Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Radiotherapy | Research

Fan beam CT-guided online adaptive external radiotherapy of uterine cervical cancer: a dosimetric evaluation

Authors: Haibo Peng, Jie Zhang, Ningyue Xu, Yangang Zhou, Huigang Tan, Tao Ren

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Purpose

To discuss the dosimetric advantages and reliability of the accurate delivery of online adaptive radiotherapy(online ART) for uterine cervical cancer(UCC).

Methods and materials

Six UCC patients were enrolled in this study. 95% of the planning target volume (PTV) reached 100% of the prescription dose (50.4 Gy/28fractions/6weeks) was required. The patients were scanned with uRT-Linac 506c KV-FBCT then the target volume (TV) and organs at risk (OARs) were delineated by doctors. The dosimeters designed and obtained a routine plan (Plan0). KV-FBCT was used for image guidance before subsequent fractional treatment. The online ART was processed after registration, which acquired a virtual nonadaptive radiotherapy plan (VPlan) and an adaptive plan (APlan). VPlan was the direct calculation of Plan0 on the fractional image, while APlan required adaptive optimization and calculation. In vivo dose monitoring and three-dimensional dose reconstruction were required during the implementation of APlan.

Results

The inter-fractional volumes of the bladder and rectum changed greatly among the treatments. These changes influenced the primary gross tumor volume (GTVp) and the position deviation of GTVp and PTV and positively affected the prescription dose coverage of TV. GTVp decreased gradually along with dose accumulation. The Dmax, D98, D95, D50, and D2 of APlan were superior to those of VPlan in target dose distribution. APlan had good conformal index, homogeneity index and target coverage. The rectum V40 and Dmax, bladder V40, the small bowel V40 and Dmax of APlan were better than that of VPlan. The APlan’s fractional mean γ passing rate was significantly higher than the international standard and the mean γ passing rate of all cases after the three-dimensional reconstruction was higher than 97.0%.

Conclusion

Online ART in external radiotherapy of UCC significantly improved the dose distribution and can become an ideal technology to achieve individualized precise radiotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef
2.
go back to reference Suneja G, Viswanathan A. Gynecologic malignancies. Hematol Oncol Clin North Am. 2020;34(1):71–89.PubMedCrossRef Suneja G, Viswanathan A. Gynecologic malignancies. Hematol Oncol Clin North Am. 2020;34(1):71–89.PubMedCrossRef
5.
go back to reference Boda-Heggemann J, Lohr F, Wenz F, et al. kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol. 2011;187(5):284–91.PubMedCrossRef Boda-Heggemann J, Lohr F, Wenz F, et al. kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol. 2011;187(5):284–91.PubMedCrossRef
6.
go back to reference Garibaldi C, Fodor C, Riva G, et al. Cone-beam CT-based inter-fraction localization errors for tumors in the pelvic region. Phys Med. 2018;46:59–66.PubMedCrossRef Garibaldi C, Fodor C, Riva G, et al. Cone-beam CT-based inter-fraction localization errors for tumors in the pelvic region. Phys Med. 2018;46:59–66.PubMedCrossRef
7.
go back to reference Eminowicz G, Rompokos V, Stacey C, et al. Understanding the impact of pelvic organ motion on dose delivered to target volumes during IMRT for cervical cancer. Radiother Oncol. 2017;122(1):116–21.PubMedCrossRef Eminowicz G, Rompokos V, Stacey C, et al. Understanding the impact of pelvic organ motion on dose delivered to target volumes during IMRT for cervical cancer. Radiother Oncol. 2017;122(1):116–21.PubMedCrossRef
8.
go back to reference Chen J, Liu P, Chen W, et al. Early changes of volume and spatial location in target and normal tissues caused by IMRT for cervical cancer. Tumori. 2016;102(6):610–3.PubMedCrossRef Chen J, Liu P, Chen W, et al. Early changes of volume and spatial location in target and normal tissues caused by IMRT for cervical cancer. Tumori. 2016;102(6):610–3.PubMedCrossRef
9.
go back to reference Heijkoop ST, Langerak TR, Quint S, et al. Quantification of intra-fraction changes during radiotherapy of cervical cancer assessed with pre- and post-fraction cone Beam CT scans. Radiother Oncol. 2015;117(3):536–41.PubMedCrossRef Heijkoop ST, Langerak TR, Quint S, et al. Quantification of intra-fraction changes during radiotherapy of cervical cancer assessed with pre- and post-fraction cone Beam CT scans. Radiother Oncol. 2015;117(3):536–41.PubMedCrossRef
10.
go back to reference Shortall J, Vasquez Osorio E, Cree A, et al. Inter- and intra-fractional stability of rectal gas in pelvic cancer patients during MRIgRT. Med Phys. 2021;48(1):414–26.PubMedCrossRef Shortall J, Vasquez Osorio E, Cree A, et al. Inter- and intra-fractional stability of rectal gas in pelvic cancer patients during MRIgRT. Med Phys. 2021;48(1):414–26.PubMedCrossRef
11.
go back to reference Li X, Wang L, Cui Z, et al. Online MR evaluation of inter- and intra-fraction uterus motions and bladder volume changes during cervical cancer external beam radiotherapy. Radiat Oncol. 2021;16(1):179.PubMedPubMedCentralCrossRef Li X, Wang L, Cui Z, et al. Online MR evaluation of inter- and intra-fraction uterus motions and bladder volume changes during cervical cancer external beam radiotherapy. Radiat Oncol. 2021;16(1):179.PubMedPubMedCentralCrossRef
12.
go back to reference Luo H, Jin F, Yang D, et al. Interfractional variation in bladder volume and its impact on cervical cancer radiotherapy: clinical significance of portable bladder scanner. Med Phys. 2016;43(7):4412.PubMedCrossRef Luo H, Jin F, Yang D, et al. Interfractional variation in bladder volume and its impact on cervical cancer radiotherapy: clinical significance of portable bladder scanner. Med Phys. 2016;43(7):4412.PubMedCrossRef
13.
go back to reference Lim-Reinders S, Keller BM, Al-Ward S, et al. Online Adaptive Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;99(4):994–1003.PubMedCrossRef Lim-Reinders S, Keller BM, Al-Ward S, et al. Online Adaptive Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;99(4):994–1003.PubMedCrossRef
14.
go back to reference Kim H, Lee P, Tree AC, et al. Adaptive Radiation Therapy Physician Guidelines: recommendations from an Expert users’ panel. Pract Radiat Oncol. 2022;12(5):e355–62.PubMedCrossRef Kim H, Lee P, Tree AC, et al. Adaptive Radiation Therapy Physician Guidelines: recommendations from an Expert users’ panel. Pract Radiat Oncol. 2022;12(5):e355–62.PubMedCrossRef
16.
go back to reference Han EY, Wang H, Briere TM, et al. Brain stereotactic radiosurgery using MR-guided online adaptive planning for daily setup variation: an end-to-end test. J Appl Clin Med Phys. 2022;23(3):e13518.PubMedPubMedCentralCrossRef Han EY, Wang H, Briere TM, et al. Brain stereotactic radiosurgery using MR-guided online adaptive planning for daily setup variation: an end-to-end test. J Appl Clin Med Phys. 2022;23(3):e13518.PubMedPubMedCentralCrossRef
17.
go back to reference Poon DMC, Yang B, Geng H, et al. Analysis of online plan adaptation for 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer. J Cancer Res Clin Oncol. 2022;24:1–10. Poon DMC, Yang B, Geng H, et al. Analysis of online plan adaptation for 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer. J Cancer Res Clin Oncol. 2022;24:1–10.
18.
go back to reference Ikushima H, Balter P, Komaki R, et al. Daily alignment results of in-room computed tomography-guided stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):473–80.PubMedCrossRef Ikushima H, Balter P, Komaki R, et al. Daily alignment results of in-room computed tomography-guided stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):473–80.PubMedCrossRef
19.
20.
go back to reference Kensen CM, Janssen TM, Betgen A, et al. Effect of intrafraction adaptation on PTV margins for MRI guided online adaptive radiotherapy for rectal cancer. Radiat Oncol. 2022;17(1):110.PubMedPubMedCentralCrossRef Kensen CM, Janssen TM, Betgen A, et al. Effect of intrafraction adaptation on PTV margins for MRI guided online adaptive radiotherapy for rectal cancer. Radiat Oncol. 2022;17(1):110.PubMedPubMedCentralCrossRef
21.
go back to reference Nierer L, Eze C, da Silva Mendes V, et al. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol. 2022;17(1):53.PubMedPubMedCentralCrossRef Nierer L, Eze C, da Silva Mendes V, et al. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol. 2022;17(1):53.PubMedPubMedCentralCrossRef
22.
23.
go back to reference Glide-Hurst CK, Lee P, Yock AD, et al. Adaptive Radiation Therapy (ART) strategies and technical considerations: a state of the ART Review from NRG Oncology. Int J Radiat Oncol Biol Phys. 2021;109(4):1054–75.PubMedCrossRef Glide-Hurst CK, Lee P, Yock AD, et al. Adaptive Radiation Therapy (ART) strategies and technical considerations: a state of the ART Review from NRG Oncology. Int J Radiat Oncol Biol Phys. 2021;109(4):1054–75.PubMedCrossRef
24.
go back to reference Yan D. Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol. 2010;20(2):79–83.PubMedCrossRef Yan D. Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol. 2010;20(2):79–83.PubMedCrossRef
25.
go back to reference Chetty IJ, Fontenot J. Adaptive Radiation Therapy: Off-Line, On-Line, and In-Line? Int J Radiat Oncol Biol Phys. 2017;99(3):689–91.PubMedCrossRef Chetty IJ, Fontenot J. Adaptive Radiation Therapy: Off-Line, On-Line, and In-Line? Int J Radiat Oncol Biol Phys. 2017;99(3):689–91.PubMedCrossRef
26.
go back to reference Yan D, Liang J. Expected treatment dose construction and adaptive inverse planning optimization: implementation for offline head and neck cancer adaptive radiotherapy. Med Phys. 2013;40(2):021719.PubMedCrossRef Yan D, Liang J. Expected treatment dose construction and adaptive inverse planning optimization: implementation for offline head and neck cancer adaptive radiotherapy. Med Phys. 2013;40(2):021719.PubMedCrossRef
27.
go back to reference Lee VS, SchettIno G, Nisbet A. UK adaptive radiotherapy practices for head and neck cancer patients. BJR Open. 2020;2(1):20200051.PubMedPubMedCentral Lee VS, SchettIno G, Nisbet A. UK adaptive radiotherapy practices for head and neck cancer patients. BJR Open. 2020;2(1):20200051.PubMedPubMedCentral
28.
go back to reference Zhang B, Lee SW, Chen S, et al. Action levels on dose and anatomic variation for adaptive Radiation Therapy using Daily Offline Plan evaluation: preliminary results. Pract Radiat Oncol. 2019;9(1):49–54.PubMedCrossRef Zhang B, Lee SW, Chen S, et al. Action levels on dose and anatomic variation for adaptive Radiation Therapy using Daily Offline Plan evaluation: preliminary results. Pract Radiat Oncol. 2019;9(1):49–54.PubMedCrossRef
29.
go back to reference Yap ML, Sun A, Higgins J, et al. Adaptive dose escalation using serial four-dimensional Positron Emission Tomography/Computed tomography scans during Radiotherapy for locally Advanced Non-small Cell Lung Cancer. Clin Oncol (R Coll Radiol). 2016;28(12):e199–e205.PubMedCrossRef Yap ML, Sun A, Higgins J, et al. Adaptive dose escalation using serial four-dimensional Positron Emission Tomography/Computed tomography scans during Radiotherapy for locally Advanced Non-small Cell Lung Cancer. Clin Oncol (R Coll Radiol). 2016;28(12):e199–e205.PubMedCrossRef
30.
go back to reference Teo TP, Ahmed SB, Kawalec P, et al. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories. Med Phys. 2018;45(2):830–45.PubMedCrossRef Teo TP, Ahmed SB, Kawalec P, et al. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories. Med Phys. 2018;45(2):830–45.PubMedCrossRef
32.
go back to reference Muurholm CG, Ravkilde T, Skouboe S, et al. Real-time dose-guidance in radiotherapy: Proof of principle. Radiother Oncol. 2021;164:175–82.PubMedCrossRef Muurholm CG, Ravkilde T, Skouboe S, et al. Real-time dose-guidance in radiotherapy: Proof of principle. Radiother Oncol. 2021;164:175–82.PubMedCrossRef
33.
go back to reference Keall P, Poulsen P, Booth JT. See, think, and Act: real-time adaptive radiotherapy. Semin Radiat Oncol. 2019;29(3):228–35.PubMedCrossRef Keall P, Poulsen P, Booth JT. See, think, and Act: real-time adaptive radiotherapy. Semin Radiat Oncol. 2019;29(3):228–35.PubMedCrossRef
34.
go back to reference Mann P, Witte M, Mercea P, et al. Feasibility of markerless fluoroscopic real-time tumor detection for adaptive radiotherapy: development and end-to-end testing. Phys Med Biol. 2020;65(11):115002.PubMedCrossRef Mann P, Witte M, Mercea P, et al. Feasibility of markerless fluoroscopic real-time tumor detection for adaptive radiotherapy: development and end-to-end testing. Phys Med Biol. 2020;65(11):115002.PubMedCrossRef
35.
go back to reference Ayyalusamy A, Vellaiyan S, Shanmugam S, et al. Feasibility of offline head & neck adaptive radiotherapy using deformed planning CT electron density mapping on weekly cone beam computed tomography. Br J Radiol. 2017;90(1069):20160420.PubMedCrossRef Ayyalusamy A, Vellaiyan S, Shanmugam S, et al. Feasibility of offline head & neck adaptive radiotherapy using deformed planning CT electron density mapping on weekly cone beam computed tomography. Br J Radiol. 2017;90(1069):20160420.PubMedCrossRef
36.
go back to reference Veiga C, McClelland J, Moinuddin S, et al. Toward adaptive radiotherapy for head and neck patients: feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations. Med Phys. 2014;41(3):031703.PubMedCrossRef Veiga C, McClelland J, Moinuddin S, et al. Toward adaptive radiotherapy for head and neck patients: feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations. Med Phys. 2014;41(3):031703.PubMedCrossRef
37.
go back to reference Klopp AH, Moughan J, Portelance L, et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys. 2013;86(1):83–90.PubMedPubMedCentralCrossRef Klopp AH, Moughan J, Portelance L, et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys. 2013;86(1):83–90.PubMedPubMedCentralCrossRef
38.
go back to reference Wang W, Liu X, Meng Q, et al. Prophylactic extended-field irradiation for patients with cervical Cancer treated with concurrent chemoradiotherapy: a propensity-score matching analysis. Int J Gynecol Cancer. 2018;28(8):1584–91.PubMedPubMedCentralCrossRef Wang W, Liu X, Meng Q, et al. Prophylactic extended-field irradiation for patients with cervical Cancer treated with concurrent chemoradiotherapy: a propensity-score matching analysis. Int J Gynecol Cancer. 2018;28(8):1584–91.PubMedPubMedCentralCrossRef
39.
go back to reference Taylor A, Rockall AG, Reznek RH, et al. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(5):1604–12.PubMedCrossRef Taylor A, Rockall AG, Reznek RH, et al. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(5):1604–12.PubMedCrossRef
40.
go back to reference Torabi M, Aquino SL, Harisinghani MG. Current concepts in lymph node imaging. J Nucl Med. 2004;45(9):1509–18.PubMed Torabi M, Aquino SL, Harisinghani MG. Current concepts in lymph node imaging. J Nucl Med. 2004;45(9):1509–18.PubMed
41.
go back to reference Small W Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):428–34.PubMedCrossRef Small W Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):428–34.PubMedCrossRef
42.
go back to reference Lim K, Small W Jr, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.PubMedCrossRef Lim K, Small W Jr, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.PubMedCrossRef
43.
go back to reference Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359–73.PubMedCrossRef Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359–73.PubMedCrossRef
44.
go back to reference Wu Y, Cao R, Hu L, et al. Development and validation of dynamic intensity modulated Accurate Radiotherapy System KylinRay-IMRT. Zhongguo Yi Liao Qi Xie Za Zhi. 2018;42(1):7–10. Chinese.PubMed Wu Y, Cao R, Hu L, et al. Development and validation of dynamic intensity modulated Accurate Radiotherapy System KylinRay-IMRT. Zhongguo Yi Liao Qi Xie Za Zhi. 2018;42(1):7–10. Chinese.PubMed
45.
go back to reference Tanderup K, Georg D, Pötter R, et al. Adaptive management of cervical cancer radiotherapy. Semin Radiat Oncol. 2010r;20(2):121–9.PubMedCrossRef Tanderup K, Georg D, Pötter R, et al. Adaptive management of cervical cancer radiotherapy. Semin Radiat Oncol. 2010r;20(2):121–9.PubMedCrossRef
46.
go back to reference Jadon R, Pembroke CA, Hanna CL, et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol (R Coll Radiol). 2014;26(4):185–96.PubMedCrossRef Jadon R, Pembroke CA, Hanna CL, et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol (R Coll Radiol). 2014;26(4):185–96.PubMedCrossRef
47.
go back to reference Hanfmann B, Engels M, Dörr W. Radiation-induced impairment of urinary bladder function. Assessment of micturition volumes. Strahlenther Onkol. 1998;174(Suppl 3):96–8.PubMed Hanfmann B, Engels M, Dörr W. Radiation-induced impairment of urinary bladder function. Assessment of micturition volumes. Strahlenther Onkol. 1998;174(Suppl 3):96–8.PubMed
48.
go back to reference Agur AMR, Dalley AF. Grant’s Atlas of Anatomy. 12th ed. [M]. Philadelphia: Lippincott,Williams Wilkins Press, 2009. Agur AMR, Dalley AF. Grant’s Atlas of Anatomy. 12th ed. [M]. Philadelphia: Lippincott,Williams Wilkins Press, 2009.
49.
go back to reference National Health Commission Of The People’s Republic Of China. National guidelines for diagnosis and treatment of cervical cancer 2022 in China (English version). Chin J Cancer Res. 2022;34(3):256–69.PubMedPubMedCentralCrossRef National Health Commission Of The People’s Republic Of China. National guidelines for diagnosis and treatment of cervical cancer 2022 in China (English version). Chin J Cancer Res. 2022;34(3):256–69.PubMedPubMedCentralCrossRef
50.
go back to reference Mayr NA, Taoka T, Yuh WT, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2002;52(1):14–22.PubMedCrossRef Mayr NA, Taoka T, Yuh WT, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2002;52(1):14–22.PubMedCrossRef
51.
go back to reference Arnesen MR, Hellebust TP, Malinen E. Impact of dose escalation and adaptive radiotherapy for cervical cancers on tumour shrinkage-a modelling study. Phys Med Biol. 2017;62(6):N107–19.PubMedCrossRef Arnesen MR, Hellebust TP, Malinen E. Impact of dose escalation and adaptive radiotherapy for cervical cancers on tumour shrinkage-a modelling study. Phys Med Biol. 2017;62(6):N107–19.PubMedCrossRef
52.
go back to reference Buijs M, Bloemers MCWM, Remeijer P. Impact of a fiducial marker based ART strategy on margins in postoperative IMRT of gynecological tumors. Radiother Oncol. 2021;158:1–6.PubMedCrossRef Buijs M, Bloemers MCWM, Remeijer P. Impact of a fiducial marker based ART strategy on margins in postoperative IMRT of gynecological tumors. Radiother Oncol. 2021;158:1–6.PubMedCrossRef
53.
go back to reference Sun R, Mazeron R, Chargari C, et al. CTV to PTV in cervical cancer: from static margins to adaptive radiotherapy. Cancer Radiother. 2016;20(6–7):622–8.PubMedCrossRef Sun R, Mazeron R, Chargari C, et al. CTV to PTV in cervical cancer: from static margins to adaptive radiotherapy. Cancer Radiother. 2016;20(6–7):622–8.PubMedCrossRef
54.
go back to reference Portelance L, Corradini S, Erickson B, et al. Online magnetic resonance-guided Radiotherapy (oMRgRT) for gynecological cancers. Front Oncol. 2021;11:628131.PubMedPubMedCentralCrossRef Portelance L, Corradini S, Erickson B, et al. Online magnetic resonance-guided Radiotherapy (oMRgRT) for gynecological cancers. Front Oncol. 2021;11:628131.PubMedPubMedCentralCrossRef
55.
go back to reference Ecker S, Zimmermann L, Heilemann G, et al. Neural network-assisted automated image registration for MRI-guided adaptive brachytherapy in cervical cancer. Z Med Phys. 2022;12:0939. -3889(22)00057 – 5. Ecker S, Zimmermann L, Heilemann G, et al. Neural network-assisted automated image registration for MRI-guided adaptive brachytherapy in cervical cancer. Z Med Phys. 2022;12:0939. -3889(22)00057 – 5.
56.
go back to reference Wang B, Hu W, Shan G, et al. Estimating the accumulative dose uncertainty for intracavitary and interstitial brachytherapy. Biomed Eng Online. 2021;20(1):106.PubMedPubMedCentralCrossRef Wang B, Hu W, Shan G, et al. Estimating the accumulative dose uncertainty for intracavitary and interstitial brachytherapy. Biomed Eng Online. 2021;20(1):106.PubMedPubMedCentralCrossRef
57.
go back to reference Bondar ML, Hoogeman MS, Mens JW, et al. Individualized nonadaptive and online-adaptive intensity-modulated radiotherapy treatment strategies for cervical cancer patients based on pretreatment acquired variable bladder filling computed tomography scans. Int J Radiat Oncol Biol Phys. 2012;83(5):1617–23.PubMedCrossRef Bondar ML, Hoogeman MS, Mens JW, et al. Individualized nonadaptive and online-adaptive intensity-modulated radiotherapy treatment strategies for cervical cancer patients based on pretreatment acquired variable bladder filling computed tomography scans. Int J Radiat Oncol Biol Phys. 2012;83(5):1617–23.PubMedCrossRef
58.
go back to reference Heijkoop ST, Langerak TR, Quint S, et al. Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT. Int J Radiat Oncol Biol Phys. 2014;90(3):673–9.PubMedCrossRef Heijkoop ST, Langerak TR, Quint S, et al. Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT. Int J Radiat Oncol Biol Phys. 2014;90(3):673–9.PubMedCrossRef
59.
go back to reference Yu L, Zhao J, Zhang Z, et al. Commissioning of and preliminary experience with a new fully integrated computed tomography linac. J Appl Clin Med Phys. 2021;22(7):208–23.PubMedPubMedCentralCrossRef Yu L, Zhao J, Zhang Z, et al. Commissioning of and preliminary experience with a new fully integrated computed tomography linac. J Appl Clin Med Phys. 2021;22(7):208–23.PubMedPubMedCentralCrossRef
60.
go back to reference Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal. 1998;2(3):243–60.PubMedCrossRef Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal. 1998;2(3):243–60.PubMedCrossRef
61.
go back to reference Zwan BJ, Caillet V, Booth JT, et al. Toward real-time verification for MLC tracking treatments using time-resolved EPID imaging. Med Phys. 2021;48(3):953–64.PubMedCrossRef Zwan BJ, Caillet V, Booth JT, et al. Toward real-time verification for MLC tracking treatments using time-resolved EPID imaging. Med Phys. 2021;48(3):953–64.PubMedCrossRef
62.
go back to reference McCowan PM, Van Uytven E, Van Beek T, et al. An in vivo dose verification method for SBRT-VMAT delivery using the EPID. Med Phys. 2015;42(12):6955–63.PubMedCrossRef McCowan PM, Van Uytven E, Van Beek T, et al. An in vivo dose verification method for SBRT-VMAT delivery using the EPID. Med Phys. 2015;42(12):6955–63.PubMedCrossRef
63.
go back to reference Van Elmpt W, Nijsten S, Petit S, et al. 3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry. Int J Radiat Oncol Biol Phys. 2009;73(5):1580–7.PubMedCrossRef Van Elmpt W, Nijsten S, Petit S, et al. 3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry. Int J Radiat Oncol Biol Phys. 2009;73(5):1580–7.PubMedCrossRef
65.
go back to reference Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041–63.PubMedCrossRef Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041–63.PubMedCrossRef
66.
go back to reference Steiner E, Stock M, Kostresevic B, et al. Imaging dose assessment for IGRT in particle beam therapy. Radiother Oncol. 2013;109(3):409–13.PubMedCrossRef Steiner E, Stock M, Kostresevic B, et al. Imaging dose assessment for IGRT in particle beam therapy. Radiother Oncol. 2013;109(3):409–13.PubMedCrossRef
67.
go back to reference Fan J, Cao X, Xue Z, et al. Adversarial Similarity Network for evaluating Image Alignment in Deep Learning based Registration. Med Image Comput Comput Assist Interv. 2018;11070:739–46.PubMedPubMedCentral Fan J, Cao X, Xue Z, et al. Adversarial Similarity Network for evaluating Image Alignment in Deep Learning based Registration. Med Image Comput Comput Assist Interv. 2018;11070:739–46.PubMedPubMedCentral
Metadata
Title
Fan beam CT-guided online adaptive external radiotherapy of uterine cervical cancer: a dosimetric evaluation
Authors
Haibo Peng
Jie Zhang
Ningyue Xu
Yangang Zhou
Huigang Tan
Tao Ren
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11089-6

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine