Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2022

Open Access 01-12-2022 | Fibrodysplasia Ossificans Progressiva | Study protocol

Protocol paper: a multi-center, double-blinded, randomized, 6-month, placebo-controlled study followed by 12-month open label extension to evaluate the safety and efficacy of Saracatinib in Fibrodysplasia Ossificans Progressiva (STOPFOP)

Authors: Bernard J. Smilde, Clemens Stockklausner, Richard Keen, Andrew Whittaker, Alex N. Bullock, Annette von Delft, Natasja M. van Schoor, Paul B. Yu, E. Marelise W. Eekhoff

Published in: BMC Musculoskeletal Disorders | Issue 1/2022

Login to get access

Abstract

Background

Fibrodysplasia Ossificans Progressiva (FOP) is a genetic, progressive and devastating disease characterized by severe heterotopic ossification (HO), loss of mobility and early death. There are no FDA approved medications. The STOPFOP team identified AZD0530 (saracatinib) as a potent inhibitor of the ALK2/ACVR1-kinase which is the causative gene for this rare bone disease. AZD0530 was proven to prevent HO formation in FOP mouse models. The STOPFOP trial investigates the repositioning of AZD0530, originally developed for ovarian cancer treatment, to treat patients with FOP.

Methods

The STOPFOP trial is a phase 2a study. It is designed as a European, multicentre, 6-month double blind randomized controlled trial of AZD0530 versus placebo, followed by a 12-month trial comparing open-label extended AZD0530 treatment with natural history data as a control. Enrollment will include 20 FOP patients, aged 18–65 years, with the classic FOP mutation (ALK2 R206H). The primary endpoint is objective change in heterotopic bone volume measured by low-dose whole-body computer tomography (CT) in the RCT phase. Secondary endpoints include 18F NaF PET activity and patient reported outcome measures.

Discussion

Clinical trials in rare diseases with limited study populations pose unique challenges. An ideal solution for limiting risks in early clinical studies is drug repositioning – using existing clinical molecules for new disease indications. Using existing assets may also allow a more fluid transition into clinical practice.
With positive study outcome, AZD0530 may provide a therapy for FOP that can be rapidly progressed due to the availability of existing safety data from 28 registered clinical trials with AZD0530 involving over 600 patients.

