Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Streptococci | Research

Copper ions inhibit Streptococcus mutans–Veillonella parvula dual biofilm by activating Streptococcus mutans reactive nitrogen species

Authors: Zhang Yun, Liu Xianghong, Gao Qianhua, Du Qin

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

To investigate the inhibition mechanism of copper ions on Streptococcus mutans–Veillonella parvula dual biofilm.

Methods

S. mutans–V. parvula dual biofilm was constructed and copper ions were added at different concentrations. After the biofilm was collected, RNA-seq and qRT-PCR were then performed to get gene information.

Results

The coculture of S. mutans and V. parvula formed a significantly better dual biofilm of larger biomass than S. mutans mono biofilm. And copper ions showed a more significant inhibitory effect on S. mutans–V. parvula dual biofilm than on S. mutans mono biofilm when copper ions concentration reached 100 µM, and copper ions showed a decreased inhibitory effect on S. gordonii–V. parvula dual biofilm and S. sanguis–V.parvula dual biofilm than on the two mono biofilms as the concentration of copper ions increased. And common trace elements such as iron, magnesium, and zinc showed no inhibitory effect difference on S. mutans–V. parvula dual biofilm. The RNA-seq results showed a significant difference in the expression of a new ABC transporter SMU_651c, SMU_652c, SMU_653c, and S. mutans copper chaperone copYAZ. SMU_651c, SMU_652c, and SMU_653c were predicted to function as nitrite/nitrate transporter-related proteins, which suggested the specific inhibition of copper ions on S. mutans–V. parvula dual biofilm may be caused by the activation of S. mutans reactive nitrogen species.

Conclusions

Streptococcus mutans and Veillonella parvula are symbiotic, forming a dual biofilm of larger biomass to better resist the external antibacterial substances, which may increase the virulence of S. mutans. While common trace elements such as iron, magnesium, and zinc showed no specific inhibitory effect on S. mutans–V. parvula dual biofilm, copper ion had a unique inhibitory effect on S. mutansV. parvula dual biofilm which may be caused by activating S. mutans RNS when copper ions concentration reached 250 µM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Valm AM. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol. 2019;431(16):2957–69.CrossRef Valm AM. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol. 2019;431(16):2957–69.CrossRef
2.
go back to reference Krzyściak W, Jurczak A, Kościelniak D, et al. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499–515.CrossRef Krzyściak W, Jurczak A, Kościelniak D, et al. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499–515.CrossRef
3.
go back to reference Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1). Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1).
4.
go back to reference Mashima I, Nakazawa F. The influence of oral Veillonella species on blofilms formed by Streptococcus species. Anaerobe. 2014;28:54–61.CrossRef Mashima I, Nakazawa F. The influence of oral Veillonella species on blofilms formed by Streptococcus species. Anaerobe. 2014;28:54–61.CrossRef
5.
go back to reference Khca C, Jep B, To B, et al. The study of antimicrobial activity and preservative effects of nanosilver ingredient—ScienceDirect. Electrochim Acta. 2005;51(5):956–60.CrossRef Khca C, Jep B, To B, et al. The study of antimicrobial activity and preservative effects of nanosilver ingredient—ScienceDirect. Electrochim Acta. 2005;51(5):956–60.CrossRef
6.
go back to reference Liu J, Wu C, Huang IH, Merritt J, Qi F. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology (Reading). 2011;157(Pt 9):2433–44.CrossRef Liu J, Wu C, Huang IH, Merritt J, Qi F. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology (Reading). 2011;157(Pt 9):2433–44.CrossRef
7.
go back to reference Liu S, Chen M, Wang Y, et al. Effect of Veillonella parvula on the physiological activity of Streptococcus mutans. Arch Oral Biol. 2020;109:104578.CrossRef Liu S, Chen M, Wang Y, et al. Effect of Veillonella parvula on the physiological activity of Streptococcus mutans. Arch Oral Biol. 2020;109:104578.CrossRef
8.
go back to reference Peterson SN, Meissner T, Su AI, et al. Functional expression of dental plaque microbiota. Front Cell Infect Microbiol. 2014;4:108.CrossRef Peterson SN, Meissner T, Su AI, et al. Functional expression of dental plaque microbiota. Front Cell Infect Microbiol. 2014;4:108.CrossRef
9.
go back to reference Garcia SS, Du Q, Wu H. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness. Mol Oral Microbiol. 2016;31(6):515–25.CrossRef Garcia SS, Du Q, Wu H. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness. Mol Oral Microbiol. 2016;31(6):515–25.CrossRef
10.
go back to reference Müller WE, Wang X, Guo YW, et al. Potentiation of the cytotoxic activity of copper by polyphosphate on biofilm-producing bacteria: a bioinspired approach. Mar Drugs. 2012;10(12):2369–87.CrossRef Müller WE, Wang X, Guo YW, et al. Potentiation of the cytotoxic activity of copper by polyphosphate on biofilm-producing bacteria: a bioinspired approach. Mar Drugs. 2012;10(12):2369–87.CrossRef
11.
go back to reference Singh K, Senadheera DB, Lévesque CM, Cvitkovitch DG. The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in Streptococcus mutans. J Bacteriol. 2015;197(15):2545–57.CrossRef Singh K, Senadheera DB, Lévesque CM, Cvitkovitch DG. The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in Streptococcus mutans. J Bacteriol. 2015;197(15):2545–57.CrossRef
12.
go back to reference Giti R, Zomorodian K, Firouzmandi M, et al. Antimicrobial activity of thermocycled polymethyl methacrylate resin reinforced with titanium dioxide and copper oxide nanoparticles. Int J Dent. 2021;2021(1):1–8. Giti R, Zomorodian K, Firouzmandi M, et al. Antimicrobial activity of thermocycled polymethyl methacrylate resin reinforced with titanium dioxide and copper oxide nanoparticles. Int J Dent. 2021;2021(1):1–8.
13.
go back to reference Torres-Rosas R, Torres-Gómez N, Garcia-Contreras R, et al. Copper nanoparticles as nanofillers in an adhesive resin system: an in vitro study. Dent Med Probl. 2020;57(3):239–46.CrossRef Torres-Rosas R, Torres-Gómez N, Garcia-Contreras R, et al. Copper nanoparticles as nanofillers in an adhesive resin system: an in vitro study. Dent Med Probl. 2020;57(3):239–46.CrossRef
14.
go back to reference Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol. 2000;182(5):1374.CrossRef Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol. 2000;182(5):1374.CrossRef
15.
go back to reference Rocha DJ, Santos CS, Pacheco LG. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie Van Leeuwenhoek. 2015;108(3):685–93.CrossRef Rocha DJ, Santos CS, Pacheco LG. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie Van Leeuwenhoek. 2015;108(3):685–93.CrossRef
16.
go back to reference Zeng L, Burne RA. Sucrose- and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing. Appl Environ Microbiol. 2015;82(1):146–56.CrossRef Zeng L, Burne RA. Sucrose- and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing. Appl Environ Microbiol. 2015;82(1):146–56.CrossRef
17.
go back to reference Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.CrossRef Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.CrossRef
18.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.CrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.CrossRef
19.
go back to reference Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29.CrossRef Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29.CrossRef
20.
go back to reference Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.CrossRef Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.CrossRef
21.
go back to reference Götz S, García-Gómez JM, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35.CrossRef Götz S, García-Gómez JM, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35.CrossRef
22.
go back to reference Moulos P, Hatzis P. Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. Nucleic Acids Res. 2015;43(4):e25.CrossRef Moulos P, Hatzis P. Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. Nucleic Acids Res. 2015;43(4):e25.CrossRef
23.
go back to reference Blüthgen N, Brand K, Cajavec B, et al. Biological profiling of gene groups utilizing Gene Ontology. Genome Inform. 2005;16(1):106–15. Blüthgen N, Brand K, Cajavec B, et al. Biological profiling of gene groups utilizing Gene Ontology. Genome Inform. 2005;16(1):106–15.
24.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
25.
go back to reference Calin V, Draghici S. ROntoTools: R Onto-Tools Suite. 2016. Calin V, Draghici S. ROntoTools: R Onto-Tools Suite. 2016.
26.
go back to reference Abranches J, Zeng L, Kajfasz JK et al. Biology of oral streptococci. Microbiol Spectr. 2018;6(5). Abranches J, Zeng L, Kajfasz JK et al. Biology of oral streptococci. Microbiol Spectr. 2018;6(5).
27.
go back to reference Richards Vincent P, Alvarez Andres J, Luce Amy R, et al. Microbiomes of site-specific dental plaques from children with different caries status. Infect Immun. 2017;85. Richards Vincent P, Alvarez Andres J, Luce Amy R, et al. Microbiomes of site-specific dental plaques from children with different caries status. Infect Immun. 2017;85.
28.
go back to reference Rademacher C, Masepohl B. Copper-responsive gene regulation in bacteria. Microbiology (Reading). 2012;158(Pt 10):2451–64.CrossRef Rademacher C, Masepohl B. Copper-responsive gene regulation in bacteria. Microbiology (Reading). 2012;158(Pt 10):2451–64.CrossRef
29.
go back to reference Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics. 2011;3(11):1109–18.CrossRef Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics. 2011;3(11):1109–18.CrossRef
30.
go back to reference Arredondo M, Núñez MT. Iron and copper metabolism. Mol Asp Med. 2005;26(4–5):313–27.CrossRef Arredondo M, Núñez MT. Iron and copper metabolism. Mol Asp Med. 2005;26(4–5):313–27.CrossRef
31.
go back to reference Dunning JC, Ma Y, Marquis RE. Anaerobic killing of oral streptococci by reduced, transition metal cations. Appl Environ Microbiol. 1998;64(1):27–33.CrossRef Dunning JC, Ma Y, Marquis RE. Anaerobic killing of oral streptococci by reduced, transition metal cations. Appl Environ Microbiol. 1998;64(1):27–33.CrossRef
32.
go back to reference Demura Y, Ishizaki T, Ameshima S, et al. The activation of nitric oxide synthase by copper ion is mediated by intracellular Ca2+ mobilization in human pulmonary arterial endothelial cells. Br J Pharmacol. 1998;125(6):1180–7.CrossRef Demura Y, Ishizaki T, Ameshima S, et al. The activation of nitric oxide synthase by copper ion is mediated by intracellular Ca2+ mobilization in human pulmonary arterial endothelial cells. Br J Pharmacol. 1998;125(6):1180–7.CrossRef
33.
go back to reference Cuzzocrea S, Persichini T, Dugo L, et al. Copper induces type II nitric oxide synthase in vivo. Free Radic Biol Med. 2003;34(10):1253–62.CrossRef Cuzzocrea S, Persichini T, Dugo L, et al. Copper induces type II nitric oxide synthase in vivo. Free Radic Biol Med. 2003;34(10):1253–62.CrossRef
34.
go back to reference Reddy PV, Rao KV, Norenberg MD. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Lab Invest. 2008;88(8):816–30.CrossRef Reddy PV, Rao KV, Norenberg MD. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Lab Invest. 2008;88(8):816–30.CrossRef
35.
go back to reference Djoko KY, Franiek JA, Edwards JL, et al. Phenotypic characterization of a copA mutant of Neisseria gonorrhoeae identifies a link between copper and nitrosative stress. Infect Immun. 2012;80(3):1065–71.CrossRef Djoko KY, Franiek JA, Edwards JL, et al. Phenotypic characterization of a copA mutant of Neisseria gonorrhoeae identifies a link between copper and nitrosative stress. Infect Immun. 2012;80(3):1065–71.CrossRef
Metadata
Title
Copper ions inhibit Streptococcus mutans–Veillonella parvula dual biofilm by activating Streptococcus mutans reactive nitrogen species
Authors
Zhang Yun
Liu Xianghong
Gao Qianhua
Du Qin
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02738-0

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue