Skip to main content
Top
Published in: BMC Public Health 2/2018

Open Access 01-10-2018 | Research

Influence of the relative age effect on children’s scores obtained from the Canadian assessment of physical literacy

Authors: Caroline Dutil, Mark S. Tremblay, Patricia E. Longmuir, Joel D. Barnes, Kevin Belanger, Jean-Philippe Chaput

Published in: BMC Public Health | Special Issue 2/2018

Login to get access

Abstract

Background

Age grouping by the imposition of a cut-off date, common in sports and education, promotes a relative age difference that is associated with developmental advantages for children who are born on the “early side” of the cut-off date and disadvantages to those born later in the same year, which is known as the relative age effect (RAE) bias. Acquiring an adequate level of physical literacy is important for children to remain active for life. The Canadian Assessment of Physical Literacy (CAPL) is an assessment protocol that encompasses measures in the domains of children’s Daily Behaviours, Physical Competence, Motivation and Confidence, and Knowledge and Understanding. The purpose of this study was to ascertain whether the CAPL scores were susceptible to the RAE, which could affect our interpretation of the CAPL findings.

Methods

This cross-sectional study examined if scores obtained in the CAPL (i.e., the four domains individually and the total CAPL score) were susceptible to the RAE in children aged 8 to 12 years and, if so, which physical competence assessments (movement skills, cardiorespiratory, strength, muscular endurance, flexibility, and body composition measurements) were more susceptible. Participants (n = 8233, 49.8% boys) from the Royal Bank of Canada–CAPL Learn to Play project from 11 sites in seven Canadian provinces were tested using the CAPL protocol.

Results

Among boys and girls, the RAE was significantly associated with two and three of the four domain scores, respectively, after controlling for covariates. However, effect sizes were negligible for the comparisons between quarters of the year and physical literacy domains and overall scores. For the main effect of the relative age, boys and girls born in the first three months of the year were taller (F(3, 4074) = 57.0, p < 0.001, ƒ2 = 0.04 and F(3, 4107) = 58.4, p < 0.001, ƒ2 = 0.04, respectively) and demonstrated greater muscular strength (F(3, 4037) = 29.2, p < 0.001, ƒ2 = 0.02 and F(3, 4077) = 25.1, p < 0.001, ƒ2 = 0.02, respectively) compared with those born later in the same year.

Conclusions

Collectively, our results suggest that the RAE bias is mainly negligible with regard to the domain scores and overall CAPL scores in this large sample of children.
Appendix
Available only for authorised users
Literature
2.
go back to reference Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput J-P, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41:S197–239.CrossRef Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput J-P, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41:S197–239.CrossRef
3.
go back to reference Castelli DM, Barcelona JM, Bryant L. Contextualizing physical literacy in the school environment: the challenges. J Sport Heal Sci. 2015;4:156–63.CrossRef Castelli DM, Barcelona JM, Bryant L. Contextualizing physical literacy in the school environment: the challenges. J Sport Heal Sci. 2015;4:156–63.CrossRef
4.
go back to reference Giblin S, Collins D, Button C. Physical literacy: importance, assessment and future directions. Sport Med. 2014;44:1177–84.CrossRef Giblin S, Collins D, Button C. Physical literacy: importance, assessment and future directions. Sport Med. 2014;44:1177–84.CrossRef
6.
go back to reference Francis CE, Longmuir PE, Boyer C, Andersen LB, Barnes JD, Boiarskaia E, et al. The Canadian Assessment of Physical Literacy: development of a model of children’s capacity for a healthy, active lifestyle through a Delphi process. J Phys Act Heal. 2016;13:214–22.CrossRef Francis CE, Longmuir PE, Boyer C, Andersen LB, Barnes JD, Boiarskaia E, et al. The Canadian Assessment of Physical Literacy: development of a model of children’s capacity for a healthy, active lifestyle through a Delphi process. J Phys Act Heal. 2016;13:214–22.CrossRef
7.
go back to reference Longmuir PE, Boyer C, Lloyd M, Yang Y, Boiarskaia E, Zhu W, Tremblay MS. The Canadian Assessment of Physical Literacy: methods for children in grades 4 to 6 (8 to 12 years). BMC Public Health. 2015;15:767–88.CrossRef Longmuir PE, Boyer C, Lloyd M, Yang Y, Boiarskaia E, Zhu W, Tremblay MS. The Canadian Assessment of Physical Literacy: methods for children in grades 4 to 6 (8 to 12 years). BMC Public Health. 2015;15:767–88.CrossRef
8.
go back to reference Bell JF, Daniels S. Are summer-born children disadvantaged? The birthdate effect in education. Oxford Rev. Educ. 1990;16:67–80.CrossRef Bell JF, Daniels S. Are summer-born children disadvantaged? The birthdate effect in education. Oxford Rev. Educ. 1990;16:67–80.CrossRef
9.
go back to reference Cobley S, Baker J, Wattie N, McKenna J. Annual age-grouping and athlete development: a meta-analytical review of relative age effects in sports. Sports Med. 2009;39:235–56.CrossRef Cobley S, Baker J, Wattie N, McKenna J. Annual age-grouping and athlete development: a meta-analytical review of relative age effects in sports. Sports Med. 2009;39:235–56.CrossRef
10.
go back to reference Musch J, Grondin S. Unequal competition as an impediment to personal development: a review of the relative age effect in sport. Dev Rev. 2001;21:147–67.CrossRef Musch J, Grondin S. Unequal competition as an impediment to personal development: a review of the relative age effect in sport. Dev Rev. 2001;21:147–67.CrossRef
11.
go back to reference Roberts SJ, Boddy LM, Fairclough SJ, Stratton G. The influence of relative age effects on the cardiorespiratory fitness levels of children age 9 to 10 and 11 to 12 years of age. Pediatr Exerc Sci. 2012;24:72–83.CrossRef Roberts SJ, Boddy LM, Fairclough SJ, Stratton G. The influence of relative age effects on the cardiorespiratory fitness levels of children age 9 to 10 and 11 to 12 years of age. Pediatr Exerc Sci. 2012;24:72–83.CrossRef
12.
go back to reference Bisanz J, Morrison FJ, Dunn M. Effects of age and schooling on the acquisition of elementary quantitative skills. Dev Psychol. 1995;31:221–36.CrossRef Bisanz J, Morrison FJ, Dunn M. Effects of age and schooling on the acquisition of elementary quantitative skills. Dev Psychol. 1995;31:221–36.CrossRef
13.
go back to reference Campbell T. Stratified at seven: in-class ability grouping and the relative age effect. Br Educ Res J. 2014;40:749–71.CrossRef Campbell T. Stratified at seven: in-class ability grouping and the relative age effect. Br Educ Res J. 2014;40:749–71.CrossRef
14.
go back to reference Roberts SJ, Fairclough SJ. The influence of relative age effect in the assessment of high school students in physical education in the United Kingdom. J Teach Phys Educ. 2012;31:56–70.CrossRef Roberts SJ, Fairclough SJ. The influence of relative age effect in the assessment of high school students in physical education in the United Kingdom. J Teach Phys Educ. 2012;31:56–70.CrossRef
15.
go back to reference Sykes EDA, Bell JF, Vidal RC. Birthdate effects: a review of the literature from 1990-on. Cambridge: Cambridge Assessment, University of Cambridge Local Examination Syndicate; 2016. Sykes EDA, Bell JF, Vidal RC. Birthdate effects: a review of the literature from 1990-on. Cambridge: Cambridge Assessment, University of Cambridge Local Examination Syndicate; 2016.
16.
go back to reference Thompson AH, Barnsley RH, Battle J. The relative age effect and the development of self-esteem. Educ Res. 2004;46:313–20.CrossRef Thompson AH, Barnsley RH, Battle J. The relative age effect and the development of self-esteem. Educ Res. 2004;46:313–20.CrossRef
17.
go back to reference Patalay P, Belsky J, Fonagy P, Vostanis P, Humphrey N, Deighton J, Wolpert M. The extent and specificity of relative age effects on mental health and functioning in early adolescence. J Adolesc Health. 2015;57:475–81.CrossRef Patalay P, Belsky J, Fonagy P, Vostanis P, Humphrey N, Deighton J, Wolpert M. The extent and specificity of relative age effects on mental health and functioning in early adolescence. J Adolesc Health. 2015;57:475–81.CrossRef
18.
go back to reference Dhuey E, Lipscomb S. Disabled or young? Relative age and special education diagnoses in schools. Econ Educ Rev. 2010;29:857–72.CrossRef Dhuey E, Lipscomb S. Disabled or young? Relative age and special education diagnoses in schools. Econ Educ Rev. 2010;29:857–72.CrossRef
19.
go back to reference Crane J, Temple V. A systematic review of dropout from organized sport among children and youth. Eur Phys Educ Rev. 2015;21:114–31.CrossRef Crane J, Temple V. A systematic review of dropout from organized sport among children and youth. Eur Phys Educ Rev. 2015;21:114–31.CrossRef
20.
go back to reference Delorme N, Chalabaev A, Raspaud M. Relative age is associated with sport dropout: Evidence from youth categories of French basketball. Scand J Med Sci Sports. 2011;21:120–8.CrossRef Delorme N, Chalabaev A, Raspaud M. Relative age is associated with sport dropout: Evidence from youth categories of French basketball. Scand J Med Sci Sports. 2011;21:120–8.CrossRef
21.
go back to reference Morrow RL, Garland EJ, Wright JM, Maclure M, Taylor S, Dormuth CR. Influence of relative age on diagnosis and treatment of attention-deficit/hyperactivity disorder in children. Can Med Assoc J. 2012;184:755–62.CrossRef Morrow RL, Garland EJ, Wright JM, Maclure M, Taylor S, Dormuth CR. Influence of relative age on diagnosis and treatment of attention-deficit/hyperactivity disorder in children. Can Med Assoc J. 2012;184:755–62.CrossRef
22.
go back to reference Birch S, Cummings L, Oxford SW, Duncan MJ. Examining relative age effects in fundamental skill proficiency in British children aged 6–11 years. J Strength Cond Res. 2016;30:2809–15.CrossRef Birch S, Cummings L, Oxford SW, Duncan MJ. Examining relative age effects in fundamental skill proficiency in British children aged 6–11 years. J Strength Cond Res. 2016;30:2809–15.CrossRef
23.
go back to reference Sandercock GR, Taylor MJ, Voss C, Ogunleye AA, Cohen DD, Parry DA. Quantification of the relative age effect in three indices of physical performance. J Strength Cond Res. 2013;27:3293–9.CrossRef Sandercock GR, Taylor MJ, Voss C, Ogunleye AA, Cohen DD, Parry DA. Quantification of the relative age effect in three indices of physical performance. J Strength Cond Res. 2013;27:3293–9.CrossRef
24.
go back to reference Veldhuizen S, Rivard L, Cairney J. Relative age effects in the Movement Assessment Battery for Children–2: age banding and scoring errors. Child Care Health Dev. 2017:1–6. [Epub 2017 Mar 15]. Veldhuizen S, Rivard L, Cairney J. Relative age effects in the Movement Assessment Battery for Children–2: age banding and scoring errors. Child Care Health Dev. 2017:1–6. [Epub 2017 Mar 15].
27.
go back to reference Tremblay MS, Longmuir PE, Barnes JD, Belanger K, Anderson KD, Bruner B, et al. Physical literacy levels of Canadian children aged 8–12 years: descriptive and normative results from the RBC Learn to Play-CAPL project. BMC Public Health. 2018;18(Suppl 2). https://doi.org/10.1186/s12889-018-5891-x. Tremblay MS, Longmuir PE, Barnes JD, Belanger K, Anderson KD, Bruner B, et al. Physical literacy levels of Canadian children aged 8–12 years: descriptive and normative results from the RBC Learn to Play-CAPL project. BMC Public Health. 2018;18(Suppl 2). https://​doi.​org/​10.​1186/​s12889-018-5891-x.
28.
go back to reference de Onis M, Onyango AW, Borghi E, Siyam A, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.CrossRef de Onis M, Onyango AW, Borghi E, Siyam A, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.CrossRef
29.
go back to reference CSEP. Canadian Society for Exercise Physiology – Physical Activity Training for Health. CSEP: Ottawa; 2013. CSEP. Canadian Society for Exercise Physiology – Physical Activity Training for Health. CSEP: Ottawa; 2013.
30.
go back to reference Carrel AL, Bowser J, White D, Moberg DP, Weaver B, Hisgen J, et al. Standardized childhood fitness percentiles derived from school-based testing. J Pediatr. 2012;161:120–4.CrossRef Carrel AL, Bowser J, White D, Moberg DP, Weaver B, Hisgen J, et al. Standardized childhood fitness percentiles derived from school-based testing. J Pediatr. 2012;161:120–4.CrossRef
31.
go back to reference Boyer C, Tremblay MS, Saunders TJ, McFarlane A, Borghese M, Lloyd M, Longmuir PE. Feasibility, validity and reliability of the plank isometric hold as a field-based assessment of torso muscular endurance for children 8–12 years of age. Pediatr Exerc Sci. 2013;25:407–22.CrossRef Boyer C, Tremblay MS, Saunders TJ, McFarlane A, Borghese M, Lloyd M, Longmuir PE. Feasibility, validity and reliability of the plank isometric hold as a field-based assessment of torso muscular endurance for children 8–12 years of age. Pediatr Exerc Sci. 2013;25:407–22.CrossRef
32.
go back to reference Longmuir PE, Boyer C, Lloyd M, Borghese MM, Knight E, Saunders TJ, et al. Canadian Agility and Movement Skill Assessment (CAMSA): validity, objectivity, and reliability evidence for children 8–12 years of age. J Sport and Health Sci. 2015:231–40.CrossRef Longmuir PE, Boyer C, Lloyd M, Borghese MM, Knight E, Saunders TJ, et al. Canadian Agility and Movement Skill Assessment (CAMSA): validity, objectivity, and reliability evidence for children 8–12 years of age. J Sport and Health Sci. 2015:231–40.CrossRef
33.
go back to reference Rowe DA, Mahar MT, Raedeke TD, Lore J. Measuring physical activity in children with pedometers: reliability, reactivity, and replacement of missing data. Pediatr Exerc Sci. 2004;16:1–12.CrossRef Rowe DA, Mahar MT, Raedeke TD, Lore J. Measuring physical activity in children with pedometers: reliability, reactivity, and replacement of missing data. Pediatr Exerc Sci. 2004;16:1–12.CrossRef
34.
go back to reference Eisenmann JC, Laurson KR, Wickel EE, Gentile D, Walsh D. Utility of pedometer step recommendations for predicting overweight in children. Int J Obes (Lond). 2007;31:1179–82.CrossRef Eisenmann JC, Laurson KR, Wickel EE, Gentile D, Walsh D. Utility of pedometer step recommendations for predicting overweight in children. Int J Obes (Lond). 2007;31:1179–82.CrossRef
35.
go back to reference Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med. 2005;40:293–8.CrossRef Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med. 2005;40:293–8.CrossRef
36.
go back to reference Saunders TJ, MacDonald DJ, Copeland JL, Longmuir PE, Barnes JD, Belanger K, et al. The relationship between sedentary behaviour and physical literacy in Canadian children: a cross-sectional analysis from the RBC-CAPL Learn to Play study. BMC Public Health. 2018;18(Suppl 2). https://doi.org/10.1186/s12889-018-5892-9. Saunders TJ, MacDonald DJ, Copeland JL, Longmuir PE, Barnes JD, Belanger K, et al. The relationship between sedentary behaviour and physical literacy in Canadian children: a cross-sectional analysis from the RBC-CAPL Learn to Play study. BMC Public Health. 2018;18(Suppl 2). https://​doi.​org/​10.​1186/​s12889-018-5892-9.
38.
go back to reference MacDonald DJ, Saunders TJ, Longmuir PE, Barnes JD, Belanger K, Bruner B, et al. A cross-sectional study exploring the relationship between age, gender, and physical measures with adequacy in and predilection for physical activity. BMC Public Health. 2018;18(Suppl 2). https://doi.org/10.1186/s12889-018-5893-8. MacDonald DJ, Saunders TJ, Longmuir PE, Barnes JD, Belanger K, Bruner B, et al. A cross-sectional study exploring the relationship between age, gender, and physical measures with adequacy in and predilection for physical activity. BMC Public Health. 2018;18(Suppl 2). https://​doi.​org/​10.​1186/​s12889-018-5893-8.
39.
go back to reference Garcia AW, Broda MA, Frenn M, Coviak C, Pender NJ, Ronis DL. Gender and developmental differences in exercise beliefs among youth and prediction of their exercise behavior. J Sch Health. 1995;65:213–9.CrossRef Garcia AW, Broda MA, Frenn M, Coviak C, Pender NJ, Ronis DL. Gender and developmental differences in exercise beliefs among youth and prediction of their exercise behavior. J Sch Health. 1995;65:213–9.CrossRef
40.
go back to reference Hay JA. Adequacy in and predilection for physical activity in children. Clin J Sport Med. 1992;2:192–201.CrossRef Hay JA. Adequacy in and predilection for physical activity in children. Clin J Sport Med. 1992;2:192–201.CrossRef
41.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Statistical Power Analysis for the Behavioral Sciences. Hilldale: Lawrence Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Statistical Power Analysis for the Behavioral Sciences. Hilldale: Lawrence Erlbaum Associates; 1988.
43.
go back to reference Carling C, Le Gall F, Reilly T, Williams AM. Do anthropometric and fitness characteristics vary according to birth date distribution in elite youth academy soccer players? Scand J Med Sci Sport. 2009;19:3–9.CrossRef Carling C, Le Gall F, Reilly T, Williams AM. Do anthropometric and fitness characteristics vary according to birth date distribution in elite youth academy soccer players? Scand J Med Sci Sport. 2009;19:3–9.CrossRef
44.
go back to reference Roczniok R, Maszczyk A, Stanula A, Czuba M, Pietraszewski P, Kantyka J, Starzynski MA. Physiological and physical profiles and on-ice performance approach to predict talent in male youth ice hockey players during draft to hockey team. Isokinet Exerc Sci. 2013;21:121–7. Roczniok R, Maszczyk A, Stanula A, Czuba M, Pietraszewski P, Kantyka J, Starzynski MA. Physiological and physical profiles and on-ice performance approach to predict talent in male youth ice hockey players during draft to hockey team. Isokinet Exerc Sci. 2013;21:121–7.
45.
go back to reference Gil SM, Badiola A, Bidaurrazaga-Letona I, Zabala-Lili J, Gravina L, Santos-Concejero J, et al. Relationship between the relative age effect and anthropometry, maturity and performance in young soccer players. J Sports Sci. 2014;32:479–86.CrossRef Gil SM, Badiola A, Bidaurrazaga-Letona I, Zabala-Lili J, Gravina L, Santos-Concejero J, et al. Relationship between the relative age effect and anthropometry, maturity and performance in young soccer players. J Sports Sci. 2014;32:479–86.CrossRef
46.
go back to reference Hirose N. Relationships among birth-month distribution, skeletal age and anthropometric characteristics in adolescent elite soccer players. J Sports Sci. 2009;27:1159–66.CrossRef Hirose N. Relationships among birth-month distribution, skeletal age and anthropometric characteristics in adolescent elite soccer players. J Sports Sci. 2009;27:1159–66.CrossRef
47.
go back to reference Torres-Unda J, Zarrazquin I, Gil J, Ruiz F, Irazusta A, Kortajarena M, et al. Anthropometric, physiological and maturational characteristics in selected elite and non-elite male adolescent basketball players. J Sports Sci. 2013;31:196–203.CrossRef Torres-Unda J, Zarrazquin I, Gil J, Ruiz F, Irazusta A, Kortajarena M, et al. Anthropometric, physiological and maturational characteristics in selected elite and non-elite male adolescent basketball players. J Sports Sci. 2013;31:196–203.CrossRef
48.
go back to reference Müller L, Müller E, Rashner C. The relative age effect in alpine ski racing: a review. Talent Dev Excell. 2016;8:3–14. Müller L, Müller E, Rashner C. The relative age effect in alpine ski racing: a review. Talent Dev Excell. 2016;8:3–14.
49.
go back to reference Malina RM, Ribeiro B, Aroso J, Cumming SP, Unnithan V, Kirkendall D. Characteristics of youth soccer players aged 13–15 years classified by skill level. Br J Sports Med. 2007;41:290–5.CrossRef Malina RM, Ribeiro B, Aroso J, Cumming SP, Unnithan V, Kirkendall D. Characteristics of youth soccer players aged 13–15 years classified by skill level. Br J Sports Med. 2007;41:290–5.CrossRef
50.
go back to reference Deprez D, Vaeyens R, Coutts AJ, Lenoir M, Philippaerts R. Relative age effect and Yo-Yo IR1 in youth soccer. Int J Sports Med. 2012;33:987–93.CrossRef Deprez D, Vaeyens R, Coutts AJ, Lenoir M, Philippaerts R. Relative age effect and Yo-Yo IR1 in youth soccer. Int J Sports Med. 2012;33:987–93.CrossRef
51.
go back to reference Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39:1241–50.CrossRef Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39:1241–50.CrossRef
52.
go back to reference Cardon G, Philippaerts R, Lefevre J, Matton L, Wijndaele K, Balduck A-L, De Bourdeaudhuij I. Physical activity levels in 10- to 11-year-olds: clustering of psychosocial correlates. Public Health Nutr. 2005;8:896–903.CrossRef Cardon G, Philippaerts R, Lefevre J, Matton L, Wijndaele K, Balduck A-L, De Bourdeaudhuij I. Physical activity levels in 10- to 11-year-olds: clustering of psychosocial correlates. Public Health Nutr. 2005;8:896–903.CrossRef
53.
go back to reference Baxter-Jones ADG, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17:18–30.CrossRef Baxter-Jones ADG, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17:18–30.CrossRef
54.
go back to reference Cumming SP, Standage M, Loney T, Gammon C, Neville H, Sherar LB, Malina RM. The mediating role of physical self-concept on relations between biological maturity status and physical activity in adolescent females. J Adolesc. 2011;34:465–73.CrossRef Cumming SP, Standage M, Loney T, Gammon C, Neville H, Sherar LB, Malina RM. The mediating role of physical self-concept on relations between biological maturity status and physical activity in adolescent females. J Adolesc. 2011;34:465–73.CrossRef
55.
go back to reference Sabiston CM, Crocker PRE. Exploring self-perceptions and social influences as correlates of adolescent leisure-time physical activity. J Sport Exerc Psychol. 2008;30:3–22.CrossRef Sabiston CM, Crocker PRE. Exploring self-perceptions and social influences as correlates of adolescent leisure-time physical activity. J Sport Exerc Psychol. 2008;30:3–22.CrossRef
56.
go back to reference Navarro J-J, García-Rubio J, Olivares PR. The relative age effect and its influence on academic performance. PLoS One. 2015;10:1–18. Navarro J-J, García-Rubio J, Olivares PR. The relative age effect and its influence on academic performance. PLoS One. 2015;10:1–18.
57.
go back to reference Lawlor DA, Clark H, Ronalds G, Leon DA. Season of birth and childhood intelligence: findings from the Aberdeen Children of the 1950s-cohort study. Br J Educ Psychol. 2006;76:481–99.CrossRef Lawlor DA, Clark H, Ronalds G, Leon DA. Season of birth and childhood intelligence: findings from the Aberdeen Children of the 1950s-cohort study. Br J Educ Psychol. 2006;76:481–99.CrossRef
58.
go back to reference Bedard K, Dhuey E. The persistence of early childhood maturity: international evidence of long-run age effects. Q J Econ. 2006;121:1437–72. Bedard K, Dhuey E. The persistence of early childhood maturity: international evidence of long-run age effects. Q J Econ. 2006;121:1437–72.
59.
go back to reference Boardman M. The impact of age and gender on prep children’s academic achievements. Aust J Early Child. 2006;31:1–6. Boardman M. The impact of age and gender on prep children’s academic achievements. Aust J Early Child. 2006;31:1–6.
60.
go back to reference Menet F, Eakin J, Stuart M, Rafferty H. Month of birth and effect on literacy, behaviour and referral to psychological service. Educ Psychol Pract. 2000;16:225–34.CrossRef Menet F, Eakin J, Stuart M, Rafferty H. Month of birth and effect on literacy, behaviour and referral to psychological service. Educ Psychol Pract. 2000;16:225–34.CrossRef
61.
go back to reference Veldhuizen S, Cairney J, Hay J, Faught B. Relative age effects in fitness testing in a general school sample: how relative are they? J Sports Sci. 2015;33:109–15.CrossRef Veldhuizen S, Cairney J, Hay J, Faught B. Relative age effects in fitness testing in a general school sample: how relative are they? J Sports Sci. 2015;33:109–15.CrossRef
62.
go back to reference Ervin BR, Fryar CD, Wang C-Y, Miller IM, Ogden CL. Strength and body weight in US children and adolescents. Pediatr. 2014;134:e782–9.CrossRef Ervin BR, Fryar CD, Wang C-Y, Miller IM, Ogden CL. Strength and body weight in US children and adolescents. Pediatr. 2014;134:e782–9.CrossRef
64.
go back to reference Abbassi V. Growth and normal puberty. Pediatr. 1998;102:507–11. Abbassi V. Growth and normal puberty. Pediatr. 1998;102:507–11.
65.
go back to reference Thissen D, Bock RD, Wainer H, Roche AF. Individual growth in stature: a comparison of four growth studies in the U.S.A. Ann Hum Biol. 1976;3:529–42.CrossRef Thissen D, Bock RD, Wainer H, Roche AF. Individual growth in stature: a comparison of four growth studies in the U.S.A. Ann Hum Biol. 1976;3:529–42.CrossRef
66.
go back to reference Jones MA, Hitchen PJ, Stratton G. The importance of considering biological maturity when assessing physical fitness measures in girls and boys aged 10 to 16 years. Ann Hum Biol. 2000;27:57–65.CrossRef Jones MA, Hitchen PJ, Stratton G. The importance of considering biological maturity when assessing physical fitness measures in girls and boys aged 10 to 16 years. Ann Hum Biol. 2000;27:57–65.CrossRef
67.
go back to reference Barnett LM, Lai SK, Veldman SLC, Hardy LL, Cliff DP, Morgan PJ, et al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46:1663–88.CrossRef Barnett LM, Lai SK, Veldman SLC, Hardy LL, Cliff DP, Morgan PJ, et al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46:1663–88.CrossRef
68.
go back to reference Tremblay MS, Shields M, Laviolette M, Craig CL, Janssen I, Connor Gorber S. Fitness of Canadian children and youth: results from the 2007–2009 Canadian Health Measures Survey. Health Rep. 2010;21:7–20.PubMed Tremblay MS, Shields M, Laviolette M, Craig CL, Janssen I, Connor Gorber S. Fitness of Canadian children and youth: results from the 2007–2009 Canadian Health Measures Survey. Health Rep. 2010;21:7–20.PubMed
69.
go back to reference Marta CC, Marinho DA, Barbosa TM, Izquierdo M, Marques MC. Physical fitness differences between prepubescent boys and girls. J Strength Cond Res. 2012;26:1756–66.CrossRef Marta CC, Marinho DA, Barbosa TM, Izquierdo M, Marques MC. Physical fitness differences between prepubescent boys and girls. J Strength Cond Res. 2012;26:1756–66.CrossRef
Metadata
Title
Influence of the relative age effect on children’s scores obtained from the Canadian assessment of physical literacy
Authors
Caroline Dutil
Mark S. Tremblay
Patricia E. Longmuir
Joel D. Barnes
Kevin Belanger
Jean-Philippe Chaput
Publication date
01-10-2018
Publisher
BioMed Central
Published in
BMC Public Health / Issue Special Issue 2/2018
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-5895-6

Other articles of this Special Issue 2/2018

BMC Public Health 2/2018 Go to the issue