Trial registration

EudraCT, 2019–003324-20. Registered 16 October 2019, https://​www.​clinicaltrialsre​gister.​eu/​ctr-search/​trial/​2019-003324-20/​NL. Clinicaltrials.​gov, NCT04307953. Registered 13 March 2020.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur J Hum Genet. 2020;28(2):165–73.CrossRef Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur J Hum Genet. 2020;28(2):165–73.CrossRef
2.
go back to reference Ferreira CR. The burden of rare diseases. Am J Med Genet A. 2019;179(6):885–92.CrossRef Ferreira CR. The burden of rare diseases. Am J Med Genet A. 2019;179(6):885–92.CrossRef
3.
go back to reference Griggs RC, Batshaw M, Dunkle M, Gopal-Srivastava R, Kaye E, Krischer J, et al. Rare diseases clinical research N: Clinical research for rare disease: Opportunities, challenges, and solutions. Mol Genet Metab. 2009;96(1):20–6.CrossRef Griggs RC, Batshaw M, Dunkle M, Gopal-Srivastava R, Kaye E, Krischer J, et al. Rare diseases clinical research N: Clinical research for rare disease: Opportunities, challenges, and solutions. Mol Genet Metab. 2009;96(1):20–6.CrossRef
4.
go back to reference Baujat G, Choquet R, Bouée S, Jeanbat V, Courouve L, Ruel A, et al. Prevalence of fibrodysplasia ossificans progressiva (FOP) in France: An estimate based on a record linkage of two national databases. Orphanet J Rare Dis. 2017;12(1):123.CrossRef Baujat G, Choquet R, Bouée S, Jeanbat V, Courouve L, Ruel A, et al. Prevalence of fibrodysplasia ossificans progressiva (FOP) in France: An estimate based on a record linkage of two national databases. Orphanet J Rare Dis. 2017;12(1):123.CrossRef
5.
go back to reference Pignolo RJ, Hsiao EC, Baujat G, Lapidus D, Sherman A, Kaplan FS. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: Estimate from three treatment centers and a patient organization. Orphanet J Rare Dis. 2021;16(1):350.CrossRef Pignolo RJ, Hsiao EC, Baujat G, Lapidus D, Sherman A, Kaplan FS. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: Estimate from three treatment centers and a patient organization. Orphanet J Rare Dis. 2021;16(1):350.CrossRef
6.
go back to reference Eekhoff EMW, Botman E, Coen Netelenbos J, de Graaf P, Bravenboer N, Micha D, et al. [18F]NaF PET/CT scan as an early marker of heterotopic ossification in fibrodysplasia ossificans progressiva. Bone. 2018;109:143–6.CrossRef Eekhoff EMW, Botman E, Coen Netelenbos J, de Graaf P, Bravenboer N, Micha D, et al. [18F]NaF PET/CT scan as an early marker of heterotopic ossification in fibrodysplasia ossificans progressiva. Bone. 2018;109:143–6.CrossRef
7.
go back to reference Pignolo RJ, Bedford-Gay C, Liljesthröm M, Durbin-Johnson BP, Shore EM, Rocke DM, et al. The natural history of flare-ups in Fibrodysplasia Ossificans Progressiva (FOP): A comprehensive global assessment. J Bone Miner Res. 2016;31(3):650–6.CrossRef Pignolo RJ, Bedford-Gay C, Liljesthröm M, Durbin-Johnson BP, Shore EM, Rocke DM, et al. The natural history of flare-ups in Fibrodysplasia Ossificans Progressiva (FOP): A comprehensive global assessment. J Bone Miner Res. 2016;31(3):650–6.CrossRef
8.
go back to reference Kaplan FS, Zasloff MA, Kitterman JA, Shore EM, Hong CC, Rocke DM. Early mortality and cardiorespiratory failure in patients with fibrodysplasia ossificans progressiva. J Bone Joint Surg Am. 2010;92(3):686–91.CrossRef Kaplan FS, Zasloff MA, Kitterman JA, Shore EM, Hong CC, Rocke DM. Early mortality and cardiorespiratory failure in patients with fibrodysplasia ossificans progressiva. J Bone Joint Surg Am. 2010;92(3):686–91.CrossRef
9.
go back to reference Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009;30(3):379–90.CrossRef Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009;30(3):379–90.CrossRef
10.
go back to reference Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang L, et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med. 2015;7(303):303ra137.CrossRef Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang L, et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med. 2015;7(303):303ra137.CrossRef
11.
go back to reference Song G-A, Kim H-J, Woo K-M, Baek J-H, Kim G-S, Choi J-Y, et al. Molecular consequences of the ACVR1(R206H) mutation of fibrodysplasia ossificans progressiva. J Biol Chem. 2010;285(29):22542–53.CrossRef Song G-A, Kim H-J, Woo K-M, Baek J-H, Kim G-S, Choi J-Y, et al. Molecular consequences of the ACVR1(R206H) mutation of fibrodysplasia ossificans progressiva. J Biol Chem. 2010;285(29):22542–53.CrossRef
12.
go back to reference Braun MM, Farag-El-Massah S, Xu K, Coté TR. Emergence of orphan drugs in the United States: A quantitative assessment of the first 25 years. Nat Rev Drug Discov. 2010;9(7):519–22.CrossRef Braun MM, Farag-El-Massah S, Xu K, Coté TR. Emergence of orphan drugs in the United States: A quantitative assessment of the first 25 years. Nat Rev Drug Discov. 2010;9(7):519–22.CrossRef
13.
go back to reference Scherman D, Fetro C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie. 2020;75(2):161–7.CrossRef Scherman D, Fetro C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie. 2020;75(2):161–7.CrossRef
14.
go back to reference Frail DE, Brady M, Escott KJ, Holt A, Sanganee HJ, Pangalos MN, et al. Pioneering government-sponsored drug repositioning collaborations: Progress and learning. Nat Rev Drug Discov. 2015;14(12):833–41.CrossRef Frail DE, Brady M, Escott KJ, Holt A, Sanganee HJ, Pangalos MN, et al. Pioneering government-sponsored drug repositioning collaborations: Progress and learning. Nat Rev Drug Discov. 2015;14(12):833–41.CrossRef
15.
go back to reference Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36(7):422–39.CrossRef Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36(7):422–39.CrossRef
16.
go back to reference Xie Z, Yang X, Duan Y, Han J, Liao C. Small-molecule kinase inhibitors for the treatment of nononcologic diseases. J Med Chem. 2021;64(3):1283–345.CrossRef Xie Z, Yang X, Duan Y, Han J, Liao C. Small-molecule kinase inhibitors for the treatment of nononcologic diseases. J Med Chem. 2021;64(3):1283–345.CrossRef
17.
go back to reference Mohedas AH, Xing X, Armstrong KA, Bullock AN, Cuny GD, Yu PB. Development of an ALK2-biased BMP type I receptor kinase inhibitor. ACS Chem Biol. 2013;8(6):1291–302.CrossRef Mohedas AH, Xing X, Armstrong KA, Bullock AN, Cuny GD, Yu PB. Development of an ALK2-biased BMP type I receptor kinase inhibitor. ACS Chem Biol. 2013;8(6):1291–302.CrossRef
18.
go back to reference Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008;14(12):1363–9.CrossRef Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008;14(12):1363–9.CrossRef
19.
go back to reference Williams E, Bagarova J, Kerr G, Xia D-D, Place ES, Dey D, et al. Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva. JCI Insight. 2021;6(8):e95042.CrossRef Williams E, Bagarova J, Kerr G, Xia D-D, Place ES, Dey D, et al. Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva. JCI Insight. 2021;6(8):e95042.CrossRef
20.
go back to reference Smilde BJ, Keen R, Stockklausner C, Liu D, Bullock A, von Delft A, et al. STOPFOP: A European phase II clinical trial using saracatinib to treat FOP. Bone Reports. 2020;13:100614.CrossRef Smilde BJ, Keen R, Stockklausner C, Liu D, Bullock A, von Delft A, et al. STOPFOP: A European phase II clinical trial using saracatinib to treat FOP. Bone Reports. 2020;13:100614.CrossRef
21.
go back to reference Kaplan F, Mukaddam M, Baujat G, Cali A, Cho T-J, Crowe C, et al. The medical management of fibrodysplasia ossificans progressiva: current treatment considerations, vol. 1; 2019. p. 1–111. Kaplan F, Mukaddam M, Baujat G, Cali A, Cho T-J, Crowe C, et al. The medical management of fibrodysplasia ossificans progressiva: current treatment considerations, vol. 1; 2019. p. 1–111.
22.
go back to reference Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586.CrossRef Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586.CrossRef
23.
go back to reference Hsiao EC, Di Rocco M, Cali A, Zasloff M, Al Mukaddam M, Pignolo RJ, et al. Special considerations for clinical trials in fibrodysplasia ossificans progressiva (FOP). Br J Clin Pharmacol. 2019;85(6):1199–207.CrossRef Hsiao EC, Di Rocco M, Cali A, Zasloff M, Al Mukaddam M, Pignolo RJ, et al. Special considerations for clinical trials in fibrodysplasia ossificans progressiva (FOP). Br J Clin Pharmacol. 2019;85(6):1199–207.CrossRef
24.
go back to reference Pignolo RJ, Baujat G, Brown MA, De Cunto C, Di Rocco M, Hsiao EC, et al. Natural history of fibrodysplasia ossificans progressiva: cross-sectional analysis of annotated baseline phenotypes. Orphanet J Rare Dis. 2019;14(1):98.CrossRef Pignolo RJ, Baujat G, Brown MA, De Cunto C, Di Rocco M, Hsiao EC, et al. Natural history of fibrodysplasia ossificans progressiva: cross-sectional analysis of annotated baseline phenotypes. Orphanet J Rare Dis. 2019;14(1):98.CrossRef
25.
go back to reference Barnes SA, Lindborg SR, Seaman JW Jr. Multiple imputation techniques in small sample clinical trials. Stat Med. 2006;25(2):233–45.CrossRef Barnes SA, Lindborg SR, Seaman JW Jr. Multiple imputation techniques in small sample clinical trials. Stat Med. 2006;25(2):233–45.CrossRef
26.
go back to reference Morales-Piga A, Bachiller-Corral J, Trujillo-Tiebas MJ, Villaverde-Hueso A, Gamir-Gamir ML, Alonso-Ferreira V, et al. Fibrodysplasia ossificans progressiva in Spain: epidemiological, clinical, and genetic aspects. Bone. 2012;51(4):748–55.CrossRef Morales-Piga A, Bachiller-Corral J, Trujillo-Tiebas MJ, Villaverde-Hueso A, Gamir-Gamir ML, Alonso-Ferreira V, et al. Fibrodysplasia ossificans progressiva in Spain: epidemiological, clinical, and genetic aspects. Bone. 2012;51(4):748–55.CrossRef
27.
go back to reference Kitterman JA, Kantanie S, Rocke DM, Kaplan FS. Iatrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics. 2005;116(5):e654–61.CrossRef Kitterman JA, Kantanie S, Rocke DM, Kaplan FS. Iatrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics. 2005;116(5):e654–61.CrossRef
28.
go back to reference Gregson CL, Hollingworth P, Williams M, Petrie KA, Bullock AN, Brown MA, et al. A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date. Bone. 2011;48(3):654–8.CrossRef Gregson CL, Hollingworth P, Williams M, Petrie KA, Bullock AN, Brown MA, et al. A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date. Bone. 2011;48(3):654–8.CrossRef
Metadata
Title
Protocol paper: a multi-center, double-blinded, randomized, 6-month, placebo-controlled study followed by 12-month open label extension to evaluate the safety and efficacy of Saracatinib in Fibrodysplasia Ossificans Progressiva (STOPFOP)
Authors
Bernard J. Smilde
Clemens Stockklausner
Richard Keen
Andrew Whittaker
Alex N. Bullock
Annette von Delft
Natasja M. van Schoor
Paul B. Yu
E. Marelise W. Eekhoff
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2022
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05471-x

Other articles of this Issue 1/2022

BMC Musculoskeletal Disorders 1/2022 Go to the issue