Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Meningioma | Research

Somatic mutation landscape in a cohort of meningiomas that have undergone grade progression

Authors: Sarah A Cain, Bernard Pope, Stefano Mangiola, Theo Mantamadiotis, Katharine J Drummond

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

A subset of meningiomas progress in histopathological grade but drivers of progression are poorly understood. We aimed to identify somatic mutations and copy number alterations (CNAs) associated with grade progression in a unique matched tumour dataset.

Methods

Utilising a prospective database, we identified 10 patients with meningiomas that had undergone grade progression and for whom matched pre- and post-progression tissue (n = 50 samples) was available for targeted next-generation sequencing.

Results

Mutations in NF2 were identified in 4/10 patients, of these 94% were non-skull base tumours. In one patient, three different NF2 mutations were identified in four tumours. NF2 mutated tumours showed large-scale CNAs, with highly recurrent losses in 1p, 10, 22q, and frequent CNAs on chromosomes 2, 3 and 4. There was a correlation between grade and CNAs in two patients. Two patients with tumours without detected NF2 mutations showed a combination of loss and high gain on chromosome 17q. Mutations in SETD2, TP53, TERT promoter and NF2 were not uniform across recurrent tumours, however did not correspond with the onset of grade progression.

Conclusion

Meningiomas that progress in grade generally have a mutational profile already detectable in the pre-progressed tumour, suggesting an aggressive phenotype. CNA profiling shows frequent alterations in NF2 mutated tumours compared to non NF2 mutated tumours. The pattern of CNAs may be associated with grade progression in a subset of cases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14(Suppl 5):v1–49.PubMedPubMedCentralCrossRef Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14(Suppl 5):v1–49.PubMedPubMedCentralCrossRef
2.
go back to reference Jenkinson MD, Javadpour M, Haylock BJ, Young B, Gillard H, Vinten J, et al. The ROAM/EORTC-1308 trial: Radiation versus Observation following surgical resection of atypical meningioma: study protocol for a randomised controlled trial. Trials. 2015;16:519.PubMedPubMedCentralCrossRef Jenkinson MD, Javadpour M, Haylock BJ, Young B, Gillard H, Vinten J, et al. The ROAM/EORTC-1308 trial: Radiation versus Observation following surgical resection of atypical meningioma: study protocol for a randomised controlled trial. Trials. 2015;16:519.PubMedPubMedCentralCrossRef
3.
go back to reference Rodgers l. Phase III trial of Observation Versus Irradiation for a gross totally resected Grade II Meningioma. NRG Oncology; 2017. Rodgers l. Phase III trial of Observation Versus Irradiation for a gross totally resected Grade II Meningioma. NRG Oncology; 2017.
5.
go back to reference Durand A, Labrousse F, Jouvet A, Bauchet L, Kalamarides M, Menei P, et al. WHO grade II and III meningiomas: a study of prognostic factors. J Neurooncol. 2009;95(3):367–75.PubMedCrossRef Durand A, Labrousse F, Jouvet A, Bauchet L, Kalamarides M, Menei P, et al. WHO grade II and III meningiomas: a study of prognostic factors. J Neurooncol. 2009;95(3):367–75.PubMedCrossRef
6.
go back to reference Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6(2):180–4.PubMedCrossRef Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6(2):180–4.PubMedCrossRef
7.
go back to reference Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016;18(5):649–55.PubMedPubMedCentralCrossRef Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016;18(5):649–55.PubMedPubMedCentralCrossRef
8.
go back to reference Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.PubMedPubMedCentralCrossRef Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.PubMedPubMedCentralCrossRef
9.
go back to reference Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.PubMedPubMedCentralCrossRef Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.PubMedPubMedCentralCrossRef
10.
go back to reference Clark VE, Harmanci AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48(10):1253–9.PubMedPubMedCentralCrossRef Clark VE, Harmanci AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48(10):1253–9.PubMedPubMedCentralCrossRef
12.
go back to reference Zhang Q, Wen Z, Ni M, Li D, Wang K, Jia GJ, et al. Malignant progression contributes to the failure of combination therapy for atypical meningiomas. Front Oncol. 2020;10:608175.PubMedCrossRef Zhang Q, Wen Z, Ni M, Li D, Wang K, Jia GJ, et al. Malignant progression contributes to the failure of combination therapy for atypical meningiomas. Front Oncol. 2020;10:608175.PubMedCrossRef
13.
go back to reference Goutagny S, Yang HW, Zucman-Rossi J, Chan J, Dreyfuss JM, Park PJ, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res. 2010;16(16):4155–64.PubMedCrossRef Goutagny S, Yang HW, Zucman-Rossi J, Chan J, Dreyfuss JM, Park PJ, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res. 2010;16(16):4155–64.PubMedCrossRef
14.
go back to reference Linsler S, Kraemer D, Driess C, Oertel J, Kammers K, Rahnenfuhrer J, et al. Molecular biological determinations of meningioma progression and recurrence. PLoS ONE. 2014;9(4):e94987.PubMedPubMedCentralCrossRef Linsler S, Kraemer D, Driess C, Oertel J, Kammers K, Rahnenfuhrer J, et al. Molecular biological determinations of meningioma progression and recurrence. PLoS ONE. 2014;9(4):e94987.PubMedPubMedCentralCrossRef
15.
go back to reference Patel AJ, Wan YW, Al-Ouran R, Revelli JP, Cardenas MF, Oneissi M, et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proc Natl Acad Sci U S A. 2019;116(43):21715–26.PubMedPubMedCentralCrossRef Patel AJ, Wan YW, Al-Ouran R, Revelli JP, Cardenas MF, Oneissi M, et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proc Natl Acad Sci U S A. 2019;116(43):21715–26.PubMedPubMedCentralCrossRef
16.
go back to reference Cain SA, Smoll NR, Van Heerden J, Tsui A, Drummond KJ. Atypical and malignant meningiomas: considerations for treatment and efficacy of radiotherapy. J Clin Neurosci. 2015;22(11):1742–8.PubMedCrossRef Cain SA, Smoll NR, Van Heerden J, Tsui A, Drummond KJ. Atypical and malignant meningiomas: considerations for treatment and efficacy of radiotherapy. J Clin Neurosci. 2015;22(11):1742–8.PubMedCrossRef
17.
go back to reference Biogrid. http://accord.mh.org.au.2009. Biogrid. http://​accord.​mh.​org.​au.​2009.​
20.
go back to reference Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34(5):867–8.PubMedCrossRef Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34(5):867–8.PubMedCrossRef
22.
go back to reference Chen S, Zhou Y, Chen Y, Huang T, Liao W, Xu Y, et al. Gencore: an efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data. BMC Bioinformatics. 2019;20(Suppl 23):606.PubMedPubMedCentralCrossRef Chen S, Zhou Y, Chen Y, Huang T, Liao W, Xu Y, et al. Gencore: an efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data. BMC Bioinformatics. 2019;20(Suppl 23):606.PubMedPubMedCentralCrossRef
23.
go back to reference Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44(11):e108.PubMedPubMedCentralCrossRef Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44(11):e108.PubMedPubMedCentralCrossRef
24.
go back to reference Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.PubMedPubMedCentralCrossRef Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.PubMedPubMedCentralCrossRef
25.
go back to reference Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–D7.PubMedCrossRef Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–D7.PubMedCrossRef
27.
go back to reference Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696–705.PubMedPubMedCentralCrossRef Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696–705.PubMedPubMedCentralCrossRef
28.
go back to reference Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.CrossRef Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.CrossRef
30.
go back to reference Kaley TJ, Wen P, Schiff D, Ligon K, Haidar S, Karimi S, et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol. 2015;17(1):116–21.PubMedCrossRef Kaley TJ, Wen P, Schiff D, Ligon K, Haidar S, Karimi S, et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol. 2015;17(1):116–21.PubMedCrossRef
31.
go back to reference Gao F, Ling C, Shi L, Commins D, Zada G, Mack WJ, et al. Inversion-mediated gene fusions involving NAB2-STAT6 in an unusual malignant meningioma. Br J Cancer. 2013;109(4):1051–5.PubMedPubMedCentralCrossRef Gao F, Ling C, Shi L, Commins D, Zada G, Mack WJ, et al. Inversion-mediated gene fusions involving NAB2-STAT6 in an unusual malignant meningioma. Br J Cancer. 2013;109(4):1051–5.PubMedPubMedCentralCrossRef
32.
go back to reference Schweizer L, Koelsche C, Sahm F, Piro RM, Capper D, Reuss DE, et al. Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol. 2013;125(5):651–8.PubMedCrossRef Schweizer L, Koelsche C, Sahm F, Piro RM, Capper D, Reuss DE, et al. Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol. 2013;125(5):651–8.PubMedCrossRef
33.
go back to reference Anis SE, Lotfalla M, Zain M, Kamel NN, Soliman AA. Value of SSTR2A and claudin – 1 in differentiating Meningioma from Schwannoma and Hemangiopericytoma. Open Access Maced J Med Sci. 2018;6(2):248–53.PubMedPubMedCentralCrossRef Anis SE, Lotfalla M, Zain M, Kamel NN, Soliman AA. Value of SSTR2A and claudin – 1 in differentiating Meningioma from Schwannoma and Hemangiopericytoma. Open Access Maced J Med Sci. 2018;6(2):248–53.PubMedPubMedCentralCrossRef
34.
go back to reference Viaene AN, Santi M, Rosenbaum J, Li MM, Surrey LF, Nasrallah MP. SETD2 mutations in primary central nervous system tumors. Acta Neuropathol Commun. 2018;6(1):123.PubMedPubMedCentralCrossRef Viaene AN, Santi M, Rosenbaum J, Li MM, Surrey LF, Nasrallah MP. SETD2 mutations in primary central nervous system tumors. Acta Neuropathol Commun. 2018;6(1):123.PubMedPubMedCentralCrossRef
35.
go back to reference Bukovac A, Kafka A, Hrascan R, Vladusic T, Pecina-Slaus N. Nucleotide variations of TP53 exon 4 found in intracranial meningioma and in silico prediction of their significance. Mol Clin Oncol. 2019;11(6):563–72.PubMedPubMedCentral Bukovac A, Kafka A, Hrascan R, Vladusic T, Pecina-Slaus N. Nucleotide variations of TP53 exon 4 found in intracranial meningioma and in silico prediction of their significance. Mol Clin Oncol. 2019;11(6):563–72.PubMedPubMedCentral
36.
go back to reference Wang JL, Zhang ZJ, Hartman M, Smits A, Westermark B, Muhr C, et al. Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer. 1995;64(4):223–8.PubMedCrossRef Wang JL, Zhang ZJ, Hartman M, Smits A, Westermark B, Muhr C, et al. Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer. 1995;64(4):223–8.PubMedCrossRef
37.
go back to reference Verheijen FM, Sprong M, Kloosterman JM, Blaauw G, Thijssen JH, Blankenstein MA. TP53 mutations in human meningiomas. Int J Biol Markers. 2002;17(1):42–8.PubMedCrossRef Verheijen FM, Sprong M, Kloosterman JM, Blaauw G, Thijssen JH, Blankenstein MA. TP53 mutations in human meningiomas. Int J Biol Markers. 2002;17(1):42–8.PubMedCrossRef
38.
go back to reference Dagrada GP, Spagnuolo RD, Mauro V, Tamborini E, Cesana L, Gronchi A, et al. Solitary fibrous tumors: loss of chimeric protein expression and genomic instability mark dedifferentiation. Mod Pathol. 2015;28(8):1074–83.PubMedCrossRef Dagrada GP, Spagnuolo RD, Mauro V, Tamborini E, Cesana L, Gronchi A, et al. Solitary fibrous tumors: loss of chimeric protein expression and genomic instability mark dedifferentiation. Mod Pathol. 2015;28(8):1074–83.PubMedCrossRef
39.
go back to reference Sahm F, Schrimpf D, Olar A, Koelsche C, Reuss D, Bissel J et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J Natl Cancer Inst. 2016;108(5). Sahm F, Schrimpf D, Olar A, Koelsche C, Reuss D, Bissel J et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J Natl Cancer Inst. 2016;108(5).
40.
go back to reference Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol. 2014;24(2):184–9.PubMedCrossRef Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol. 2014;24(2):184–9.PubMedCrossRef
41.
go back to reference Castillon-Benavides NK, Salinas-Lara C, Ponce-Guerrero F, Leon P, Gelista N, Tena-Suck ML. Tuberous sclerosis complex and sphenoid meningioma. Arq Neuropsiquiatr. 2010;68(3):455–8.PubMedCrossRef Castillon-Benavides NK, Salinas-Lara C, Ponce-Guerrero F, Leon P, Gelista N, Tena-Suck ML. Tuberous sclerosis complex and sphenoid meningioma. Arq Neuropsiquiatr. 2010;68(3):455–8.PubMedCrossRef
42.
go back to reference Lee J, Yu HJ, Lee J, Kim JH, Shin HJ, Suh YL, et al. Chordoid meningioma in a pediatric patient with tuberous sclerosis complex. Korean J Pathol. 2014;48(4):302–6.PubMedPubMedCentralCrossRef Lee J, Yu HJ, Lee J, Kim JH, Shin HJ, Suh YL, et al. Chordoid meningioma in a pediatric patient with tuberous sclerosis complex. Korean J Pathol. 2014;48(4):302–6.PubMedPubMedCentralCrossRef
43.
go back to reference Williams EA, Santagata S, Wakimoto H, Shankar GM, Barker FG 2nd, Sharaf R, et al. Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathol Commun. 2020;8(1):171.PubMedPubMedCentralCrossRef Williams EA, Santagata S, Wakimoto H, Shankar GM, Barker FG 2nd, Sharaf R, et al. Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathol Commun. 2020;8(1):171.PubMedPubMedCentralCrossRef
44.
go back to reference Ma J, Hong Y, Chen W, Li D, Tian K, Wang K, et al. High Copy-Number variation Burdens in cranial Meningiomas from patients with diverse clinical phenotypes characterized by hot genomic structure changes. Front Oncol. 2020;10:1382.PubMedPubMedCentralCrossRef Ma J, Hong Y, Chen W, Li D, Tian K, Wang K, et al. High Copy-Number variation Burdens in cranial Meningiomas from patients with diverse clinical phenotypes characterized by hot genomic structure changes. Front Oncol. 2020;10:1382.PubMedPubMedCentralCrossRef
45.
go back to reference Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M. Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg. 2004;101(2):210–8.PubMedCrossRef Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M. Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg. 2004;101(2):210–8.PubMedCrossRef
46.
go back to reference Kim H, Nguyen NP, Turner K, Wu S, Gujar AD, Luebeck J, et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet. 2020;52(9):891–7.PubMedPubMedCentralCrossRef Kim H, Nguyen NP, Turner K, Wu S, Gujar AD, Luebeck J, et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet. 2020;52(9):891–7.PubMedPubMedCentralCrossRef
47.
go back to reference Hemmer S, Urbschat S, Oertel J, Ketter R. Deletions in the 17q chromosomal region and their influence on the clonal cytogenetic evolution of recurrent meningiomas. Mol Cytogenet. 2019;12:22.PubMedPubMedCentralCrossRef Hemmer S, Urbschat S, Oertel J, Ketter R. Deletions in the 17q chromosomal region and their influence on the clonal cytogenetic evolution of recurrent meningiomas. Mol Cytogenet. 2019;12:22.PubMedPubMedCentralCrossRef
48.
go back to reference Bi WL, Greenwald NF, Abedalthagafi M, Wala J, Gibson WJ, Agarwalla PK, et al. Erratum: genomic landscape of high-grade meningiomas. NPJ Genom Med. 2017;2:26.PubMedPubMedCentralCrossRef Bi WL, Greenwald NF, Abedalthagafi M, Wala J, Gibson WJ, Agarwalla PK, et al. Erratum: genomic landscape of high-grade meningiomas. NPJ Genom Med. 2017;2:26.PubMedPubMedCentralCrossRef
49.
go back to reference Mellai M, Porrini Prandini O, Mustaccia A, Fogazzi V, Allesina M, Krengli M et al. Human TERT Promoter Mutations in Atypical and Anaplastic Meningiomas. Diagnostics (Basel). 2021;11(9). Mellai M, Porrini Prandini O, Mustaccia A, Fogazzi V, Allesina M, Krengli M et al. Human TERT Promoter Mutations in Atypical and Anaplastic Meningiomas. Diagnostics (Basel). 2021;11(9).
50.
go back to reference Nassiri F, Liu J, Patil V, Mamatjan Y, Wang JZ, Hugh-White R, et al. A clinically applicable integrative molecular classification of meningiomas. Nature. 2021;597(7874):119–25.PubMedCrossRef Nassiri F, Liu J, Patil V, Mamatjan Y, Wang JZ, Hugh-White R, et al. A clinically applicable integrative molecular classification of meningiomas. Nature. 2021;597(7874):119–25.PubMedCrossRef
Metadata
Title
Somatic mutation landscape in a cohort of meningiomas that have undergone grade progression
Authors
Sarah A Cain
Bernard Pope
Stefano Mangiola
Theo Mantamadiotis
Katharine J Drummond
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10624-9

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine