Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

Proficiencies of Artemisia scoparia against CCl4 induced DNA damages and renal toxicity in rat

Authors: Moniba Sajid, Muhammad Rashid Khan, Naseer Ali Shah, Shafi Ullah, Tahira Younis, Muhammad Majid, Bushra Ahmad, Dereje Nigussie

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Artemisia scoparia is traditionally used in the local system of medicine in kidney disorders. This study aimed at scrutinizing the nephroprotective prospective of A. scoparia methanol extract against carbon tetrachloride (CCl4) provoked DNA damages and oxidative stress in kidneys of rat.

Methods

Dried aerial parts of A. scoparia were powdered and extracted with methanol to obtain the viscous material (ASM). Sprague Dawley male rats (42) were grouped (7) having 6 rats in each. Group I remained untreated and Group II treated intraperitoneally (i.p) with DMSO + olive oil (1 ml/kg body weight (bw). Rats of Group III - VI were treated with CCl4 (1 ml/kg bw; i.p 30 % v/v in olive oil). Animals of Group IV were co-administered with 100 mg/kg bw of silymarin whereas rats of Group V and VI with 150 mg/kg bw and 300 mg/kg bw of ASM at an interval of 48 h for four weeks. Animals of Group VII were administered with ASM (300 mg/kg bw) alone. DNA damages were investigated with comet assay in renal tissues while the oxidative injuries were estimated in serum and renal tissues.

Results

Co-administration of ASM to rats significantly reduced the DNA damages at 300 mg/kg dose as indicated in comet length (40.80 ± 2.60 μm), head length (34.70 ± 2.21 μm), tail length (7.43 ± 1.24 μm) and DNA content in head (88.03 ± 2.27 %) to that of CCl4 for comet length (63.16 ± 2.11 μm), head length (23.29 ± 1.50 μm), tail length (39.21 ± 2.81 μm) and DNA content of head (74.81 ± 2.18 %) in renal cell’s nuclei. Increased level of urea, creatinine, bilirubin, blood urea nitrogen whereas decreased concentration of proteins in serum of CCl4 treated animals were restored towards the normal level with co-administration of ASM. CCl4 injection in rats decreased the activity level of CAT, POD, SOD, GST and γ-GT and GSH contents while elevated levels of TBARS, H2O2 and nitrite contents were observed in renal tissues. A noteworthy retrieval of all these parameters and the altered histopathological observations was notified near to the normal values after treatment with both the doses of ASM.

Conclusion

Results obtained suggested the therapeutic role of ASM in oxidative stress related disorder of kidneys.
Literature
1.
2.
go back to reference Afsar T, Khan MR, Razak S, Ullah S, Mirza B. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complem Altern Med. 2015;15:136.CrossRef Afsar T, Khan MR, Razak S, Ullah S, Mirza B. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complem Altern Med. 2015;15:136.CrossRef
3.
go back to reference Ullah S, Khan MR, Shah NA, Shah SA, Majid M, Farooq MA. Ethnomedicinal plants use value in the District Lakki Marwat of Pakistan. J Ethnopharmacol. 2014;158:412–22.CrossRefPubMed Ullah S, Khan MR, Shah NA, Shah SA, Majid M, Farooq MA. Ethnomedicinal plants use value in the District Lakki Marwat of Pakistan. J Ethnopharmacol. 2014;158:412–22.CrossRefPubMed
4.
go back to reference Hayat MQ, Khan MA, Ashraf M, Jabeen S. Ethnobotany of the genus Artemisia L. (Asteraceae) in Pakistan. Ethnobot Res Applicat. 2009;7:147–62.CrossRef Hayat MQ, Khan MA, Ashraf M, Jabeen S. Ethnobotany of the genus Artemisia L. (Asteraceae) in Pakistan. Ethnobot Res Applicat. 2009;7:147–62.CrossRef
5.
go back to reference Yeung H-C. Handbook of Chinese Herbs and Formulas. Los Angles: Institute of Chinese Medicine; 1985. Yeung H-C. Handbook of Chinese Herbs and Formulas. Los Angles: Institute of Chinese Medicine; 1985.
6.
go back to reference Hazrat A, Nisar M, Shah J, Ahmad S. Ethnobotanical study of some elite plants belonging to Dir, Kohistan valley, Khyber Pukhtunkhwa, Pakistan. Pak J Bot. 2011;43(2):787–95. Hazrat A, Nisar M, Shah J, Ahmad S. Ethnobotanical study of some elite plants belonging to Dir, Kohistan valley, Khyber Pukhtunkhwa, Pakistan. Pak J Bot. 2011;43(2):787–95.
7.
go back to reference Mahmood A, Mahmood A, Mujtaba G, Mumtaz MS, Kayani WK, Khan MA. Indigenous medicinal knowledge of common plants from district Kotli Azad Jammu and Kashmir Pakistan. J Med Plant Res. 2012;6:4961–7.CrossRef Mahmood A, Mahmood A, Mujtaba G, Mumtaz MS, Kayani WK, Khan MA. Indigenous medicinal knowledge of common plants from district Kotli Azad Jammu and Kashmir Pakistan. J Med Plant Res. 2012;6:4961–7.CrossRef
8.
go back to reference Ibrar M, Hussain F. Ethnobotanical studies of plants of Charkotli hills, Batkhela district, Malakand, Pakistan. Frontiers Biol China. 2009;4(4):539–48.CrossRef Ibrar M, Hussain F. Ethnobotanical studies of plants of Charkotli hills, Batkhela district, Malakand, Pakistan. Frontiers Biol China. 2009;4(4):539–48.CrossRef
9.
go back to reference Gilani AUH, Janbaz KH. Protective effect of Artemisia scoparia extract against acetaminophen-induced hepatotoxicity. Gen Pharmacol. 1993;24(6):1455–8.CrossRefPubMed Gilani AUH, Janbaz KH. Protective effect of Artemisia scoparia extract against acetaminophen-induced hepatotoxicity. Gen Pharmacol. 1993;24(6):1455–8.CrossRefPubMed
10.
go back to reference Cha JD, Jeong MR, Jeong SI, Moon SE, Kim JY, Kil BS, Song YH. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 2005;71:186–90.CrossRefPubMed Cha JD, Jeong MR, Jeong SI, Moon SE, Kim JY, Kil BS, Song YH. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 2005;71:186–90.CrossRefPubMed
11.
go back to reference Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 2009;114(2):642–5.CrossRef Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 2009;114(2):642–5.CrossRef
12.
go back to reference Habib M, Waheed I. Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of Artemisia scoparia hydromethanolic extract. J Ethnopharmacol. 2013;145:18–24.CrossRefPubMed Habib M, Waheed I. Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of Artemisia scoparia hydromethanolic extract. J Ethnopharmacol. 2013;145:18–24.CrossRefPubMed
13.
go back to reference Naz K, Khan MR, Shah NA, Sattar S, Noureen F, Awan ML. Pistaciachinensis: A potent ameliorator of CCl4 induced lung and thyroid toxicity in rat model. BioMed Res Int. 2014;2014:192906.CrossRefPubMedPubMedCentral Naz K, Khan MR, Shah NA, Sattar S, Noureen F, Awan ML. Pistaciachinensis: A potent ameliorator of CCl4 induced lung and thyroid toxicity in rat model. BioMed Res Int. 2014;2014:192906.CrossRefPubMedPubMedCentral
14.
go back to reference Khan MR, Zehra H. Amelioration of CCl4-induced nephrotoxicity by Oxalis corniculata in rat. Exp Toxicol Pathol. 2013;65:327–34.CrossRefPubMed Khan MR, Zehra H. Amelioration of CCl4-induced nephrotoxicity by Oxalis corniculata in rat. Exp Toxicol Pathol. 2013;65:327–34.CrossRefPubMed
15.
go back to reference Sahreen S, Khan MR, Khan RA, Alkreathy HM. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat. Food Nutr Res. 2015;59:28438.CrossRefPubMed Sahreen S, Khan MR, Khan RA, Alkreathy HM. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat. Food Nutr Res. 2015;59:28438.CrossRefPubMed
16.
go back to reference Alkreathy HM, Khan RA, Khan MR, Sahreen S. CCl4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis. BMC Complem Altern Med. 2014;14(1):452.CrossRef Alkreathy HM, Khan RA, Khan MR, Sahreen S. CCl4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis. BMC Complem Altern Med. 2014;14(1):452.CrossRef
17.
go back to reference Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride induced nephrotoxicity in rat: protective role of Digeramuricata (L.) Mart. J Ethnopharmacol. 2009;122:91–9.CrossRefPubMed Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride induced nephrotoxicity in rat: protective role of Digeramuricata (L.) Mart. J Ethnopharmacol. 2009;122:91–9.CrossRefPubMed
18.
go back to reference Shyu M-H, Kao T-C, Yen G-C. Hsian-tsao (Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl4 via inhibition of hepatic stellate cells activation. Food Chem Toxicol. 2008;46(12):3707–13.CrossRefPubMed Shyu M-H, Kao T-C, Yen G-C. Hsian-tsao (Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl4 via inhibition of hepatic stellate cells activation. Food Chem Toxicol. 2008;46(12):3707–13.CrossRefPubMed
19.
go back to reference Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol. 2009;25(1):5–32.CrossRefPubMed Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol. 2009;25(1):5–32.CrossRefPubMed
20.
go back to reference Chance B, Maehly AC. Assay of catalase and peroxidase. Method Enzymol. 1955;2:764–75.CrossRef Chance B, Maehly AC. Assay of catalase and peroxidase. Method Enzymol. 1955;2:764–75.CrossRef
21.
go back to reference Kakkar P, Das B, Viswanathan P. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130–2.PubMed Kakkar P, Das B, Viswanathan P. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130–2.PubMed
22.
go back to reference Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9.PubMed Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9.PubMed
23.
go back to reference Orlowski M, Meister A. γ-Glutamyl cyclotransferase distribution, isozymic forms, and specificity. J Biol Chem. 1973;248(8):2836–44.PubMed Orlowski M, Meister A. γ-Glutamyl cyclotransferase distribution, isozymic forms, and specificity. J Biol Chem. 1973;248(8):2836–44.PubMed
24.
go back to reference Jollow D, Mitchell J, Zampaglione NA, Gillette J. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–69.CrossRefPubMed Jollow D, Mitchell J, Zampaglione NA, Gillette J. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151–69.CrossRefPubMed
25.
go back to reference Iqbal M, Sharma S, Rezazadeh H, Hasan N, Abdulla M, Athar M. Glutathione metabolizing enzymes and oxidative stress in ferric nitrilotriacetate mediated hepatic injury. Redox Rep. 1996;2(6):385–91. Iqbal M, Sharma S, Rezazadeh H, Hasan N, Abdulla M, Athar M. Glutathione metabolizing enzymes and oxidative stress in ferric nitrilotriacetate mediated hepatic injury. Redox Rep. 1996;2(6):385–91.
26.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMed
27.
go back to reference Pick E, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-induction by multiple nonphagocytic stimuli. Cell Immunol. 1981;59(2):301–18.CrossRefPubMed Pick E, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-induction by multiple nonphagocytic stimuli. Cell Immunol. 1981;59(2):301–18.CrossRefPubMed
28.
go back to reference Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tanenbaum SR. Analysis of nitrate, nitrite and [N15] nitrate in biological fluids. Ann Biochem. 1982;126:131–8.CrossRef Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tanenbaum SR. Analysis of nitrate, nitrite and [N15] nitrate in biological fluids. Ann Biochem. 1982;126:131–8.CrossRef
29.
go back to reference Azqueta A, Collins AR. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Archiv Toxicol. 2013;87(6):949–68.CrossRef Azqueta A, Collins AR. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Archiv Toxicol. 2013;87(6):949–68.CrossRef
30.
go back to reference Irshaid F, Mansi K, Bani-Khaled A, Aburjia T: Hepatoprotetive, cardioprotective and nephroprotective actions of essential oil extract of Artemisia sieberi in alloxan induced diabetic rats. Iranian journal of pharmaceutical research 2012, 11(4):1227–34.PubMedPubMedCentral Irshaid F, Mansi K, Bani-Khaled A, Aburjia T: Hepatoprotetive, cardioprotective and nephroprotective actions of essential oil extract of Artemisia sieberi in alloxan induced diabetic rats. Iranian journal of pharmaceutical research 2012, 11(4):1227–34.PubMedPubMedCentral
31.
go back to reference Soni B, Visavadiya NP, Madamwar D. Ameliorative action of cyanobacterial phycoerythrin on CCl4-induced toxicity in rats. Toxicology. 2008;248:59–65.CrossRefPubMed Soni B, Visavadiya NP, Madamwar D. Ameliorative action of cyanobacterial phycoerythrin on CCl4-induced toxicity in rats. Toxicology. 2008;248:59–65.CrossRefPubMed
32.
go back to reference Khan MR, Siddique F. Antioxidant effects of Citharexylum spinosum in CCl4 induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64:349–55.CrossRefPubMed Khan MR, Siddique F. Antioxidant effects of Citharexylum spinosum in CCl4 induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64:349–55.CrossRefPubMed
33.
go back to reference Abd-Alla AI, Aly HF, Shalaby NM, Albalawy MA, Aboutabl EA. Hunting for renal protective phytoconstituents in Artemisia judaica L. and Chrysanthemum coronarium L. (Asteraceae). Egyptian Pharmaceut J. 2014;13:46–57.CrossRef Abd-Alla AI, Aly HF, Shalaby NM, Albalawy MA, Aboutabl EA. Hunting for renal protective phytoconstituents in Artemisia judaica L. and Chrysanthemum coronarium L. (Asteraceae). Egyptian Pharmaceut J. 2014;13:46–57.CrossRef
34.
go back to reference Noori A, Amjad L, Yazdani F. The effects of Artemisia deserti ethanolic extract on pathology and function of rat kidney. Avicenna J Phytomed. 2014;4(6):371–6.PubMedPubMedCentral Noori A, Amjad L, Yazdani F. The effects of Artemisia deserti ethanolic extract on pathology and function of rat kidney. Avicenna J Phytomed. 2014;4(6):371–6.PubMedPubMedCentral
Metadata
Title
Proficiencies of Artemisia scoparia against CCl4 induced DNA damages and renal toxicity in rat
Authors
Moniba Sajid
Muhammad Rashid Khan
Naseer Ali Shah
Shafi Ullah
Tahira Younis
Muhammad Majid
Bushra Ahmad
Dereje Nigussie
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1137-6

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue