Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices

Authors: Handunge Kumudu Irani Perera, Charith Sandaruwan Handuwalage

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method.

Methods

Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures.

Results

High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts.

Conclusions

Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.
Appendix
Available only for authorised users
Literature
1.
go back to reference Katulanda P, Ranasinghe P, Jayawardena R, Constantine GR, Sheriff MH, Matthews DR. The prevalence, patterns and predictors of diabetic peripheral neuropathy in a developing country. Diabetology Metabolic Syndrome. 2012;4(1):21. doi:10.1186/1758-5996-4-21.CrossRefPubMedPubMedCentral Katulanda P, Ranasinghe P, Jayawardena R, Constantine GR, Sheriff MH, Matthews DR. The prevalence, patterns and predictors of diabetic peripheral neuropathy in a developing country. Diabetology Metabolic Syndrome. 2012;4(1):21. doi:10.1186/1758-5996-4-21.CrossRefPubMedPubMedCentral
2.
go back to reference Monnier VM. Glycation products as markers and predictors of the progression of diabetic complications. Annals of the New York Academy of Sciences. 2005;1043:567–581. Monnier VM. Glycation products as markers and predictors of the progression of diabetic complications. Annals of the New York Academy of Sciences. 2005;1043:567–581.
3.
go back to reference Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metabol. 2008;93(4):1143–52.CrossRef Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metabol. 2008;93(4):1143–52.CrossRef
4.
go back to reference Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiology Pharmacol. 2014;18(1):1–14.CrossRef Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiology Pharmacol. 2014;18(1):1–14.CrossRef
5.
go back to reference Karmakar PS, Goswami RP. Advanced glycation end products (AGEs): It’s role in the pathogenesis of diabetic complications. Med Update. 2012;22:277–82. Karmakar PS, Goswami RP. Advanced glycation end products (AGEs): It’s role in the pathogenesis of diabetic complications. Med Update. 2012;22:277–82.
6.
go back to reference Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21(1):3–12.CrossRefPubMed Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21(1):3–12.CrossRefPubMed
7.
go back to reference Rahbar S, Figarola JL. Novel inhibitors of advance glycation end products. Arch Biochem Biophys. 2003;419:63–79.CrossRefPubMed Rahbar S, Figarola JL. Novel inhibitors of advance glycation end products. Arch Biochem Biophys. 2003;419:63–79.CrossRefPubMed
8.
go back to reference Wu C, Huang S, Lin J, Yen G. Inhibition of advanced glycation end product formation by foodstuffs. Food Function. 2011;2:224–34.CrossRefPubMed Wu C, Huang S, Lin J, Yen G. Inhibition of advanced glycation end product formation by foodstuffs. Food Function. 2011;2:224–34.CrossRefPubMed
9.
go back to reference Suantawee T, Wesarachanon K, Anantsuphasak K, Daenphetploy T, Thien-Ngern S, Thilavech T, et al. Protein glycation inhibitory activity and antioxidant capacity of clove extract. J Food Sci Technol. 2014;8. doi:10.1007/s13197-014-1452-1. Suantawee T, Wesarachanon K, Anantsuphasak K, Daenphetploy T, Thien-Ngern S, Thilavech T, et al. Protein glycation inhibitory activity and antioxidant capacity of clove extract. J Food Sci Technol. 2014;8. doi:10.1007/s13197-014-1452-1.
10.
go back to reference Perera HKI, Ranasinghe HASK. A simple method to detect plant based inhibitors of glycation induced protein cross-linking. Asian J Med Sci. 2015;6(1):28–33. Perera HKI, Ranasinghe HASK. A simple method to detect plant based inhibitors of glycation induced protein cross-linking. Asian J Med Sci. 2015;6(1):28–33.
11.
go back to reference Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.CrossRefPubMed Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.CrossRefPubMed
12.
go back to reference Muthenna P, Akileshwari C, Reddy GB. Ellagic acid, a new antiglycating agent: its inhibition of Nε-(carboxymethyl) lysine. Biochem J. 2012;442:221–30.CrossRefPubMed Muthenna P, Akileshwari C, Reddy GB. Ellagic acid, a new antiglycating agent: its inhibition of Nε-(carboxymethyl) lysine. Biochem J. 2012;442:221–30.CrossRefPubMed
13.
go back to reference Ediriweera ERHSS, Ratnasooriya WD. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. Ayu. 2009;30(4):373–91. Ediriweera ERHSS, Ratnasooriya WD. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. Ayu. 2009;30(4):373–91.
14.
go back to reference Perera HKI, Handuwalage CS. Detection of protein glycation inhibitory potential of nine antidiabetic plants using a novel method. Asian J Med Sci. 2015;6(2):1–6. Perera HKI, Handuwalage CS. Detection of protein glycation inhibitory potential of nine antidiabetic plants using a novel method. Asian J Med Sci. 2015;6(2):1–6.
15.
go back to reference Wijetunge DCR, Perera HKI. A novel in vitro method to detect inhibitors of protein glycation. Asian J Med Sci. 2014;5(3):15–21. Wijetunge DCR, Perera HKI. A novel in vitro method to detect inhibitors of protein glycation. Asian J Med Sci. 2014;5(3):15–21.
16.
go back to reference Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW. Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994;43(5):676–83.CrossRefPubMed Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW. Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994;43(5):676–83.CrossRefPubMed
17.
go back to reference Povichit N, Phrutivorapongkul A, Suttajit M, Chaiyasut C, Leelapornpisid P. Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plants. Pak J Pharm Sci. 2010;23(4):403–8.PubMed Povichit N, Phrutivorapongkul A, Suttajit M, Chaiyasut C, Leelapornpisid P. Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plants. Pak J Pharm Sci. 2010;23(4):403–8.PubMed
18.
go back to reference Perera PRD, Ekanayaka S, Ranaweera KKDS. In vitro antiglycation activity of some medicinal plants used in diabetes mellitus. Medicinal Aromatic Plants. 2013;2(6):143–5. Perera PRD, Ekanayaka S, Ranaweera KKDS. In vitro antiglycation activity of some medicinal plants used in diabetes mellitus. Medicinal Aromatic Plants. 2013;2(6):143–5.
19.
go back to reference Nisha P, Mini S. In vitro antioxidant and antiglycation properties of methanol extract and its different solvent fractions of Musa paradisiaca L. (cv Nendran) inflorescence. Int J Food Properties. 2014;17(2):399–409.CrossRef Nisha P, Mini S. In vitro antioxidant and antiglycation properties of methanol extract and its different solvent fractions of Musa paradisiaca L. (cv Nendran) inflorescence. Int J Food Properties. 2014;17(2):399–409.CrossRef
20.
go back to reference Nadig PD, Revankar RR, Dethe SM, Narayanswamy SB, Aliyar MA. Effect of Tinospora cordifolia on experimental diabetic neuropathy. Indian J Pharmacol. 2012;44(5):580–8.CrossRefPubMedPubMedCentral Nadig PD, Revankar RR, Dethe SM, Narayanswamy SB, Aliyar MA. Effect of Tinospora cordifolia on experimental diabetic neuropathy. Indian J Pharmacol. 2012;44(5):580–8.CrossRefPubMedPubMedCentral
21.
go back to reference Dearlove RP, Greenspan P, Hartle DK, Swanson RB, Hargrove JL. Inhibition of protein glycation by extracts of culinary herbs and spices. J Med Food. 2008;11(2):275–81.CrossRefPubMed Dearlove RP, Greenspan P, Hartle DK, Swanson RB, Hargrove JL. Inhibition of protein glycation by extracts of culinary herbs and spices. J Med Food. 2008;11(2):275–81.CrossRefPubMed
22.
go back to reference Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev. 2012;8(2):92–108.CrossRefPubMed Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev. 2012;8(2):92–108.CrossRefPubMed
23.
go back to reference Umamaheswari M, Chatterjee TK. In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr J Tradit Complement Altern Med. 2008;5(1):61–73. Umamaheswari M, Chatterjee TK. In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr J Tradit Complement Altern Med. 2008;5(1):61–73.
24.
go back to reference Sankaradoss N, Arun S, Naveen B, Sivanagamoorthi M, Velayudem R. Antioxidant [In vitro] and analgesic activity [In vivo] of tannin fraction of stem bark of Ficus racemosa Linn. Res J Pharmaceutical, Biol Chem Sci. 2012;3(1):597–603. Sankaradoss N, Arun S, Naveen B, Sivanagamoorthi M, Velayudem R. Antioxidant [In vitro] and analgesic activity [In vivo] of tannin fraction of stem bark of Ficus racemosa Linn. Res J Pharmaceutical, Biol Chem Sci. 2012;3(1):597–603.
25.
go back to reference Veerapur VP, Prabhakar KR, Thippeswamy BS, Bansal P, Srinivasan KK, Unnikrishnan MK. Antidiabetic effect of Ficus racemosa Linn. stem bark in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats: a mechanistic study. Food Chem. 2012;132(1):186–93.CrossRefPubMed Veerapur VP, Prabhakar KR, Thippeswamy BS, Bansal P, Srinivasan KK, Unnikrishnan MK. Antidiabetic effect of Ficus racemosa Linn. stem bark in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats: a mechanistic study. Food Chem. 2012;132(1):186–93.CrossRefPubMed
26.
go back to reference Rachh PR, Patel SR, Hirpara HV, Rupareliya MT, Rachh AS, Bhargava NM, et al. In vitro evaluation of antioxidant activity of Gymnema sylvestre r. br. leaf extract. Romanian J Biology Plant Biol. 2009;54(2):141–8. Rachh PR, Patel SR, Hirpara HV, Rupareliya MT, Rachh AS, Bhargava NM, et al. In vitro evaluation of antioxidant activity of Gymnema sylvestre r. br. leaf extract. Romanian J Biology Plant Biol. 2009;54(2):141–8.
27.
go back to reference Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food. 2005;8(3):362–8.CrossRefPubMed Rao TP, Sakaguchi N, Juneja LR, Wada E, Yokozawa T. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J Med Food. 2005;8(3):362–8.CrossRefPubMed
28.
go back to reference Kumaran A, Joel KR. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food Sci Technol. 2007;40(2):344–52. Kumaran A, Joel KR. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food Sci Technol. 2007;40(2):344–52.
29.
go back to reference Mohammadi M, Khole S, Devasagayam TPA, Ghaskadbi SS. Pterocarpus marsupium extract reveals strong in vitro antioxidant activity. Drug Discoveries Ther. 2009;3(4):151–61. Mohammadi M, Khole S, Devasagayam TPA, Ghaskadbi SS. Pterocarpus marsupium extract reveals strong in vitro antioxidant activity. Drug Discoveries Ther. 2009;3(4):151–61.
30.
go back to reference Mishra SB, Verma A, Vijayakumar M. Preclinical valuation of anti-hyperglycemic and antioxidant action of Nirmali (Strychnos potatorum) seeds in streptozotocin-nicotinamide-induced diabetic Wistar rats: A histopathological investigation. Biomarkers Genomic Med. 2013;5(4):157–63.CrossRef Mishra SB, Verma A, Vijayakumar M. Preclinical valuation of anti-hyperglycemic and antioxidant action of Nirmali (Strychnos potatorum) seeds in streptozotocin-nicotinamide-induced diabetic Wistar rats: A histopathological investigation. Biomarkers Genomic Med. 2013;5(4):157–63.CrossRef
31.
go back to reference Sivakumar V, Rajan MD. Antioxidant effect of Tinospora cordifolia extract in alloxan-induced diabetic rats. Indian J Pharmaceutical Sci. 2010;72(6):795–8.CrossRef Sivakumar V, Rajan MD. Antioxidant effect of Tinospora cordifolia extract in alloxan-induced diabetic rats. Indian J Pharmaceutical Sci. 2010;72(6):795–8.CrossRef
32.
go back to reference Saraswat M, Reddy PY, Muthenna P, Reddy GB. Prevention of non-enzymic glycation of proteins by dietary agents: Prospects for alleviating diabetic complications. Br J Nutr. 2009;101:1714–21.CrossRefPubMed Saraswat M, Reddy PY, Muthenna P, Reddy GB. Prevention of non-enzymic glycation of proteins by dietary agents: Prospects for alleviating diabetic complications. Br J Nutr. 2009;101:1714–21.CrossRefPubMed
33.
go back to reference Perera HKI, Wijetunge DCR. Strong protein glycation inhibitory potential of clove and coriander. British J Pharmaceutical Res. 2015;6(5):306–12.CrossRef Perera HKI, Wijetunge DCR. Strong protein glycation inhibitory potential of clove and coriander. British J Pharmaceutical Res. 2015;6(5):306–12.CrossRef
34.
go back to reference Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH. Antioxidant and antiglycation activities correlate with phenolic composition of tropical medicinal herbs. Asian Pacific J Tropical Med. 2013;6(7):561–9.CrossRef Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH. Antioxidant and antiglycation activities correlate with phenolic composition of tropical medicinal herbs. Asian Pacific J Tropical Med. 2013;6(7):561–9.CrossRef
35.
go back to reference Rao PV, Gan SH. Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complementary and Alternative Medicine 2014, Article ID. 642942. 12 pages doi:10.1155/2014/642942 Rao PV, Gan SH. Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complementary and Alternative Medicine 2014, Article ID. 642942. 12 pages doi:10.1155/2014/642942
36.
go back to reference Jin S, Cho KH. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidaemic activity in zebra fish. Food Chem Toxicol. 2011;49(7):1521–9.CrossRefPubMed Jin S, Cho KH. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidaemic activity in zebra fish. Food Chem Toxicol. 2011;49(7):1521–9.CrossRefPubMed
37.
go back to reference Ho SC, Chang PW. Inhibitory effects of several spices on inflammation caused by advanced glycation end products. American J Plant Sci. 2012;3:995–1002.CrossRef Ho SC, Chang PW. Inhibitory effects of several spices on inflammation caused by advanced glycation end products. American J Plant Sci. 2012;3:995–1002.CrossRef
38.
go back to reference Atawodi S, Atawodi J, Pfundstein B, Spiegelhalder B, Bartsch H, Owen R. Assessment of the polyphenol components and in vitro antioxidant properties of Syzygium aromaticum (L.) Merr and Perry. Electronic J Environmenta, Agricultural Food Chem. 2011;10:1970–8. Atawodi S, Atawodi J, Pfundstein B, Spiegelhalder B, Bartsch H, Owen R. Assessment of the polyphenol components and in vitro antioxidant properties of Syzygium aromaticum (L.) Merr and Perry. Electronic J Environmenta, Agricultural Food Chem. 2011;10:1970–8.
39.
go back to reference Eidi M, Eidi A, Saeidi A, Molanaei S, Sadeghipour A, Bahar M, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin induced diabetic rats. Phytother Res. 2009;23(3):404–6.CrossRefPubMed Eidi M, Eidi A, Saeidi A, Molanaei S, Sadeghipour A, Bahar M, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin induced diabetic rats. Phytother Res. 2009;23(3):404–6.CrossRefPubMed
40.
go back to reference Sangal A. Role of cinnamon as beneficial antidiabetic food adjunct: a review. Advances Applied Sci Res. 2011;2(4):440–50. Sangal A. Role of cinnamon as beneficial antidiabetic food adjunct: a review. Advances Applied Sci Res. 2011;2(4):440–50.
41.
go back to reference Kuroda M, Mimaki Y, Ohtomo T, Yamada J, Nishiyama T, Mae T, et al. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J Nat Med. 2012;66(2):394–9.CrossRefPubMed Kuroda M, Mimaki Y, Ohtomo T, Yamada J, Nishiyama T, Mae T, et al. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J Nat Med. 2012;66(2):394–9.CrossRefPubMed
Metadata
Title
Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices
Authors
Handunge Kumudu Irani Perera
Charith Sandaruwan Handuwalage
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0689-1

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue