Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Research article

Bone preserving level of osteotomy in short-stem total hip arthroplasty does not influence stress shielding dimensions – a comparing finite elements analysis

Authors: Rene Burchard, Sabrina Braas, Christian Soost, Jan Adriaan Graw, Jan Schmitt

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Background

The main objective of every new development in total hip arthroplasty (THA) is the longest possible survival of the implant. Periprosthetic stress shielding is a scientifically proven phenomenon which leads to inadvertent bone loss. So far, many studies have analysed whether implanting different hip stem prostheses result in significant preservation of bone stock. The aim of this preclinical study was to investigate design-depended differences of the stress shielding effect after implantation of a selection of short-stem THA-prostheses that are currently available.

Methods

Based on computerised tomography (CT), a finite elements (FE) model was generated and a virtual THA was performed with different stem designs of the implant. Stems were chosen by osteotomy level at the femoral neck (collum, partial collum, trochanter sparing, trochanter harming). Analyses were performed with previously validated FE models to identify changes in the strain energy density (SED).

Results

In the trochanteric region, only the collum-type stem demonstrated a biomechanical behaviour similar to the native femur. In contrast, no difference in biomechanical behaviour was found between partial collum, trochanter harming and trochanter sparing models. All of the short stem-prostheses showed lower stress-shielding than a standard stem.

Conclusion

Based on the results of this study, we cannot confirm that the design of current short stem THA-implants leads to a different stress shielding effect with regard to the level of osteotomy. Somehow unexpected, we found a bone stock protection in metadiaphyseal bone by simulating a more distal approach for osteotomy. Further clinical and biomechanical research including long-term results is needed to understand the influence of short-stem THA on bone remodelling and to find the optimal stem-design for a reduction of the stress shielding effect.
Appendix
Available only for authorised users
Literature
1.
go back to reference Morrey BF. Short-stemmed uncemented femoral component for primary hip arthroplasty. Clin Orthop. 1989;249(1):169–75. Morrey BF. Short-stemmed uncemented femoral component for primary hip arthroplasty. Clin Orthop. 1989;249(1):169–75.
3.
go back to reference Oh I, Harris WH. Proximal strain distribution in the loaded femur. J Bone Joint Surg. 1978;60A:75–85.CrossRef Oh I, Harris WH. Proximal strain distribution in the loaded femur. J Bone Joint Surg. 1978;60A:75–85.CrossRef
4.
go back to reference Eng CA, Bobyn JD, Glassman AH. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding and clinical results. J Bone Joint Surg. 1987;69B:45–55. Eng CA, Bobyn JD, Glassman AH. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding and clinical results. J Bone Joint Surg. 1987;69B:45–55.
5.
go back to reference Eng CA, Glassman AH, Suthers KE. The case for porous-coated hip implants. The femoral side. Clin Orthop. 1990;261:63–81. Eng CA, Glassman AH, Suthers KE. The case for porous-coated hip implants. The femoral side. Clin Orthop. 1990;261:63–81.
6.
go back to reference Lerch M, Kurtz A, Stukenborg-Colsman C, Nolte I, Weigel N, Bouguecha A, Behrens BA. Bone remodelling after total hip arthroplasty with a short stemmed metaphyseal loading implant: finite elements analysis validated by a prospectice DEXA investigation. J Orthop Res. 2012;30(11):1822–9.CrossRefPubMed Lerch M, Kurtz A, Stukenborg-Colsman C, Nolte I, Weigel N, Bouguecha A, Behrens BA. Bone remodelling after total hip arthroplasty with a short stemmed metaphyseal loading implant: finite elements analysis validated by a prospectice DEXA investigation. J Orthop Res. 2012;30(11):1822–9.CrossRefPubMed
7.
go back to reference Lengsfeld M, Guenther D, Pressel T, Leppek R, Schmitt J, Griss P. Validation data for periprosthestic bone remodelling theories. J Biomech. 2002;35:1553–64.CrossRefPubMed Lengsfeld M, Guenther D, Pressel T, Leppek R, Schmitt J, Griss P. Validation data for periprosthestic bone remodelling theories. J Biomech. 2002;35:1553–64.CrossRefPubMed
8.
go back to reference Götze C, Ehrenbrink J, Ehrenbrink H. Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall. 2010 Aug;148(4):398–405. doi:10.1055/s-0030-1250151.CrossRefPubMed Götze C, Ehrenbrink J, Ehrenbrink H. Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall. 2010 Aug;148(4):398–405. doi:10.​1055/​s-0030-1250151.CrossRefPubMed
9.
go back to reference Falez F, Casella F, Papalia M. Current concepts, classification and results in short stem hip arthroplasty. Orthopedics 2015;38(3)SUPPL:S6-S13. Falez F, Casella F, Papalia M. Current concepts, classification and results in short stem hip arthroplasty. Orthopedics 2015;38(3)SUPPL:S6-S13.
10.
go back to reference Feyen H, Shimmin AJ. Is the length of the femoral component important in primary total hip replacement? Bone Joint J. 2014;96-B(4):442–8.CrossRefPubMed Feyen H, Shimmin AJ. Is the length of the femoral component important in primary total hip replacement? Bone Joint J. 2014;96-B(4):442–8.CrossRefPubMed
11.
go back to reference Joshi MG, Advani SG, Miller F, Santare MH. Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech. 2000;33:1655–62.CrossRefPubMed Joshi MG, Advani SG, Miller F, Santare MH. Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech. 2000;33:1655–62.CrossRefPubMed
12.
go back to reference Chen HH, Morrey BF, An KN, Luo ZP. Bone remodelling charateristics of a short-stemmed total hip replacement. J Arthroplast. 2009;24(6):945–50.CrossRef Chen HH, Morrey BF, An KN, Luo ZP. Bone remodelling charateristics of a short-stemmed total hip replacement. J Arthroplast. 2009;24(6):945–50.CrossRef
13.
go back to reference Zeh A, Pankow F, Röllinhoff M, Delank S, Wohlrab D. A prospective dual-energy X-ray absorptiometry study of bone remodelling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg. 2013;79(2):174–80.PubMed Zeh A, Pankow F, Röllinhoff M, Delank S, Wohlrab D. A prospective dual-energy X-ray absorptiometry study of bone remodelling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg. 2013;79(2):174–80.PubMed
14.
go back to reference Munting E, Verhelpen M. Fixation and effect on bone strain pattern of a stemless hip prosthesis. J Biomech. 1995;28:949–61.CrossRefPubMed Munting E, Verhelpen M. Fixation and effect on bone strain pattern of a stemless hip prosthesis. J Biomech. 1995;28:949–61.CrossRefPubMed
15.
go back to reference Lengsfeld M, Burchard R, Guenther D, Pressel T, Schmitt J, Leppek R, Griss P. Femoral strain changes after total hip arthroplasty – patient-specific finite element analyses 12 years after operation. Med Phys Eng. 2005;27:649–54.CrossRef Lengsfeld M, Burchard R, Guenther D, Pressel T, Schmitt J, Leppek R, Griss P. Femoral strain changes after total hip arthroplasty – patient-specific finite element analyses 12 years after operation. Med Phys Eng. 2005;27:649–54.CrossRef
16.
go back to reference Weinans H, Sumner DR, Igloria R, Natarajan RN. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. J Biomech. 2000;33(7):809–17.CrossRefPubMed Weinans H, Sumner DR, Igloria R, Natarajan RN. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. J Biomech. 2000;33(7):809–17.CrossRefPubMed
17.
go back to reference Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthopaed Res. 1991;9(5):674–82.CrossRef Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthopaed Res. 1991;9(5):674–82.CrossRef
18.
go back to reference Schmitt J, Lengsfeld M, Alter P, Leppek R. Use of voxel-oriented femur models for stress analysis. Generation, calculation and validation of CT-based FEM models. Biomed Tech. 1995;40:175–81.CrossRef Schmitt J, Lengsfeld M, Alter P, Leppek R. Use of voxel-oriented femur models for stress analysis. Generation, calculation and validation of CT-based FEM models. Biomed Tech. 1995;40:175–81.CrossRef
19.
go back to reference Schmitt J, Lengsfeld M, Leppek R, Alter P. Fully automated generation of hip prosthesis voxel models of the femur for finite element analysis. Comparison of direct and subsequent prosthesis implantation. Biomed Tech. 1997;42(6):150–5.CrossRef Schmitt J, Lengsfeld M, Leppek R, Alter P. Fully automated generation of hip prosthesis voxel models of the femur for finite element analysis. Comparison of direct and subsequent prosthesis implantation. Biomed Tech. 1997;42(6):150–5.CrossRef
20.
go back to reference Pauwels F. Femoral neck fracture. A mechanical problem. Z Orthop Chir. [Suppl] 1935;63:1–138. Pauwels F. Femoral neck fracture. A mechanical problem. Z Orthop Chir. [Suppl] 1935;63:1–138.
21.
go back to reference Stolk J, Verdonschot N, Huiskes R. Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech. 2001;34(7):917–26.CrossRefPubMed Stolk J, Verdonschot N, Huiskes R. Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech. 2001;34(7):917–26.CrossRefPubMed
22.
go back to reference Lengsfeld M, Kaminsky J, Merz B, Franke RP. Sensitivity of femoral strain pattern analyses to resultant and muscle forces at the hip joint. Med Eng Phys. 1996;18(1):70–8.CrossRefPubMed Lengsfeld M, Kaminsky J, Merz B, Franke RP. Sensitivity of femoral strain pattern analyses to resultant and muscle forces at the hip joint. Med Eng Phys. 1996;18(1):70–8.CrossRefPubMed
24.
go back to reference Gross S, Abel EW. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech. 2001;34(8):995–1003.CrossRefPubMed Gross S, Abel EW. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech. 2001;34(8):995–1003.CrossRefPubMed
25.
go back to reference Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE. Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res. 1992;274:79–96. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE. Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res. 1992;274:79–96.
26.
go back to reference Gruen TA, McNeice GM, Amstutz HC. “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979;141:17–27. Gruen TA, McNeice GM, Amstutz HC. “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979;141:17–27.
28.
go back to reference Ishaque BA, Gils J, Wienbeck S, Donle E, Basad E, Stürz H. Results after replacement of femoral neck prostheses - thrust plate prosthesis (TPP) versus ESKA cut prosthesis. Z Orthop Unfall. 2009;147(1):79–88. doi:10.1055/s-2008-1038992.CrossRefPubMed Ishaque BA, Gils J, Wienbeck S, Donle E, Basad E, Stürz H. Results after replacement of femoral neck prostheses - thrust plate prosthesis (TPP) versus ESKA cut prosthesis. Z Orthop Unfall. 2009;147(1):79–88. doi:10.​1055/​s-2008-1038992.CrossRefPubMed
29.
go back to reference Carter DR, Hayes WC. The compressive behaviour of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59(7):954–62.CrossRefPubMed Carter DR, Hayes WC. The compressive behaviour of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59(7):954–62.CrossRefPubMed
30.
go back to reference Keller TS, Mao Z, Spengler DM. Young's modulus, bending strength, and tissue physical properties of human compact bone. J Orthop Res. 1990;8(4):592–603.CrossRefPubMed Keller TS, Mao Z, Spengler DM. Young's modulus, bending strength, and tissue physical properties of human compact bone. J Orthop Res. 1990;8(4):592–603.CrossRefPubMed
31.
go back to reference Snyder SM, Schneider E. Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res. 1991;9(3):422–31.CrossRefPubMed Snyder SM, Schneider E. Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res. 1991;9(3):422–31.CrossRefPubMed
32.
go back to reference Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17(5):347–55.CrossRefPubMed Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17(5):347–55.CrossRefPubMed
33.
go back to reference Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26(8):969–90.CrossRefPubMed Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26(8):969–90.CrossRefPubMed
34.
go back to reference Salvati EA, Im VC, Aglietti P, Wilson PD Jr. Radiology of total hip replacements. Clin Orthop Relat Res. 1976;121:74–82. Salvati EA, Im VC, Aglietti P, Wilson PD Jr. Radiology of total hip replacements. Clin Orthop Relat Res. 1976;121:74–82.
38.
go back to reference Ender SA, Machner A, Pap G, Hubbe J, Grashoff H, Neumann HW. Cementless CUT femoral neck prosthesis: increased rate of aseptic loosening after 5 years. Acta Orthop. 2007;78(5):616–21.CrossRefPubMed Ender SA, Machner A, Pap G, Hubbe J, Grashoff H, Neumann HW. Cementless CUT femoral neck prosthesis: increased rate of aseptic loosening after 5 years. Acta Orthop. 2007;78(5):616–21.CrossRefPubMed
39.
go back to reference Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM. Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop. 2012;36(3):533–8. doi:10.1007/s00264-011-1361-0.CrossRefPubMed Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM. Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop. 2012;36(3):533–8. doi:10.​1007/​s00264-011-1361-0.CrossRefPubMed
40.
go back to reference Freitag T, Hein MA, Wernerus D, Reichel H, Bieger R. Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch Orthop Trauma Surg. 2016;136(1):125–30. doi:10.1007/s00402-015-2370-z.CrossRefPubMed Freitag T, Hein MA, Wernerus D, Reichel H, Bieger R. Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch Orthop Trauma Surg. 2016;136(1):125–30. doi:10.​1007/​s00402-015-2370-z.CrossRefPubMed
41.
go back to reference McCalden RW, Korczak A, Somerville L, Yuan X, Naudie DD. A randomised trial comparing a short and a standard-length metaphyseal engaging cementless femoral stem using radiostereometric analysis. Bone Joint J. 2015;97-B(5):595–602. doi:10.1302/0301-620X.97B5.34994.CrossRefPubMed McCalden RW, Korczak A, Somerville L, Yuan X, Naudie DD. A randomised trial comparing a short and a standard-length metaphyseal engaging cementless femoral stem using radiostereometric analysis. Bone Joint J. 2015;97-B(5):595–602. doi:10.​1302/​0301-620X.​97B5.​34994.CrossRefPubMed
42.
go back to reference Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G, Floerkemeier T. Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev (Pavia). 2014;6(1):5211. doi:10.4081/or.2014.5211.CrossRef Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G, Floerkemeier T. Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev (Pavia). 2014;6(1):5211. doi:10.​4081/​or.​2014.​5211.CrossRef
43.
go back to reference Floerkemeier T, Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G. The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora. Int Orthop. 2013;37(3):369–77. doi:10.1007/s00264-012-1725-0.CrossRefPubMed Floerkemeier T, Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G. The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora. Int Orthop. 2013;37(3):369–77. doi:10.​1007/​s00264-012-1725-0.CrossRefPubMed
Metadata
Title
Bone preserving level of osteotomy in short-stem total hip arthroplasty does not influence stress shielding dimensions – a comparing finite elements analysis
Authors
Rene Burchard
Sabrina Braas
Christian Soost
Jan Adriaan Graw
Jan Schmitt
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1702-2

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue