf ex Haines fruit against CCl4 induced nephrotoxicity in rat. Food Chem Toxicol doi. 2011;10:1016.
20.
go back to reference Khan RA, Khan MR, Sahreen S, Ahmed M, Shah NA. Carbon tetrachloride-induced lipid peroxidation and hyperglycemia in rat: a novel study. Toxicol Ind Health. 2013; Khan RA, Khan MR, Sahreen S, Ahmed M, Shah NA. Carbon tetrachloride-induced lipid peroxidation and hyperglycemia in rat: a novel study. Toxicol Ind Health. 2013;
21.
go back to reference Lutterodt GD, Oppong-Bawuah J. The oxytocic effects of an extract from Sida veronififolia on the non-pregnant and the pregnant uterus [proceedings]. West Afr J Pharmacol Drug Res. 1976;3(1):86P–7P.PubMed Lutterodt GD, Oppong-Bawuah J. The oxytocic effects of an extract from Sida veronififolia on the non-pregnant and the pregnant uterus [proceedings]. West Afr J Pharmacol Drug Res. 1976;3(1):86P–7P.PubMed
22.
go back to reference Shah NA, Khan MR, Ahmad B, Noureen F, Rashid U, Khan RA. Investigation on flavonoid composition and anti free radical potential of Sida Cordata. BMC Complement Altern Med. 2013;13(1):276.CrossRefPubMedPubMedCentral Shah NA, Khan MR, Ahmad B, Noureen F, Rashid U, Khan RA. Investigation on flavonoid composition and anti free radical potential of Sida Cordata. BMC Complement Altern Med. 2013;13(1):276.CrossRefPubMedPubMedCentral
23.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed
24.
go back to reference Chance B. Maehly a: [136] assay of catalases and peroxidases. Methods Enzymol. 1955;2:764–75.CrossRef Chance B. Maehly a: [136] assay of catalases and peroxidases. Methods Enzymol. 1955;2:764–75.CrossRef
25.
go back to reference Khan RA, Khan MR, Sahreen S, Bokhari J. Prevention of CCl4-induced nephrotoxicity with Sonchus Asper in rat. Food Chem Toxicol. 2010;48(8-9):2469–76.CrossRefPubMed Khan RA, Khan MR, Sahreen S, Bokhari J. Prevention of CCl4-induced nephrotoxicity with Sonchus Asper in rat. Food Chem Toxicol. 2010;48(8-9):2469–76.CrossRefPubMed
26.
go back to reference Khan RA, Khan MR, Sahreen S. Attenuation of CCl4-induced hepatic oxidative stress in rat by Launaea Procumbens. Exp Toxicol Pathol. 2013;65(3):319–26.CrossRefPubMed Khan RA, Khan MR, Sahreen S. Attenuation of CCl4-induced hepatic oxidative stress in rat by Launaea Procumbens. Exp Toxicol Pathol. 2013;65(3):319–26.CrossRefPubMed
27.
go back to reference Berkels R, Purol-Schnabel S, Roesen R. Nitric Oxide Protocols. In: Measurement of nitric oxide by reconversion of nitrate/nitrite to NO: Springer; 2004. p. 1–8. Berkels R, Purol-Schnabel S, Roesen R. Nitric Oxide Protocols. In: Measurement of nitric oxide by reconversion of nitrate/nitrite to NO: Springer; 2004. p. 1–8.
28.
go back to reference Pick E, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages—induction by multiple nonphagocytic stimuli. Cell Immunol. 1981;59(2):301–18.CrossRefPubMed Pick E, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages—induction by multiple nonphagocytic stimuli. Cell Immunol. 1981;59(2):301–18.CrossRefPubMed
29.
go back to reference Tahir I, Khan MR, Shah NA, Aftab M. Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complement Altern Med. 2016;16(1):406. Tahir I, Khan MR, Shah NA, Aftab M. Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complement Altern Med. 2016;16(1):406.
30.
go back to reference Gülçin İ. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology. 2006;217(2):213–20.CrossRefPubMed Gülçin İ. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology. 2006;217(2):213–20.CrossRefPubMed
31.
go back to reference Sutherland BA, Rahman R, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem. 2006;17(5):291–306.CrossRefPubMed Sutherland BA, Rahman R, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem. 2006;17(5):291–306.CrossRefPubMed
32.
go back to reference Chung T-W, Moon S-K, Chang Y-C, Ko J-H, Lee Y-C, Cho G, Kim S-H, Kim J-G, Kim C-H. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J. 2004;18(14):1670–81.CrossRefPubMed Chung T-W, Moon S-K, Chang Y-C, Ko J-H, Lee Y-C, Cho G, Kim S-H, Kim J-G, Kim C-H. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J. 2004;18(14):1670–81.CrossRefPubMed
33.
go back to reference Yen G-C, Duh P-D, Tsai H-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79(3):307–13.CrossRef Yen G-C, Duh P-D, Tsai H-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79(3):307–13.CrossRef
34.
go back to reference Meral I, Kanter M. Effects of Nigella Sativa L. and Urtica Dioica L. on selected mineral status and hematological values in CCl4-treated rats. Biol Trace Elem Res. 2003;96(1-3):263–70.CrossRefPubMed Meral I, Kanter M. Effects of Nigella Sativa L. and Urtica Dioica L. on selected mineral status and hematological values in CCl4-treated rats. Biol Trace Elem Res. 2003;96(1-3):263–70.CrossRefPubMed
35.
go back to reference Free AH, Free HM. Urinalysis, critical discipline of clinical science. CRC Crit Rev Clin Lab Sci. 1972;3(4):481–531.CrossRefPubMed Free AH, Free HM. Urinalysis, critical discipline of clinical science. CRC Crit Rev Clin Lab Sci. 1972;3(4):481–531.CrossRefPubMed
36.
go back to reference Manjrekar A, Jisha V, Bag P, Adhikary B, Pai M, Hegde A, Nandini M: Effect of Phyllanthus niruri Linn. treatment on liver, kidney and testes in CCl 4 induced hepatotoxic rats. 2008. Manjrekar A, Jisha V, Bag P, Adhikary B, Pai M, Hegde A, Nandini M: Effect of Phyllanthus niruri Linn. treatment on liver, kidney and testes in CCl 4 induced hepatotoxic rats. 2008.
37.
go back to reference Khan MR, Siddique F. Antioxidant effects of Citharexylum Spinosum in CCl(4) induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64(4):349–55.CrossRefPubMed Khan MR, Siddique F. Antioxidant effects of Citharexylum Spinosum in CCl(4) induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64(4):349–55.CrossRefPubMed
38.
go back to reference Khan RA, Khan MR, Sahreen S, Bokhari J. Prevention of CCl 4-induced nephrotoxicity with Sonchus Asper in rat. Food Chem Toxicol. 2010;48(8):2469–76.CrossRefPubMed Khan RA, Khan MR, Sahreen S, Bokhari J. Prevention of CCl 4-induced nephrotoxicity with Sonchus Asper in rat. Food Chem Toxicol. 2010;48(8):2469–76.CrossRefPubMed
39.
go back to reference Ozturk F, Ucar M, Ozturk IC, Vardi N, Batcioglu K. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology. 2003;62(2):353–6.CrossRefPubMed Ozturk F, Ucar M, Ozturk IC, Vardi N, Batcioglu K. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology. 2003;62(2):353–6.CrossRefPubMed
Metadata
Title
Phytochemical investigation and nephroprotective potential of Sida cordata in rat
Authors
Naseer Ali Shah
Muhammad Rashid Khan
Dereje Nigussie
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1896-8

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue