Skip to main content
Top
Published in: BMC Cancer 1/2021

01-12-2021 | Immunomodulator | Research

The epigenetic immunomodulator, HBI-8000, enhances the response and reverses resistance to checkpoint inhibitors

Authors: Reid P. Bissonnette, Rosemary M. Cesario, Bob Goodenow, Farbod Shojaei, Mireille Gillings

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Treatment with immune checkpoint inhibitors (ICIs) targeting CTLA-4 and the PD-1/PD-L1 axis is effective against many cancer types. However, due in part to unresponsiveness or acquired resistance, not all patients experience a durable response to ICIs. HBI-8000 is a novel, orally bioavailable class I selective histone deacetylase inhibitor that directly modifies antitumor activity by inducing apoptosis, cell cycle arrest, and resensitization to apoptotic stimuli in adult T cell lymphoma patients. We hypothesized that HBI-8000 functions as an epigenetic immunomodulator to reprogram the tumor microenvironment from immunologically cold (nonresponsive) to hot (responsive).

Method

Mice bearing syngeneic tumors (MC38 and CT26 murine colon carcinoma and A20 B-cell lymphoma were treated daily with HBI-8000 (orally), alone or in combination with PD-1, PD-1 L, or CTLA-4 antibodies. MC38 tumors were also analyzed in nanoString gene expression analysis.

Results

HBI-8000 augmented the activity of ICI antibodies targeting either PD-1, PD-L1 or CTLA-4, and significantly increased tumor regression (p < 0.05) in the above models. Gene expression analysis of the treated MC38 tumors revealed significant changes in mRNA expression of immune checkpoints, with enhanced dendritic cell and antigen-presenting cell functions, and modulation of MHC class I and II molecules.

Conclusions

These findings suggest that HBI-8000 mediates epigenetic modifications in the tumor microenvironment, leading to improved efficacy of ICIs, and provide strong rationale for combination therapies with ICIs and HBI-8000 in the clinical setting.

Precis

As an HDACi, HBI-8000 plays an important role in priming the immune system in the tumor microenvironment. The current preclinical data further justifies testing combination of HBI-8000 and ICIs in the clinic.
Appendix
Available only for authorised users
Literature
2.
go back to reference Iivanainen S, Koivunen JP. Possibilities of improving the clinical value of immune checkpoint inhibitor therapies in cancer care by optimizing patient selection. Int J Mol Sci. 2020;21(2):1–17. Iivanainen S, Koivunen JP. Possibilities of improving the clinical value of immune checkpoint inhibitor therapies in cancer care by optimizing patient selection. Int J Mol Sci. 2020;21(2):1–17.
4.
go back to reference Barrero MJ. Epigenetic strategies to boost cancer immunotherapies. Int J Mol Sci. 2017;18(6):1–12. Barrero MJ. Epigenetic strategies to boost cancer immunotherapies. Int J Mol Sci. 2017;18(6):1–12.
7.
go back to reference Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 2019;20(9):1–29. Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 2019;20(9):1–29.
25.
go back to reference Mao JLS, Zhao H, Zhu Y, Hong M, Zhu H, Qian S, et al. Am J Transl Res_Effects of chidamide and decitabine on proliferation and apoptosis of leukemia cell lines. Am J Transl Res. 2018;10(8):2567–78. Mao JLS, Zhao H, Zhu Y, Hong M, Zhu H, Qian S, et al. Am J Transl Res_Effects of chidamide and decitabine on proliferation and apoptosis of leukemia cell lines. Am J Transl Res. 2018;10(8):2567–78.
26.
30.
go back to reference Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, et al. Chidamide inhibits the viability of MDS and AML cells by suppressing JAK2-STAT3 signaling. Am J Transl Res. 2016;8(7):3169.PubMedPubMedCentral Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, et al. Chidamide inhibits the viability of MDS and AML cells by suppressing JAK2-STAT3 signaling. Am J Transl Res. 2016;8(7):3169.PubMedPubMedCentral
35.
go back to reference Bissonnette RP, Rolland A, Goodeneow B, Gillings M. Abstract B108: the HDAC inhibitor HBI-8000 enhances immunotherapy with either PD-1 or PD-L1 blockade in the MC38 model of colon cancer. In: Mechanistic merging of treatment modalities; 2016. p. B108.CrossRef Bissonnette RP, Rolland A, Goodeneow B, Gillings M. Abstract B108: the HDAC inhibitor HBI-8000 enhances immunotherapy with either PD-1 or PD-L1 blockade in the MC38 model of colon cancer. In: Mechanistic merging of treatment modalities; 2016. p. B108.CrossRef
36.
51.
go back to reference Sullivan RJSJM, Johnson ML, Opyrchal M, Ordentlich P, Brouwer S, Sankoh S, et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma previously treated with anti-PD-1 therapy. Cancer Res. 2019;79(13):CT072. Sullivan RJSJM, Johnson ML, Opyrchal M, Ordentlich P, Brouwer S, Sankoh S, et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma previously treated with anti-PD-1 therapy. Cancer Res. 2019;79(13):CT072.
62.
go back to reference Igney FH, Krammer P. Immune escape of tumors: apoptosis resistance and tumor counterattack. Leukocyte Biol. 2002;71:907–20. Igney FH, Krammer P. Immune escape of tumors: apoptosis resistance and tumor counterattack. Leukocyte Biol. 2002;71:907–20.
73.
go back to reference Khunger ARJ, Yusko EC, Tarhini AA. Clonal expansion of tumor infiltrating lymphocytes (TILs) in the peripheral blood of metastatic melanoma patients is significantly associated with response to CTLA4 blockade-based immunotherapy. J Clin Oncol. 2019;37. Abstract. Khunger ARJ, Yusko EC, Tarhini AA. Clonal expansion of tumor infiltrating lymphocytes (TILs) in the peripheral blood of metastatic melanoma patients is significantly associated with response to CTLA4 blockade-based immunotherapy. J Clin Oncol. 2019;37. Abstract.
76.
go back to reference Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, et al. A threshold model for T-cell activation in the era of checkpoint blockade immunotherapy. Front Immunol. 2019;10:491.CrossRefPubMedPubMedCentral Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, et al. A threshold model for T-cell activation in the era of checkpoint blockade immunotherapy. Front Immunol. 2019;10:491.CrossRefPubMedPubMedCentral
77.
go back to reference Dahiya SWL, Beier UH, Hancock RW. HDAC10 targeting regulates Foxp3 promoter, enhances T-regulatory (Treg) function and suppresses autoimmune colitis. J Immunol. 2018. 200 (1 Supplement) 54.11. Dahiya SWL, Beier UH, Hancock RW. HDAC10 targeting regulates Foxp3 promoter, enhances T-regulatory (Treg) function and suppresses autoimmune colitis. J Immunol. 2018. 200 (1 Supplement) 54.11.
Metadata
Title
The epigenetic immunomodulator, HBI-8000, enhances the response and reverses resistance to checkpoint inhibitors
Authors
Reid P. Bissonnette
Rosemary M. Cesario
Bob Goodenow
Farbod Shojaei
Mireille Gillings
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08702-x

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine