Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Glioblastoma | Research article

Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature

Authors: Saiful Effendi Syafruddin, Wan Fahmi Wan Mohamad Nazarie, Nurshahirah Ashikin Moidu, Bee Hong Soon, M. Aiman Mohtar

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Glioblastoma multiforme (GBM) is a highly lethal, stage IV brain tumour with a prevalence of approximately 2 per 10,000 people globally. The cell surface proteins or surfaceome serve as information gateway in many oncogenic signalling pathways and are important in modulating cancer phenotypes. Dysregulation in surfaceome expression and activity have been shown to promote tumorigenesis. The expression of GBM surfaceome is a case in point; OMICS screening in a cell-based system identified that this sub-proteome is largely perturbed in GBM. Additionally, since these cell surface proteins have ‘direct’ access to drugs, they are appealing targets for cancer therapy. However, a comprehensive GBM surfaceome landscape has not been fully defined yet. Thus, this study aimed to define GBM-associated surfaceome genes and identify key cell-surface genes that could potentially be developed as novel GBM biomarkers for therapeutic purposes.

Methods

We integrated the RNA-Seq data from TCGA GBM (n = 166) and GTEx normal brain cortex (n = 408) databases to identify the significantly dysregulated surfaceome in GBM. This was followed by an integrative analysis that combines transcriptomics, proteomics and protein-protein interaction network data to prioritize the high-confidence GBM surfaceome signature.

Results

Of the 2381 significantly dysregulated genes in GBM, 395 genes were classified as surfaceome. Via the integrative analysis, we identified 6 high-confidence GBM molecular signature, HLA-DRA, CD44, SLC1A5, EGFR, ITGB2, PTPRJ, which were significantly upregulated in GBM. The expression of these genes was validated in an independent transcriptomics database, which confirmed their upregulated expression in GBM. Importantly, high expression of CD44, PTPRJ and HLA-DRA is significantly associated with poor disease-free survival. Last, using the Drugbank database, we identified several clinically-approved drugs targeting the GBM molecular signature suggesting potential drug repurposing.

Conclusions

In summary, we identified and highlighted the key GBM surface-enriched repertoires that could be biologically relevant in supporting GBM pathogenesis. These genes could be further interrogated experimentally in future studies that could lead to efficient diagnostic/prognostic markers or potential treatment options for GBM.
Appendix
Available only for authorised users
Literature
17.
go back to reference Cunha JPC d, Galante P a F, de SJE, de SRF, Carvalho PM, Ohara DT, et al. Bioinformatics construction of the human cell surfaceome. Proc Natl Acad Sci. 2009;106:16752–7.CrossRefPubMedPubMedCentral Cunha JPC d, Galante P a F, de SJE, de SRF, Carvalho PM, Ohara DT, et al. Bioinformatics construction of the human cell surfaceome. Proc Natl Acad Sci. 2009;106:16752–7.CrossRefPubMedPubMedCentral
24.
go back to reference Low TY, Mohtar MA, Ang MY, Jamal R. Connecting proteomics to next-generation sequencing: Proteogenomics and its current applications in biology. Proteomics. 2019;19:e1800235.CrossRefPubMed Low TY, Mohtar MA, Ang MY, Jamal R. Connecting proteomics to next-generation sequencing: Proteogenomics and its current applications in biology. Proteomics. 2019;19:e1800235.CrossRefPubMed
25.
go back to reference Ang MY, Low TY, Lee PY, Wan Mohamad Nazarie WF, Guryev V, Jamal R. Proteogenomics: From next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine. Clin Chim Acta. 2019;498:38–46.CrossRefPubMed Ang MY, Low TY, Lee PY, Wan Mohamad Nazarie WF, Guryev V, Jamal R. Proteogenomics: From next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine. Clin Chim Acta. 2019;498:38–46.CrossRefPubMed
26.
go back to reference Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019;178:835–849.e21.CrossRefPubMedPubMedCentral Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019;178:835–849.e21.CrossRefPubMedPubMedCentral
28.
go back to reference Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell. 2017;32:42–56.e6.CrossRefPubMedPubMedCentral Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell. 2017;32:42–56.e6.CrossRefPubMedPubMedCentral
31.
go back to reference Ghosh D, Funk CC, Caballero J, Shah N, Rouleau K, Earls JC, et al. A Cell-Surface Membrane Protein Signature for Glioblastoma. Cell Syst. 2017;4:516–529.e7.CrossRefPubMedPubMedCentral Ghosh D, Funk CC, Caballero J, Shah N, Rouleau K, Earls JC, et al. A Cell-Surface Membrane Protein Signature for Glioblastoma. Cell Syst. 2017;4:516–529.e7.CrossRefPubMedPubMedCentral
43.
go back to reference Pais H, Ruggero K, Zhang J, Al-Assar O, Bery N, Bhuller R, et al. Surfaceome interrogation using an RNA-seq approach highlights leukemia initiating cell biomarkers in an LMO2 T cell transgenic model. Sci Rep. 2019;9:1–16. Pais H, Ruggero K, Zhang J, Al-Assar O, Bery N, Bhuller R, et al. Surfaceome interrogation using an RNA-seq approach highlights leukemia initiating cell biomarkers in an LMO2 T cell transgenic model. Sci Rep. 2019;9:1–16.
47.
go back to reference Han J, Puri RK. Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme. J Neuro-Oncol. 2018;136(3):463–74. https://doi.org/10.1007/s11060-017-2680-9.CrossRef Han J, Puri RK. Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme. J Neuro-Oncol. 2018;136(3):463–74. https://​doi.​org/​10.​1007/​s11060-017-2680-9.CrossRef
49.
go back to reference Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 2018;173:321–337.e10.CrossRefPubMedPubMedCentral Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 2018;173:321–337.e10.CrossRefPubMedPubMedCentral
54.
go back to reference Wang A, Chen M, Wang H, Huang J, Bao Y, Gan X, et al. Cell adhesion-related molecules play a key role in renal Cancer progression by multinetwork analysis. Biomed Res Int. 2019;2019:2325765.PubMedPubMedCentral Wang A, Chen M, Wang H, Huang J, Bao Y, Gan X, et al. Cell adhesion-related molecules play a key role in renal Cancer progression by multinetwork analysis. Biomed Res Int. 2019;2019:2325765.PubMedPubMedCentral
57.
go back to reference Diao J, Xia T, Zhao H, Liu J, Li B, Zhang Z. Overexpression of HLA-DR is associated with prognosis of glioma patients. Int J Clin Exp Pathol. 2015;8(5):5485–90.PubMedPubMedCentral Diao J, Xia T, Zhao H, Liu J, Li B, Zhang Z. Overexpression of HLA-DR is associated with prognosis of glioma patients. Int J Clin Exp Pathol. 2015;8(5):5485–90.PubMedPubMedCentral
59.
go back to reference Iuliano R, Trapasso F, Le Pera I, Schepis F, Samà I, Clodomiro A, et al. An adenovirus carrying the rat protein tyrosine phosphatase eta suppresses the growth of human thyroid carcinoma cell lines in vitro and in vivo. Cancer Res. 2003;63(4):882–6.PubMed Iuliano R, Trapasso F, Le Pera I, Schepis F, Samà I, Clodomiro A, et al. An adenovirus carrying the rat protein tyrosine phosphatase eta suppresses the growth of human thyroid carcinoma cell lines in vitro and in vivo. Cancer Res. 2003;63(4):882–6.PubMed
61.
go back to reference Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta BBA Mol Cell Res. 1863;2016:2531–9. Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta BBA Mol Cell Res. 1863;2016:2531–9.
69.
go back to reference Mooney KL, Choy W, Sidhu S, Pelargos P, Bui TT, Voth B, et al. The role of CD44 in glioblastoma multiforme. J Clin Neurosci Off J Neurosurg Soc Australas. 2016;34:1–5. Mooney KL, Choy W, Sidhu S, Pelargos P, Bui TT, Voth B, et al. The role of CD44 in glioblastoma multiforme. J Clin Neurosci Off J Neurosurg Soc Australas. 2016;34:1–5.
Metadata
Title
Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature
Authors
Saiful Effendi Syafruddin
Wan Fahmi Wan Mohamad Nazarie
Nurshahirah Ashikin Moidu
Bee Hong Soon
M. Aiman Mohtar
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08591-0

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine